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Abstract. We prove the absence of percolation in a directed Poisson-based random geometric graph with out-degree 1. This graph
is an anisotropic variant of a line-segment based lilypond model obtained from an asymmetric growth protocol, which has been
proposed by Daley and Last. In order to exclude backward percolation, one may proceed as in the lilypond model of growing disks
and apply the mass-transport principle. Concerning the proof of the absence of forward percolation, we present a novel argument
that is based on the method of sprinkling.

Résumé. Nous montrons l’absence de percolation dans un graphe géométrique aléatoire orienté de degré sortant 1 construit sur un
processus ponctuel de Poisson. Ce graphe est fondé sur une variante anisotropique d’un système de segments qui croissent selon
un protocole asymétrique de type ‘lilypond’ proposé par Daley et Last. Pour exclure la percolation en direction des ascendants
on peut procéder comme dans le cas d’un système de disques qui croissent selon un protocole de type ‘lilypond’ en utilisant le
principe du transport de masse. Concernant la preuve de l’absence de percolation en direction des descendants, nous donnons un
nouvel argument à l’aide de la méthode de ‘saupoudrage’.
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1. Introduction

The classical lilypond model describes a hard-sphere system defined by the following growth-stopping protocol. Start
with a planar homogeneous Poisson point process X whose atoms serve as germs of a growth process. At time 0
and with the same speed at each element x ∈ X a spherical grain begins to grow. As soon as one such grain touches
another both cease to grow. This model and various generalizations have been intensively studied for almost 20 years,
so that today an entire family of results concerning existence, uniqueness, stabilization and absence of percolation
is known. We refer the reader to the original articles [3–8] for details. The purpose of the present paper is to further
advance the completion of this picture by adding a result on the absence of percolation in a lilypond model based on
an asymmetric growth-stopping protocol. To be more precise, we consider a model where from each atom of a planar
Poisson point process a line segment starts to grow in one of the directions ±e1 = (±1,0), ±e2 = (0,±1) and as soon
as a line segment touches an already existing one, the former ceases to grow. This model is an anisotropic variant of
one of the two line-segment based lilypond models introduced in [2]. A realization of the anisotropic lilypond model
is shown in Figure 1.

The lilypond model gives rise to a directed graph on X, where an edge is drawn from x to y if the growth of the
line segment at x is stopped by the line segment at y. We prove that with probability 1, this graph exhibits neither
forward nor backward percolation, thus verifying [2], Conjecture 7.1, in an anisotropic setting. The investigation of
the absence of percolation in lilypond-type models has been initiated in [6] and we briefly review the main idea to
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Fig. 1. Realization of the lilypond line-segment model (cutout).

establish the absence of percolation in models using spherical grains. After that, we explain which parts of the proof
have to be modified in the line-segment setting.

In lilypond models based on spherical grains, the notion of doublets plays a crucial role, where a doublet consists
of a pair of disk-shaped grains B1,B2 ⊂ R

2 such that B1 stops the growth of B2 and B2 stops the growth of B1. This
notion allows to subdivide the proof for the absence of percolation provided in [3] into two steps. In the first step, it
is shown that a.s. each connected component of the lilypond model contains at most one doublet. In the second step,
the a.s. absence of descending chains for homogeneous Poisson point processes is used to show that every connected
component also contains at least one doublet. In particular, by mapping each connected component to the midpoint
of the two doublet centers we are able construct a locally finite set from the family of connected components in a
translation-covariant way. Therefore, an application of the mass-transport principle implies the absence of infinite
connected components.

In our setting, the notion of doublets is replaced by cycles, where a cycle consists of a sequence of line segments
L1,L2, . . . ,Lk ⊂R

2 such that each Li+1 (i = 1, . . . , k − 1) stops the growth of Li and L1 stops the growth of Lk . As
in the setting of spherical grains, it is clear that any connected component contains at most one cycle. Furthermore,
another application of the mass-transport principle proves the absence of infinite connected components containing a
cycle. On the other hand, to show that every connected component contains at least one cycle, we use the sprinkling
technique developed in [1]. In other words, we first express the planar homogeneous Poisson point process X as
superposition of two independent homogeneous Poisson point processes X = X(1) ∪ X(2), where the intensity of X(1)

is only slightly smaller than the intensity of X. When considering the lilypond model on X(1), this graph could contain
connected components without a cycle, a priori. The idea of the proof is to show that sprinkling the remaining centers
X(2) has the effect of stopping every semi-infinite directed path in the lilypond model based on the point process X(1)

and that if the sprinkling intensity is chosen sufficiently small, then no additional semi-infinite paths appear. One key
step in the formalization of this idea is to combine a stabilization result for the lilypond model at hand with a standard
result on dependent percolation [9] to ensure that, except for small exceptional islands in the plane, one has good
control on the effects of the sprinkling.

Our method uses only rather general properties of the line-segment based lilypond model and we expect that it
may be useful to prove the absence of percolation in further directed Poisson-based random geometric graphs with
out-degree 1. Indeed, the sprinkling technique applies if the underlying graph satisfies a suitable shielding condition
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and there is a positive probability of modifying the graph locally inside large square so that any path entering the
square is stopped.

The paper is organized as follows. In Section 2, we provide a precise description of the lilypond model under
consideration and state the main result of this paper, Theorem 1, which deals with the absence of percolation. In Sec-
tion 3, we explain how the mass-transport principle can be used to deduce the absence of backward percolation from
the absence of forward percolation, and we also state several auxiliary results, which are important in the proof of the
absence of forward percolation. Assuming these auxiliary results, in Section 4, we prove the absence of forward per-
colation using the sprinkling technique. Section 5 is devoted to the proof of the auxiliary results. Finally, in Section 6,
we discuss possible extensions of the sprinkling technique to other directed Poisson-based random geometric graphs
of outdegree at most 1.

2. Model definition and statement of main result

The purpose of this section is two-fold. First, we provide a formal definition of the line-segment based asymmetric
lilypond model which shall be the topic of our considerations. Second, we state the main result of the present paper,
Theorem 1.

In the lilypond model under consideration, at time 0 from every point of an independently marked homogeneous
planar Poisson point process X with intensity 1, a line segment starts to grow in one of the four directions M =
{±e1,±e2} (which is chosen uniformly at random). It stops growing as soon as it hits another line segment. The
growth-stopping protocol is asymmetric in the sense that in contrast to the hitting line segment, the segment being
hit does not stop growing (provided of course that its growth had not already stopped before the collision). Although
the growth dynamics of this lilypond model admits a very intuitive description, providing a rigorous mathematical
definition is not entirely trivial. Nevertheless, by now this problem has been investigated for many variants of the
classical lilypond model from [6] and existence as well as uniqueness are guaranteed if the underlying point process
does not admit a suitable form of descending chains. These chains are usually easy to exclude for independently
marked homogeneous Poisson point processes, see, e.g., [2,3,5]. For our purposes the correct variant is the following.

Definition 1. Let b > 0 and ϕ ⊂R
2 be locally finite. A (finite or infinite) set {ξi}i≥1 ⊂ ϕ forms a b-bounded anisotropic

descending chain if |ξ1 − ξ2|∞ ≤ b and |ξi − ξi+1|∞ < |ξi−1 − ξi |∞ for all i ≥ 2. A set {ξi}i≥1 ⊂ ϕ defines an
anisotropic descending chain if it forms a b-bounded anisotropic descending chain for some b > 0.

In particular, one can derive the following result whose proof is obtained by a straightforward adaptation of the
arguments in [2], where we write NM for the family of all locally finite subsets of R2,M =R

2 ×M.

Proposition 1. Let ϕ ∈ NM be an M-marked locally finite set that does not contain anisotropic descending chains,
and such that (ξ − η)/|ξ − η| /∈ {±e1,±e2, (±e1 ± e2)/

√
2} for all x = (ξ, v), y = (η,w) ∈ ϕ with x 	= y. Then, there

exists a unique function f :ϕ → [0,∞] with the following properties.

1. [ξ, ξ + f (x)v) ∩ [η,η + f (y)w) =∅ for all x = (ξ, v), y = (η,w) ∈ ϕ with x 	= y (hard-core property).
2. For every x ∈ ϕ with f (x) < ∞ there exists a unique y = (η,w) ∈ ϕ such that ξ + f (x)v ∈ [η,η + f (y)w) and

|ξ + f (x)v − η| < f (x) (existence of stopping neighbors).

In the following, we denote by N
′ the family of all non-empty ϕ ∈NM such that f (x) < ∞ for all x ∈ ϕ, such that

(ξ − η)/|ξ − η| /∈ {±e1,±e2, (±e1 ± e2)/
√

2} for all x = (ξ, v), y = (η,w) ∈ ϕ with x 	= y, and such that ϕ does not
contain anisotropic descending chains. Furthermore, it will be convenient to introduce functions hc :N′ × R

2,M →
R

2,M and hg :N′ ×R
2,M → R

2, where hc(ϕ, x) denotes the uniquely determined stopping neighbor of x (in the sense
of point 2 in Proposition 1), and where hg(ϕ, (ξ, v)) = ξ + f (x)v. In other words, hc(ϕ, x) denotes the element of ϕ

stopping the growth of x, whereas hg(ϕ, x) denotes the actual endpoint of the segment emanating from x. Therefore,
we call hc(ϕ, x) the combinatorial descendant and hg(ϕ, x) the geometric descendant of x. If x = (ξ, v) /∈ ϕ, then we
formally put hc(ϕ, x) = x and hg(ϕ, x) = ξ .

Our results on the absence of percolation can be stated using only the notion of combinatorial descendants. Still,
tracing the path described by following iteratively the geometric descendants is in a sense much closer to the geometry
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of the underlying lilypond model than tracing the path of iterated combinatorial descendants. Thus, it is not surprising
that geometric descendants play a crucial role in the analysis of percolation properties. This justifies the introduction
of separate notation despite the fact that hg(ϕ, x) could be easily recovered from x, ϕ and hc(ϕ, x).

In order to state our main result, it is convenient to introduce for any x ∈ X the set h
(∞)
c (X,x) = {h(n)

c (X,x): n ≥
0}, where we recursively define h

(0)
c (X,x) = x and h

(n)
c (X,x) = hc(X,h

(n−1)
c (X,x)), n ≥ 1.

Theorem 1. With probability 1, the lilypond line-segment model does not percolate in the sense that

1. for every x ∈ X the set h
(∞)
c (X,x) is finite, and

2. for every x ∈ X there exist only finitely many y ∈ X with x ∈ h
(∞)
c (X,y).

3. Absence of backward percolation and statement auxiliary results

The goal of the present section is two-fold. First, we show how the absence of backward percolation (part 2 of
Theorem 1) can be derived from the absence of forward percolation (part 1 of Theorem 1) using the mass-transport
principle. Second, we highlight three important properties of the lilypond model, which will be verified in Section 5.
The benefit of introducing these properties in the present section is that these are the main properties of the lilypond
model that will be used in the proof for the absence of forward percolation in Section 4. In this way, we separate the
presentation of the sprinkling method from the rather technical verification of the three properties.

In the following, for r > 0 and ξ ∈ R
2, we denote by Qr(ξ) = [−r/2, r/2]2 + ξ the square of side length r

centered at ξ . We also put QM
r (ξ) = Qr(ξ)×M. To begin with, we deduce the absence of backward percolation from

the absence of forward percolation.

Proof of Theorem 1(1) assuming Theorem 1(2). Similar to the arguments used in [3,5], we use the mass-transport
principle. Loosely speaking, to define a translation-covariant mass transport, we first note that from the absence of
forward percolation, we deduce that starting from any point of the Poisson point process and taking iterated combi-
natorial descendants we arrive at a cycle. Transporting one unit of mass from that point to the center of gravity of the
cycle, we see that choosing a discretization of the Euclidean space into squares, the expected total outgoing mass from
any square is finite, whereas the occurrence of backward percolation would result in some square receiving an infinite
amount of mass.

More precisely, for each x ∈ X we denote by V (x) the set of all y ∈ X such that h
(n)
c (ϕ, x) = y for infinitely many

n ≥ 1 and by C(x) the center of gravity of the spatial coordinates in V (x). Since Theorem 1(1) implies that V (x) is
finite, this point is well-defined. Next, we introduce a function ψ :Z2 ×Z

2 → [0,∞) by putting

ψ(z1, z2) = #
{
x ∈ X ∩ QM

1 (z1) :C(x) ∈ Q1(z2)
}
,

so that ψ(z1, z2) denotes the number of elements of x ∈ X ∩QM

1 (z1) such that C(x) is contained in Q1(z2). Note that

if x ∈ X is such that C(x) ∈ Q1(o) and there exist infinitely y ∈ X with x ∈ h
(∞)
c (X,y), then

∑
z∈Z2 ψ(z, o) = ∞.

Furthermore, for any z ∈ Z
d the random variables ψ(z, o) and ψ(o,−z) have the same distribution, so that the as-

sumption from Section 2 that X is a homogeneous Poisson point process with intensity 1 yields

E

∑
z∈Z2

ψ(z, o) =
∑
z∈Z2

Eψ(z, o) =
∑
z∈Z2

Eψ(o,−z) = E

∑
z∈Z2

ψ(o,−z) = E#
(
X ∩ QM

1 (o)
) = 1.

In particular,
∑

z∈Z2 ψ(z, o) is a.s. finite, so that with probability 1 there does not exist x ∈ X such that C(x) ∈
Q1(o) and such that x ∈ h

(∞)
c (X,y) for infinitely many y ∈ X. Using stationarity once more completes the proof of

Theorem 1(2). �

In the proof of the absence of forward percolation the sprinkling method [1] is used. In the first step, we form the
graph based on all but a tiny fraction of X, while in the second step the remaining points of X are added independently
in order to stop any of the possibly existing infinite paths. In order to turn this rough description into a rigorous proof,
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we make use of three important properties of the lilypond model. In the present section, we state these properties and
provide explanations and illustrations in order to make the reader familiar with them. Next, in Section 4, we provide a
proof for the absence of forward percolation based on these properties. Finally, in Section 5, we verify these properties
for the specific lilypond model under consideration. We present the three properties in order of increasing complexity.

First, the combinatorial descendant function hc satisfies a continuity property. That is, if ϕ ∈ N
′ and ϕ1 ⊂ ϕ2 ⊂ · · ·

is an increasing family of elements of N′ with
⋃

n≥1 ϕn = ϕ, then there exists n0 ≥ 1 such that hc(ϕn, x) = hc(ϕ, x)

for all n ≥ n0.

Proposition 2. The considered lilypond line-segment model satisfies the continuity property.

Section 5.2 is devoted to the proof of this proposition. Next, when considering the process of passing iteratively to
combinatorial descendants, we need some control of distances between the corresponding geometric descendants. To
be more precise, we consider a discretization of the Euclidean plane into large squares and call some of these squares
good. Loosely speaking, if we start from any finite family of squares with the property that all adjacent squares are
good, then these good squares should act as a shield: if starting from some point whose geometric descendant lies
in the initial finite family of cubes, then the following geometric descendant is located either also in a square of that
family or in an adjacent one. We first introduce the precise form of sprinkling that will be used in the following. For
every s > 1 the Poisson point process X can be represented as X = X(1)(s)∪X(2)(s), where X(1)(s) is independent of
X(2)(s) and both point processes are independently M-marked homogeneous Poisson point processes with intensities
1 − s−3 and s−3, respectively. In particular, lims→∞ P(X(2)(s) ∩ QM

s (o) = ∅) = 1. Usually, the value of s is clear
from the context and then we write X(i) instead of X(i)(s). Now, we say that the lilypond model satisfies the shielding
condition (SH) if there exists a family of events (As)s≥1 on NM with lims→∞ P(X(1) ∩ QM

3s(o) ∈ As) = 1 and such
that the following condition is satisfied, where we write B1 ⊕ B2 = {b1 + b2: b1 ∈ B1, b2 ∈ B2} for the Minkowski
sum of B1,B2 ⊂R

2.

(SH) Consider the lattice Z
2 with edges given by {{z1, z2}: |z1 − z2|∞ ≤ 1}, let B ⊂ Z

2 and denote by B ′ = {z ∈
Z

2 \ B: |z − z′|∞ = 1 for some z′ ∈ B} the outer boundary of B . If ϕ ∈N
′ is such that (ϕ − sz′) ∩ QM

3s(o) ∈ As

for all z′ ∈ B ′, then

hg
(
ϕ,hc(ϕ, x)

) ∈ sB ⊕ Q3s(o) for all x = (ξ,m) ∈ ϕ with hg(ϕ, x) ∈ sB ⊕ Qs(o).

A site z ∈ Z
2 with (X(1) − sz) ∩ QM

3s(o) ∈ As , is called s-good. See Figure 2 for an illustration of the shielding
condition (SH). In Section 5, we verify that this condition is satisfied in the present setting.

Proposition 3. The considered lilypond line-segment model satisfies condition (SH).

Fig. 2. Possible configuration as in condition (SH); set sB ⊕ Qs(o) in gray.
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Finally, we need to know that in the lilypond model under consideration, sprinkled germs can be used to stop al-
ready existing segments from growing. This important property of the lilypond model, will be called uniform stopping
property. We assume that there exists a family of positive real numbers (ps)s≥1 (possibly tending to 0 as s → ∞)
with the following property. Ideally, we would like to achieve that, conditioned on X(1) ∩ QM

3s(o), with a probability
at least ps adding the sprinkling X(2) ∩ QM

s (o) will cause all segments entering Qs(o) to become stuck in a cycle
in Qs(o), whereas the structure of the lilypond model outside Qs(o) is left largely unchanged. However, this goal
is too ambitious. Indeed, in some pathological cases, we can encounter realizations of X(1) ∩ QM

3s(o) for which the
probability of observing a suitable sprinkling is much lower than ps . Still, to prove the absence of forward percolation,
it suffices to impose that the probability of such pathological configurations tends to 0 as s → ∞. In order to state this
property precisely, for s > 0, ϕ ∈ N

′ and z ∈ Z
2 it is convenient to denote by

∂ in
z,s(ϕ) = {

x ∈ ϕ \ QM

s (o): hg(ϕ, x) ∈ Qs(sz)
}

the subset of all points x ∈ ϕ \ QM
s (o) whose geometric descendant is contained in Qs(sz).

Now, we say that the lilypond satisfies the uniform stopping condition (condition (US)) if there exist a family of
positive real numbers (ps)s≥1, ps ∈ (0,1] and a family of events (A′

s)s≥1 on N
′ ×N

′ such that A′
s ⊂ As ×N

′,

P
((

X(1) ∩ QM

3s(o),X(2) ∩ QM

s (o)
) ∈ A′

s | X(1) ∩ QM

3s(o)
) ≥ ps1X(1)∩QM

3s (o)∈As
a.s., (1)

and such that the following condition is satisfied.

(US) Let ϕ1, ϕ2 ∈ N
′ be such that ϕ2 ⊂ QM

s (o) and (ϕ1 ∩ QM

3s(o), ϕ2) ∈ A′
s . Moreover, let ψ ⊂ R

2,M \ QM
s (o) be a

finite set such that for every z ∈ Z
2 either ((ϕ1 − sz) ∩ QM

3s(o), (ψ − sz) ∩ QM
s (o)) ∈ A′

s or ψ ∩ QM
s (sz) = ∅.

If ϕ1 ∪ ψ ′ ∈ N
′ for all ψ ′ ⊂ ϕ2 ∪ ψ , then the following stabilization properties are true.

(a) If x ∈ ϕ2, then hc(ϕ1 ∪ ϕ2 ∪ ψ,x) = hc(ϕ2, x).
(b) If x ∈ ϕ1, then either hc(ϕ1 ∪ ϕ2 ∪ ψ,x) ∈ ϕ2 or

hc(ϕ1 ∪ ϕ2 ∪ ψ,x) = hc(ϕ1 ∪ ψ,x) and x /∈ ∂ in
o (ϕ1 ∪ ψ).

If a site z ∈ Z
2 is such that ((X(1) − sz) ∩ QM

3s(o), (X(2) − sz) ∩ QM
s (o)) ∈ A′

s , then we also say that the site z (or
the sprinkling at this site) is s-perfect. See Figure 3 for an illustration of the uniform stopping condition. Again, the
verification of condition (US) is postponed to Section 5.

Proposition 4. The considered lilypond line-segment model satisfies condition (US).

Fig. 3. Possible configurations as in condition (US); ψ = ∅. (a) Configuration before addition of ϕ2. (b) Configuration after addition of ϕ2.
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Remark 1. Properties (a) and (b) seem complicated at first sight, but allow for a simple heuristic description.
Property (a) can be rephrased as stating that the lilypond model on ϕ2 is autonomous in the sense that changes

outside of QM
s (o) cannot alter this sub-configuration. To be more precise, as hc(ϕ1 ∪ ϕ2 ∪ ψ,x) = hc(ϕ2, x) and as

ϕ2 is assumed to be contained in QM
s (o), we conclude that hc(ϕ2, x) ∈ QM

s (o), so that the iterates of x ∈ ϕ2 stay in
QM

s (o). It is also useful to note that from x ∈ ϕ2 and hc(ϕ2, x) ∈ QM
s (o) we can deduce that hg(ϕ2, x) ∈ Qs(o).

Property (b) yields the existence of suitable configurations such that any line segment that enters Qs(o) has a
descendant in the sprinkled set (and therefore stops inside this square), whereas for any other line segment the addition
of the sprinkled germs does not change the descendant. Also note that in the first case of part (b) knowing that
hg(ϕ1 ∪ ϕ2 ∪ ψ,x) ∈ Qs(o) for all x ∈ ϕ2 allows us to deduce from hc(ϕ1 ∪ ϕ2 ∪ ψ,x) ∈ ϕ2 that hg(ϕ1 ∪ ϕ2 ∪ ψ,x) ∈
Qs(o).

Remark 2. Of course, the strong degree of internal stability that is required in properties (a) and (b) occurs rather
rarely, but condition (US) only requires that for most configurations induced by X(1), it occurs with a positive proba-
bility that is bounded away from 0.

A rough sketch of the proof of Theorem 1(1) goes as follows. We start by considering the lilypond model on X(1).
For large s, all but a sub-critical set of sites are s-good and therefore the configuration in the corresponding squares
will only be influenced by sprinkling close to these squares. First, we add those sprinkled points whose effects we
cannot control well in the sense that A′

s is not satisfied. This will increase slightly the sub-critical clusters formed by
those squares for which we only have little information about the behavior of the lilypond model. However, since the
sprinkling is of very low intensity, these enlarged clusters are still sub-critical. So far, we have held back the sprinkling
inside the squares satisfying A′

s and due to their special nature we can precisely control the effects of adding them to
the system. In particular, any purported infinite path must also be infinite before adding the final sprinkling. However,
a path in the lattice that is killed with probability bounded away from 0 each time it hits a site in the super-critical
cluster, will be killed eventually. The preceding argument is made rigorous in Section 4. Moreover, it can also be used
to see that the number iterations until a cycle is reached exhibits at least exponentially decreasing tail probabilities.

4. Absence of forward percolation

In this section, we provide the details for the proof of Theorem 1(1), which is based on a sprinkling argument. The
main difficulty arises from the observation that the sprinkling has to be analyzed in a rather delicate way because
two essential properties must be satisfied. On the one hand, we have to guarantee that if x ∈ X(1) is an element with
#h

(∞)
c (X(1), x) = ∞, then after the sprinkling we must have #h

(∞)
c (X,x) < ∞. On the other hand, the sprinkling

should not influence the lilypond model too strongly, since for all x ∈ X(1) with #h
(∞)
c (X(1), x) < ∞ it has to be

ensured that, after adding the sprinkling, the set of descendants h
(∞)
c (X,x) is still finite. As indicated above, we solve

this problem by adding the sprinkling in two steps. First, we construct a point process X(3) ⊂ R
2,M with X(1) ⊂

X(3) ⊂ X by adding only those germs of X(2) for which we have little knowledge as of how their addition would
affect the existing directed graph. In a second step we add the remaining germs of X(2) for which we have precise
information about their impact on the already existing model.

To construct X(3), we introduce a discrete site process that allows us to determine whether there is either

1. no sprinkling inside the corresponding square, or
2. an s-perfect sprinkling, or
3. some other sprinkling.

To be more precise, we define a {0,1,2}-valued site process {Yz}z∈Z2 as follows. If X(2) ∩ QM
s (sz) = ∅ and z is

s-good, then Yz = 0. Next, Yz = 1 if z is s-perfect, i.e., if((
X(1) − sz

) ∩ QM

3s(o),
(
X(2) − sz

) ∩ QM

s (o)
) ∈ A′

s .

If neither Yz = 0 nor Yz = 1, then Yz = 2. Since we assumed that N′ does not contain the empty configuration, z

being s-perfect implies that X(2) ∩ QM
s (sz) 	= ∅, so that there is no ambiguity in the definition of Y . Also note that

conditioned on X(1) the site process {Yz}z∈Z2 is an inhomogeneous independent site process.
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Fig. 4. Construction of R. (a) Initial set of bad sites. (b) New bad site revealed. (c) No new bad sites revealed.

In the next step, we identify a large set of sites for which we have good control over the effect of the sprinkling. We
recursively construct sets of revealed sites (R(i))i≥0, R(i) ⊂ Z

2 and bad sites (B(i))i≥0, B(i) ⊂ Z
2 as follows. Initially,

put R(0) = B(0) = {z ∈ Z
2: Yz = 2}. Now suppose i ≥ 0 and that R(i) ⊂ Z

2 as well as B(i) ⊂ Z
2 have already been

constructed. For z ∈ Z
2 write S(z) = {z′ ∈ Z

2: |z− z′|∞ ≤ 1}. Choose the closest bad site z ∈ Z
2 to the origin with the

property that its neighborhood S(z) is not already completely revealed, i.e., z ∈ B(i) but S(z) 	⊂ R(i). If several sites
have this property, we choose the lexicographically smallest one. Put R(i+1) = R(i) ∪ S(z) and B(i+1) = B(i) ∪ {z′ ∈
S(z): X(2) ∩ QM

s (sz′) 	= ∅}. Finally, put R = ⋃
i≥0 R(i) and see Figure 4 for an illustration of the construction of the

set R.
We first note that for sufficiently large s ≥ 1 only rather few sites are revealed at all.

Lemma 1. There exists s ≥ 1 such that with probability 1, the revealed sites R ⊂ Z
2 are dominated from above by a

sub-critical Bernoulli site-percolation process.

Proof. First, R ⊂ Y (a) ∪ Y (b), where Y (a) ⊂ Z
2 denotes the set of sites z ∈ Z

2 whose neighborhood S(z) contains a
site which is not s-good and where Y (b) ⊂ Z

2 consists of those z ∈ Z
2 with X(2) ∩QM

3s(sz) 	=∅. We note that Y (a) and
Y (b) are 5-dependent site processes that are independent of each other. Moreover, the probability that a given site is
contained in Y (a) ∪ Y (b) tends to 0 by the definition of X(2) and the assumption lims→∞ P(X(1) ∩ QM

3s(o) ∈ As) = 1.
Hence, the claim follows from [9], Theorem 0.0. �

In the remaining part of this section, we fix s ≥ 1 such that R is dominated from above by a sub-critical Bernoulli
site-percolation process. Then, we define X(3) = X(1) ∪ (X(2) ∩ (sR ⊕ Qs(o))). In other words, to create the original
point process X from X(3) we only have to add the sprinkling X(2) in the unrevealed region sRc ⊕ Qs(o), where
Rc = Z

2 \ R denotes the complement of R in Z
2.

In order to compare h
(∞)
c (X(3), x) and h

(∞)
c (X,x), it is important to understand the effect of adding the sprinkled

nodes X(2) ∩ (sRc ⊕ Qs(o)) in a step-by-step manner.

Lemma 2. Let Rc = {z1, z2, . . .} be an arbitrary enumeration of Rc and put X(2,i) = ⋃i
j=1(X

(2) ∩QM
s (szj )) as well

as X(3,i) = X(3) ∪ X(2,i). Then, for every i ≥ 0 the following properties are satisfied.

1. Let x ∈ X(3). Then, either hc(X
(3,j), x) = hc(X

(3), x) for all j ∈ {0, . . . , i} or hc(X
(3,i), x) ∈ X(2,i) ∩ QM

s (sz) for
some z ∈ Rc.

2. Let z ∈ Rc, x ∈ ∂ in
z (X(3)) and hc(X

(3,j), x) = hc(X
(3), x) for all j ∈ {0, . . . , i}. Then X(2,i) ∩ QM

s (sz) =∅.

Proof. We prove the desired properties by induction on i, the case i = 0 being clear. If X(2) ∩ QM
s (szi+1) = ∅,

then we deduce immediately that X(3,i+1) = X(3,i) and can apply the induction hypothesis to conclude the proof.
Therefore, we may assume X(2) ∩ QM

s (szi+1) 	=∅.
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After these preliminary observations, we begin with the proof of the first statement. Applying the definition of
s-perfectness for z = zi+1, ϕ1 = X(3) and ψ = X(2,i), we note that if hc(X

(3,i+1), x) = hc(X
(3,i), x), then this state-

ment also follows from the induction hypothesis. Observing that property 1 is also true in the remaining case, where
hc(X

(3,i+1), x) ∈ X(2) ∩ QM
s (szi+1) completes the proof of the first statement.

Next, we verify the second statement. For z 	= zi+1 the claim follows directly from the induction hypothesis,
so that we can concentrate on the case z = zi+1 and X(2) ∩ QM

s (szi+1) 	= ∅. From hc(X
(3,i), x) = hc(X

(3), x) we
conclude that x ∈ ∂ in

z (X(3,i)), so that s-perfectness of zi+1 implies hc(X
(3,i+1), x) ∈ X(2) ∩ QM

s (szi+1), contradicting
the assumption hc(X

(3,i+1), x) = hc(X
(3), x). �

The following result allows us to pass to the limit i → ∞.

Lemma 3. Let x ∈ X(3). Then, either hc(X,x) = hc(X
(3,i), x) for all i ≥ 0 or hc(X,x) ∈ X(2) ∩ QM

s (sz) for some
z ∈ Rc. Moreover, if z ∈ Rc, x ∈ ∂ in

z (X(3)) and hc(X,x) = hc(X
(3), x), then X(2) ∩ QM

s (sz) =∅.

Proof. By continuity, hc(X,x) = hc(X
(3,i), x) for all sufficiently large i ≥ 1. In particular, part 1 of Lemma 2 implies

that either hc(X,x) = hc(X
(3,i), x) = hc(X

(3,j), x) for all j ∈ {0, . . . , i} or hc(X,x) = hc(X
(3,i), x) ∈ X(2) ∩ QM

s (sz)

for some z ∈ Rc. Combining this result with part 2 of Lemma 2 yields the second part of the assertion. �

After this preliminary work, it is straightforward to establish the following comparison between the sets
h

(∞)
c (X(3), x) and h

(∞)
c (X,x).

Lemma 4. If x ∈ X is such that #h
(∞)
c (X,x) = ∞, then h

(∞)
c (X,x) ⊂ X(3) and h

(n)
c (X,x) = h

(n)
c (X(3), x) for all

n ≥ 0.

Proof. Let x ∈ X be such that #h
(∞)
c (X,x) = ∞. If there exists n ≥ 0 with h

(n)
c (X,x) ∈ X(2) ∩ QM

s (sz) for some

z ∈ Rc , then #h
(∞)
c (X,x) < ∞. Indeed, choosing i ≥ 0 so that hc(X

(3,i), h
(n)
c (X,x)) = h

(n+1)
c (X,x), we can apply

part (a) of property (US) to ϕ(1) = X(3), ψ = X(2,i) \ QM
s (sz) and ϕ2 = X(2) ∩ QM

s (sz) to deduce that h
(n+1)
c (X,x) ∈

X(2) ∩ QM
s (sz). Hence, using induction, we conclude that h

(m)
c (X,x) ∈ X(2) ∩ QM

s (sz) for all m ≥ n, which implies

that #h
(∞)
c (X,x) < ∞. This observation yields h

(∞)
c (X,x) ⊂ X(3) and the first statement in Lemma 3 allows us to

conclude that h
(n)
c (X,x) = h

(n)
c (X(3), x) for all n ≥ 0, as desired. �

Proof of Theorem 1(1). Assume the contrary. Then, it follows from Lemma 4 that there exists x ∈ X(3) with
#h

(∞)
c (X(3), x) = ∞ and h

(n)
c (X,x) = h

(n)
c (X(3), x) for all n ≥ 0. Denote this event by A∗

x . It suffices to show that
P(A∗

x | X(1),X(3),R) = 0 for all x ∈ X(3).

Putting h
(n)
g (X(3), x) = hg(X

(3), h
(n−1)
c (X(3), x)), we consider the sequence of geometric descendants (h

(n)
g (X(3),

x))n≥1. First, we assert that (h
(n)
g (X(3), x))n≥1 hits infinitely many squares of the form Qs(sz) with z ∈ Rc . If z, z′ ∈

Z
2 are such that h

(n)
g (X(3), x) ∈ Qs(sz) and h

(n+1)
g (X(3), x) ∈ Qs(sz

′), then applying condition (SH) with the set B

chosen as the connected component of {z} ∪ R containing z shows that z′ ∈ B ⊕ Q3(o) (noting that Lemma 1 implies
the finiteness of B). In particular, if h

(n+1)
g (X(3), x) does not lie in sB ⊕ Qs(o), then z′ is contained in the outer

boundary of B , which forms a subset of Rc . Hence, if #h
(∞)
c (X(3), x) = ∞, then after performing finitely many steps

we obtain a geometric descendant contained in sRc ⊕Qs(o). Since (h
(n)
g (X(3), x))n≥1 hits each bounded Borel set only

a finite number of times, this proves the assertion. Hence, there exist infinitely many z1, z2, . . . ∈ Rc and i1, i2, . . . ≥ 1

such that h
(ij )
c (X(3), x) ∈ ∂ in

zj
(X(3)) for all j ≥ 1. Moreover, we note that Lemma 3 implies X(2) ∩ QM

s (szj ) = ∅ for
all j ≥ 1.

However, we also observe that conditioned on X(1), X(3) and R the restriction of the site process {Yz}z∈Z2 to Rc

defines a {0,1}-valued Bernoulli site process such that for z ∈ Rc the (conditional) probability of the event {Yz = 1} is
given by P(Yz = 1 | Yz ∈ {0,1},X(1)). In particular, the events {Yzj

= 1}, j ≥ 1 occur independently given X(1), X(3)

and R and by (1) we have P(Yz = 1 | Yz ∈ {0,1},X(1)) ≥ ps a.s. Therefore, with probability 1, there exists j0 ≥ 1 with
Yzj0

= 1 contradicting the previously derived X(2) ∩ QM
s (szj0) =∅. �
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5. Proofs of auxiliary results

In the present section we provide the proof of the three auxiliary results, Propositions 2, 3 and 4, that were used in the
proof of the absence of forward percolation.

5.1. Proof of Proposition 3

To begin with, we show that with high probability the length ν1(Qs(o)∩ I (X,x)) of the intersection of a given square
Qs(o) with any segment of the form I (X,x) = [ξ,hg(X,x)] is not too large.

Lemma 5. Let α > 0. Then, there exists a family of events (A
(1,α)
s )s≥1 with

lim
s→∞P

(
X(1) ∩ QM

s (o) ∈ A(1,α)
s

) = 1

and such that the following property is satisfied. If ϕ ⊂ QM
s (o) is such that ϕ ∈ A

(1,α)
s , then for every locally finite

ψ ⊂R
2,M \ QM

s (o) with ϕ ∪ ψ ∈ N
′ and every x ∈ ϕ ∪ ψ ,

ν1
(
I (ϕ ∪ ψ,x) ∩ Qs(o)

) ≤ sα.

Proof. Without loss of generality we may assume α < 1. We consider the cases x ∈ ψ and x ∈ ϕ separately and start
with the case x ∈ ψ . By rotational and reflection symmetry, it suffices to prove that with high probability for every
locally finite ψ ⊂R

2,M \ QM
s (o) and x = (ξ, v) ∈ ψ with v = e1, π1(ξ) < 0 and π2(ξ) ∈ [0, s/2] we have

ν1
(
I
(
X(1) ∩ QM

s (o) ∪ ψ,x
) ∩ Qs(o)

) ≤ sα.

Here πi :R2 →R denotes the projection to the ith coordinate. Put R1 = [−2.5,2.5]×[−1,1] and R2 = [−1/2,1/2]×
[−1,0]. For ξ ∈R

2 we denote by Eξ the intersection of the events ϕ∩((ξ +R2)×{e2}) 	=∅ and ϕ∩((ξ +R1)×M) ⊂
(ξ + R2) × {e2}. See Figure 5 for an illustration.

Then,

P
(
X(1) ∩ QM

s (o) ∈ Eξ

) ≥ exp
(−10

(
1 − s−3))(1 − exp

(−(
1 − s−3)/8

)) ≥ 1/16

for all ξ ∈R
2 and all s > 0 sufficiently large. For σ ∈R denote by Mσ ⊂R

2 the set {(−s/2+5i, σ ) : 0 ≤ i ≤ �sα/5�},
so that

1 − P

(
X(1) ∩ QM

s (o) ∈
⋃

ξ∈Mσ

Eξ

)
≤ (1 − 1/16)�sα/5�+1.

Hence, P(X(1) ∩ QM
s (o) ∈ ⋂

ξ∈Mσ
Ec

ξ ) decays sub-exponentially fast as s → ∞. The same observation is true for the

probability P(X(1)∩QM
s (o) ∈ ⋃s−1

j=1
⋂

ξ∈M−s/2+j
Ec

ξ ). Note that ϕ ∈ ⋃
ξ∈M−s/2+j

Eξ implies that for every locally finite

ψ ⊂R
2,M\QM

s (o) with ϕ∪ψ ∈ N
′ and every (ξ, v) ∈ ψ with v = e1, π1(ξ) < 0 and π2(ξ) ∈ [−s/2+j,−s/2+j +1]

we have ν1(I (ϕ ∪ ψ,x) ∩ Qs(o)) ≤ sα . This proves the first case of the claim.

Fig. 5. Occurrence of Eo .
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Next, consider the case x ∈ ϕ. Using the Slivnyak–Mecke formula this part can be proven similarly as the case
x ∈ ψ , but we include some details for the convenience of the reader. Again, by symmetry it suffices to prove that with
high probability for every locally finite ψ ⊂R

2,M\QM
s (o) with X(1)∩QM

s (o)∪ψ ∈ N
′ and x = (ξ, v) ∈ X(1)∩QM

s (o)

with v = e1, π1(ξ) < s/2 − sα and π2(ξ) ∈ (0, s/2) we have

ν1
(
I
(
X(1) ∩ QM

s (o) ∪ ψ,x
) ∩ Qs(o)

) ≤ sα.

For ξ ∈ R
2 denote by M ′

ξ ⊂ R
2 the set {ξ + 5ie1 : 0 ≤ i ≤ �sα/5�}. Note that ϕ ∈ ⋃

η∈M ′
ξ
Eη implies that for every

locally finite ψ ⊂ R
2,M \ QM

s (o) such that ϕ ∪ ψ ∈ N
′ we have ν1(I (ϕ ∪ ψ,x) ∩ Qs(o)) ≤ sα . Moreover, by the

Slivnyak–Mecke formula the expectation of the number N of points x = (ξ, e1) ∈ X(1) ∩ QM
s (o) for which the event

X(1) ∩ QM
s (o) ∈ ⋃

η∈Mξ
Eη occurs is given by

EN = λ

∫
QM

s (o)

P

((
X(1) ∩ QM

s (o) ∪ {
(ξ, v)

}) ∈
⋃

η∈Mξ

Eη

)
d(ξ, v).

By a similar argument as in the case x ∈ ψ , we see that the probability inside the integrand decays sub-exponentially
fast in s (uniformly over all (ξ, v) ∈ QM

s (o)), which completes the proof Lemma 5. �

Remark 3. A suitable analog of Lemma 5 can also be shown for isotropic line-segment models, but the proof becomes
more involved. Indeed, a similar construction can be used, but now instead of four directions, one considers the
shielding property seen from a set of directions with size growing polynomially in s.

This auxiliary result immediately verifies condition (SH), when using the family of events (A
(1,α)
s )s≥1 for some

arbitrary α ∈ (0,1/2).

Proof of Proposition 3. Let B ⊂ Z
2 be a finite set of sites and denote by B ′ the outer boundary of B . Moreover,

let ϕ ∈ N
′ be such that (ϕ − sz′) ∩ QM

s (o) ∈ A
(1,α)
s for all z′ ∈ B ′ and x = (ξ, v) ∈ ϕ be such that hg(ϕ, x) ∈ sB ⊕

Qs(o). Put (η,w) = hc(ϕ, x) and D = R
2 \ (sB ⊕ Q3s(o)). Using Lemma 5 twice implies that dist(η,D) ≥ s/2 and

dist(hg(ϕ, (η,w)),D) ≥ s/4, as desired. �

5.2. Proof of Proposition 2

Next, we consider the property of continuity. This has already been investigated (implicitly) for a large class of
lilypond models and is typically based on suitable descending chains arguments, see, e.g., [2,5]. This approach also
yields the desired result for the present anisotropic model, but for the convenience of the reader, we provide a detailed
proof.

In the following, for ϕ ∈ N
′ and x = (ξ, v) ∈ ϕ, it is convenient to write fϕ(x) instead of |ξ − hg(ϕ, x)|. First, we

investigate how the behavior of fϕ is related to the existence of long descending chains.

Lemma 6. Let ϕ,ϕ′ ∈N
′ and suppose that x1 ∈ ϕ ∩ϕ′ is such that fϕ(x1) < fϕ′(x1). Furthermore, define recursively

xi+1 ∈ ϕ ∪ ϕ′ by

xi+1 =
{

hc(ϕ, xi) if xi ∈ ϕ,
xi else,

if i is odd and by

xi+1 =
{

hc(ϕ
′, xi) if xi ∈ ϕ′,

xi else,

if i is even. Finally, put i0 = min{i ≥ 1: xi /∈ ϕ ∩ ϕ′}. Then, (xi)1≤i≤i0 constitutes an fϕ(x1)-bounded anisotropic
descending chain of pairwise distinct elements. Additionally, fϕ(xi) < fϕ′(xi) if i ∈ {1, . . . , i0 − 1} is odd and
fϕ′(xi) < fϕ(xi) if i ∈ {1, . . . , i0 − 1} is even. In particular, the absence of infinite anisotropic descending chains
in ϕ and ϕ′ implies i0 < ∞.
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Proof. At first glance, it might not be obvious how it is possible to have fϕ(x1) < fϕ′(x1) and x2 ∈ ϕ ∩ ϕ′. In
other words, how can it be that the segment at x2 stops the growth of the segment at x1 in the lilypond model
built from ϕ, but not in the one built from ϕ′. A more thorough thought reveals that this effect occurs if in the
configuration ϕ′, the segment at x3 stops the growth of the segment at x2 before the latter can stop the growth of the
segment at x1. Next, we extend this observation into a rigorous proof of the lemma and write xi = (ξi, vi), i ≥ 1.
The relation |ξ1 − ξ2|∞ = fϕ(x1) follows immediately from the definition of stopping neighbors. Now, assume that
i ∈ {2, . . . , i0 − 1} is odd. From xi = hc(ϕ

′, xi−1) and xi+1 = hc(ϕ, xi) we conclude |ξi − ξi−1|∞ = fϕ′(xi−1) and
|ξi+1 − ξi |∞ = fϕ(xi). Furthermore, by induction fϕ′(xi−1) < fϕ(xi−1), so that

fϕ(xi) <
∣∣ξi − hg

(
ϕ′, xi−1

)∣∣ < min
(
fϕ′(xi−1), fϕ′(xi)

)
. (2)

The case of even i ∈ {2, . . . , i0 − 1} is analogous.
It remains to show that the {xi}1≤i≤i0 are pairwise disjoint and by the definition of i0, it suffices to prove this claim

for {xi}1≤i<i0 . Furthermore, as fϕ(xi) < fϕ′(xi) if 1 ≤ i < i0 is odd and fϕ′(xi) < fϕ(xi) if 1 ≤ i < i0 is even, it
suffices to consider the pairwise disjointness of the points in {xi}1≤i<i0

i even
and the points in {xi}1≤i<i0

i odd
separately. We

consider for instance the case of even i ∈ {1, . . . , i0 − 1}. Then, we note that an application of (2) and its analog for
even parity yields

fϕ′(xi) > fϕ(xi+1) > fϕ′(xi+2),

so that by induction fϕ′(xi) > fϕ′(xj ) for all even i, j ∈ {1, . . . , i0 − 1} with i < j . �

As corollary, we verify the continuity property of the lilypond model.

Proof of Proposition 2. Let x ∈ ϕ be arbitrary and choose n′
0 ≥ 1 such that x ∈ ϕn′

0
. Lemma 6 implies that if n ≥ 1

and s > 0 are such that ϕ ∩ QM
s (o) = ϕn ∩ QM

s (o), but hc(ϕ, x) 	= hc(ϕn, x), then there exists a fϕ(x)-bounded
anisotropic descending chain starting in x and leaving Qs(o). In particular, if n1 < n2 < · · · is an increasing sequence
with hc(ϕ, x) 	= hc(ϕni

, x) for all i ≥ 1, then there exist arbitrarily long fϕ(x)-bounded anisotropic chains starting
at x. Since ϕ is locally finite, this would produce an infinite fϕ(x)-bounded anisotropic chain starting at x, thereby
contradicting the definition of N′. �

We conclude the investigation of the continuity property by showing that if X is an independently and uniformly
M-marked homogeneous Poisson point process in R

d , then P(X ∈ N
′) = 1. To obtain bounds for the probability of

observing long anisotropic descending chains, the following auxiliary result is useful.

Lemma 7. Let b ≥ 0, k ≥ 0 and ξ0 ∈ R
2. Then,

∫
R2 1|ξ−ξ0|∞≤b|ξ − ξ0|2k∞ dξ = 4b2k+2/(k + 1).

Proof. Without loss of generality, we may assume ξ0 = o and we write ξ = (ξ (1), ξ (2)). Then, by symmetry,

∫
1|ξ |∞≤b|ξ |2k∞ dξ = 4

∫ b

0

∫ b

0
max

{
ξ (1), ξ (2)

}2k dξ (2) dξ (1)

= 8
∫ b

0

(
ξ (1)

)2k
∫ ξ (1)

0
dξ (2) dξ (1)

= 8
∫ b

0

(
ξ (1)

)2k+1 dξ (1)

= 8b2k+2/(2k + 2). �

Using Lemma 7, we can now provide a bound for the probability that long descending chains occur.
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Lemma 8. Let n ≥ 1, b, s > 0 and let X be a homogeneous Poisson point process in R
2 with intensity λ > 0. Denote

by A
(2)
s,b,n the event that there exist pairwise distinct X0, . . . ,Xn ∈ X, with X0 ∈ Qs(o) and such that {Xi}0≤i≤n forms

a b-bounded anisotropic descending chain. Then, P(A
(2)
s,b,n) ≤ s2(4b2)nλn+1/n!.

Proof. Denote by N the number of (n+1)-tuples of pairwise distinct elements X0, . . . ,Xn ∈ X such that X0 ∈ Qs(o)

and {Xi}0≤i≤n forms a b-bounded anisotropic descending chain. Then, using Lemma 7 and the Campbell formula,

EN ≤ λn+1
∫

· · ·
∫

1ξ0∈Qs(o)1b≥|ξ0−ξ1|∞≥···≥|ξn−1−ξn|∞ dξn · · · dξ0

= 4λn+1
∫

· · ·
∫

1ξ0∈Qs(o)1b≥|ξ0−ξ1|∞≥···≥|ξn−2−ξn−1|∞|ξn−2 − ξn−1|2∞ dξn−1 · · · dξ0

= · · ·
= (4b2)nλn+1

n!
∫

1ξ0∈Qs(o) dξ0 = s2(4b2)nλn+1

n! . �

In particular, we deduce the absence of infinite anisotropic descending chains under Poisson assumptions.

Corollary 1. Let X be an independently and uniformly M-marked homogeneous Poisson point process in R
2. Then,

P(X ∈ N
′) = 1.

5.3. Proof of Proposition 4

Finally, we verify the uniform stopping condition (US). In order to achieve this goal, it is first of all crucial to note
that the configuration of the lilypond model in a given square is determined by the line segments entering this square.
To make this more precise, it is convenient to introduce a variant of ∂ in

z,sϕ that also takes into account line segments
intersecting the square Qs(sz). Hence, for s > 0, z ∈ Z

2 and ϕ ∈ N
′ we put

∂ in,∗
z,s (ϕ) = {

x ∈ ϕ \ QM

s (sz): I (ϕ, x) ∩ Qs(sz) 	=∅
}
.

Also line segments leaving a square play an important role, so that for s > 0, z ∈ Z
2 and ϕ ∈ N

′ we put

∂out
z,s (ϕ) = {

x ∈ ϕ ∩ QM

s (sz): hg(ϕ, x) /∈ Qs(sz)
}
.

Since the value of s is usually clear from the context, we often write ∂
in,∗
z (ϕ) and ∂out

z (ϕ) instead of ∂
in,∗
z,s (ϕ) and

∂out
z,s (ϕ). Using these definitions, we now obtain the following auxiliary result.

Lemma 9. Let s > 0 and ϕ,ϕ′ ∈ N
′ be such that ϕ ∩ QM

s (o) ∪ ∂
in,∗
o (ϕ) = ϕ′ ∩ QM

s (o) ∪ ∂
in,∗
o (ϕ′). Then,

1. hc(ϕ, x) = hc(ϕ
′, x) for all x ∈ ϕ ∩ QM

s (o) ∪ ∂
in,∗
o (ϕ) with {hg(ϕ, x),hg(ϕ

′, x)} ∩ Qs(o) 	=∅.
2. ∂

in,∗
o (ϕ) = ∂ in

o (ϕ) if and only if ∂
in,∗
o (ϕ′) = ∂ in

o (ϕ′).
3. ∂out

o (ϕ′) = ∂out
o (ϕ).

Proof. For readability, we write f , f ′ instead of fϕ , fϕ′ . Put

ϕ′′ = {
x ∈ ϕ ∩ QM

s (o) ∪ ∂ in,∗
o (ϕ):

{
hg(ϕ, x),hg

(
ϕ′, x

)} ∩ Qs(o) 	=∅
}
.

Our first goal is to show f (x) = f ′(x) for all x ∈ ϕ′′. Suppose, for the sake of deriving a contradiction, that there
exists x1 ∈ ϕ′′ with f (x1) 	= f ′(x1), e.g., f (x1) < f ′(x1). By Lemma 6 it suffices to show that for any such x1 we
have x2 ∈ ϕ′′, where x2 = hc(ϕ, x1).

First, we assert that hg(ϕ, x1) ∈ Qs(o). Assuming the contrary, we could conclude from x1 ∈ ϕ′′ that hg(ϕ
′, x1) ∈

Qs(o). Since f (x1) < f ′(x1), we deduce that hg(ϕ, x1) is contained on the line segment connecting x1 and hg(ϕ
′, x1),
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which is only possible if x1 /∈ QM
s (o). In particular, x1 ∈ ∂

in,∗
o (ϕ′). However, as hg(ϕ, x1) is not contained in Qs(o),

we obtain that x1 /∈ ∂
in,∗
o (ϕ) contradicting our assumption ∂

in,∗
o (ϕ) = ∂

in,∗
o (ϕ′). This proves the assertion, which im-

plies that x2 ∈ ϕ ∩ QM
s (o) ∪ ∂

in,∗
o (ϕ). From the assumption f (x1) < f ′(x1), we then conclude f ′(x2) < f (x2). We

claim that hg(ϕ
′, x2) ∈ Qs(o) and assume the contrary for the sake of deriving a contradiction. Then, we conclude

from hg(ϕ
′, x2) ∈ [x2, hg(ϕ, x1)] and hg(ϕ, x1) ∈ [x2, hg(ϕ, x2)] that x2 /∈ QM

s (o), x2 /∈ ∂
in,∗
o (ϕ′) and x2 ∈ ∂

in,∗
o (ϕ),

contradicting our assumption. This completes the proof of f (x) = f ′(x) for all x ∈ ϕ′′. Property 2 is an immediate
consequence of property 1. To prove the third claim, let x ∈ ϕ ∩ QM

s (o). If x /∈ ∂out
o (ϕ), then hg(ϕ, x) ∈ Qs(o) and

therefore also hg(x,ϕ′) = hg(x,ϕ) ∈ Qs(o). In other words, ϕ ∩ QM
s (o) \ ∂out

o (ϕ) ⊂ ϕ′ ∩ QM
s (o) \ ∂out

o (ϕ′) and the
other inclusion follows by symmetry. �

Using Lemmas 5 and 6, we show that the set ∂
in,∗
o (X) stabilizes with high probability.

Lemma 10. There exists a family of events (A
(3)
s )s≥1 such that

lim
s→∞P

(
X(1) ∩ QM

3s(o) ∈ A(3)
s

) = 1

and such that if ϕ ∈ N
′ is such that ϕ ∩ QM

3s(o) ∈ A
(3)
s , then ∂

in,∗
o (ϕ) = ∂

in,∗
o (ϕ ∪ ψ) for all locally finite ψ ⊂ R

2,M \
QM

3s(o) with ϕ ∪ ψ ∈ N
′.

Proof. In the proof, we make use of the events A
(1,1/8)
s and A

(2)
s,b,n introduced in Lemmas 5 and 8, respectively.

Furthermore, put S = {z ∈ Z
2: |z|∞ = 2} and denote by

A(3′)
s = A

(1,1/8)
s ∩

⋂
z∈S

{
ϕ ∈ NM: (ϕ − sz/3) ∩ QM

s/3(o) ∈ A
(1,1/8)

s/3

}

the event that A
(1,1/8)
s occurs in Qs(o) intersected with the event that A

(1,1/8)

s/3 occurs in each of the (s/3)-squares

surrounding Qs(o). Now, assume that ϕ ∈N
′ is such that ϕ ∩ QM

3s(o) ∈ A
(3′)
s and that there exists ψ ⊂R

2,M \ QM

3s(o)

with ϕ∪ψ ∈N
′ and ∂

in,∗
o (ϕ) 	= ∂

in,∗
o (ϕ∪ψ). Then, there exists x ∈ QM

2s(o) with hc(ϕ, x) 	= hc(ϕ∪ψ,x). By Lemma 6,
there exists an s1/4-bounded anisotropic descending chain of pairwise distinct elements of ϕ starting in x and ending
in R

2 \ Q3s(o). Furthermore, by our assumption this chain consists of at least ns = �s/(2s1/4)� = �s3/4/2� hops.

Hence, ϕ ∩ QM

3s(o) ∈ A
(2)

2s,s1/4,ns
and therefore, we put A

(3)
s = A

(3′)
s \ A

(2)

2s,s1/4,ns
. By Lemma 8, the probability for the

occurrence of X(1) ∩QM

3s(o) ∈ A
(2)

2s,s1/4,ns
is at most 4s2(4s1/2)ns /ns !. By Stirling’s formula, the latter expression tends

to 0 as s → ∞. �

To begin with, we provide a definition of As such that if ϕ ⊂ QM

3s(o) is such that ϕ ∈ As , then

1. ϕ satisfies the shielding property, i.e., ϕ ∩ QM
s (o) ∈ A

(1,1/2)
s ,

2. ϕ satisfies the external stabilization property, i.e., ϕ ∈ A
(3)
s , and

3. the points of ϕ do not come too close to each other and also not too close to the boundary of Qs(o).

To be more precise, for s ≥ 1 we put

As = A
(1,1/2)
s ∩ A(3)

s ∩ A(4)
s ,

where A
(4)
s denotes the family of all ϕ ∈ NM such that ϕ ⊂ QM

3s(o) and ϕ is s−4-separated, i.e., |πk(ξ)−πk(η)| ≥ s−4

for all k ∈ {1,2} and all

x = (ξ, v), y = (η,w) ∈ (
ϕ ∩ QM

3s(o)
) ∪ ({±(s/2, s/2)

} ×M
)

with x 	= y,

where we recall that πk(ξ), k ∈ {1,2} denotes the kth coordinate of ξ . Note that the set {±(s/2, s/2)} ×M is added,
since it is important to have some room close to ∂Qs(o), where we can add sprinkling used to stop incoming segments.
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Taking into account Lemmas 5 and 10, in order to show that lims→∞ P(X(1) ∩ QM

3s(o) ∈ As) = 1, it suffices to prove

lims→∞ P(X(1) ∩ QM

3s(o) ∈ A
(4)
s ) = 1, which is achieved in the following result.

Lemma 11. As s → ∞, the probability P(X(1) ∩ QM

3s(o) ∈ A
(4)
s ) tends to 1.

Proof. The expected number of distinct points x = (ξ, v), y = (η,w) ∈ X(1) ∩ QM

3s(o) satisfying |πk(ξ) − πk(η)| ≤
s−4 for some k ∈ {1,2} is of order at most s3 · s−4, and therefore tends to 0 as s → ∞. Similarly, the expected number
of x = (ξ, v) ∈ X(1) ∩ QM

3s(o) with |πk(ξ) − ζ | ≤ s−4 for some k ∈ {1,2} and ζ = ±s/2 is of order s · s−4, so that it
also tends to 0 as s → ∞. �

The next step is to introduce the family of events (A′
s)s≥1, i.e., to define suitable sprinkling configurations. Here,

small four-cycles play an important role.

Definition 2. Let δ > 0 and ξ ∈ R
2. We say that D = {x1, . . . , x4} = {(ξ1, v1), . . . , (ξ4, v4)} ⊂ QM

δ (ξ) forms a (ξ, δ)-
cycle if the following conditions are satisfied, where we put formally x5 = x1 and v5 = v1.

1. vj = ρπ/2(vj+1) for all j ∈ {1, . . . ,4}, where ρπ/2 :R2 → R
2 denotes rotation by π/2.

2. hg(D,xj ) ∈ Qδ(ξ) for all j ∈ {1, . . . ,4}.
3. hg(D,xj ) ∈ I (D,xj+1) for all j ∈ {1, . . . ,4}.
4. min(〈ξ − ξj , vj 〉, 〈ξ − ξj , vj+1〉) > 0 for all j ∈ {1, . . . ,4}.
The fourth condition ensures that ξ belongs to the inner part delimited by the (ξ, δ)-cycle. In particular, if we consider
a line segment starting from R

2 \Qδ(ξ) and whose corresponding ray contains ξ , then this ray must hit the cycle. See
Figure 6 for an illustration of a (ξ, δ)-cycle.

An important feature of (ξ, δ)-cycles is the following strong external stabilization property.

Lemma 12. Let δ > 0, ξ ∈ R
2 and ϕ ∈ N

′ be such that ϕ ∩ QM

3δ(ξ) = ∅. Furthermore, let D = {x1, . . . , x4} =
{(ξ1, v1), . . . , (ξ4, v4)} ⊂ R

2,M be a (ξ, δ)-cycle with D ∪ ϕ ∈ N
′. Then, hc(D ∪ ϕ,xi) = hc(D,xi) for all i ∈

{1, . . . ,4}.

Proof. Suppose there exists i ∈ {1, . . . ,4} with hc(D ∪ ϕ,xi) 	= hc(D,xi). By the hard-core property we see that
we cannot have fD∪ϕ(xj ) ≥ fD(xj ) for all j ∈ {1, . . . ,4} and we choose j1 ∈ {1, . . . ,4} with fD∪ϕ(xj1) < fD(xj1).
Since all segments grow at the same speed (which is equal to 1), we deduce that

|η − ξ |∞ ≤ |η − ξj1 |∞ + |ξj1 − ξ |∞ ≤ fD∪ϕ(xj1) + δ/2 ≤ 3δ/2,

where (η,w) = hc(D ∪ ϕ,xj1). Thus, hc(D ∪ ϕ,xj1) ∈ QM

3δ(ξ), violating the assumption ϕ ∩ QM

3δ(ξ) =∅. �

Fig. 6. Example of a (ξ, δ)-cycle.
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The notion of (ξ, δ)-cycles can be used to define configurations X(2) ∩QM
s (o) satisfying the relation #h

(∞)
c (X(1) ∪

X(2) ∩ QM
s (o), x) < ∞ for all x ∈ ∂

in,∗
o (X(1)). These cycles are used to stop all segments intersecting Qs(o) except

for those leaving the square. More precisely, we make the following definition, where for ψ ∈ N
′ we write ψ ∈ A∗

ξ,δ

if the configuration of ψ ∩ Qδ(ξ) consists of precisely one (ξ, δ)-cycle.

Definition 3. Let s > 0, ϕ ∈ NM and ψ ∈ N
′ be such that ϕ ⊂ QM

3s(o), ϕ ∈ A
(3)
s and ψ ⊂ QM

s (o). Let ϕ′ ∈ N
′ be any

locally finite set with ϕ′ ∩QM

3s(o) = ϕ. Then, denoting by P(ξ,v) the first intersection point of I (ϕ, (ξ, v)) and ∂Qs(o),
we put δ = s−4,

M1 = {
ξ + 3δv/8: (ξ, v) ∈ ϕ ∩ QM

s (o) \ ∂out
o

(
ϕ′)},

M2 = {
P(ξ,v) + 3δv/8: (ξ, v) ∈ ∂ in

o

(
ϕ′)},

M3 = {
(−s/2 + 3δ/8)(e1 + e2)

}
.

Note that since ϕ ∈ A
(3)
s , the definition of M1, M2 and M3 does not depend on the choice of ϕ′. Then, we de-

fine (ϕ,ψ) ∈ A′
s to be the intersection of the events ϕ ∈ As , {ψ ⊂ ((M1 ∪ M2 ∪ M3) ⊕ Qδ/16(o)) × M} and

ψ ∈ ⋂
(ξ,v)∈M1∪M2∪M3

A∗
ξ,δ/16. See Figure 7 for an illustration of the effect on the lilypond model when adding a

set of germs ψ satisfying (ϕ,ψ) ∈ A′
s .

Lemma 13. The events (A′
s)s≥1 introduced in Definition 3 satisfy condition (1).

Proof. Assume that X(1) ∩ QM

3s(o) ∈ As and let M1,M2,M3 ⊂ Qs(o) be as in the definition of the event A′
s . Further-

more, put δ = s−4 and M1,2,3 = M1 ∪ M2 ∪ M3. We conclude from δ-separatedness that for all x1, x2 ∈ M1,2,3 with
x1 	= x2 we have Qδ/16(x1) ∩ Qδ/16(x2) = ∅. In particular, for every (ξ, v) ∈ M1,2,3 the event X(2) ∈ A∗

ξ,δ/16 is inde-

pendent of the family of events X(2) ∈ A∗
η,δ/16 for (η,w) ∈ M1,2,3 with η 	= ξ . Furthermore, from δ-separatedness

we also conclude #M1 + #M2 ≤ 3�sδ−1�. Finally, note that P(X(2) ∩ QM
s (o) ⊂ (M1,2,3 ⊕ Qδ/16(o)) × M) ≥

P(X(2) ∩ QM
s (o) =∅). Hence, we may choose ps = P(X(2) ∩ QM

s (o) =∅)P(X(2) ∈ A∗
o,δ/16)

3�sδ−1�+1. �

Finally, we verify condition (US). Note that if (ϕ1, ϕ2) ∈ A′
s , then ϕ2 	= ∅ is an immediate consequence of the

definition of A′
s . Moreover, part (a) of the condition follows from Lemma 12. Hence, it remains to verify part (b). This

will be achieved in the following two results. As a first step, we provide a precise description of the combinatorial
descendant function hc(ϕ1 ∪ϕ2 ∪ψ, ·) under the additional assumption that ∂ in

z (ϕ1 ∪ψ) = ∂ in
z (ϕ1) and ∂out

z (ϕ1 ∪ψ) =
∂out
z (ϕ1) for all z ∈ Z

d .

Fig. 7. Impact of the addition of ψ with (ϕ,ψ) ∈ A′
s . (a) Configuration before addition of ψ . (b) Configuration after addition of ψ .
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Lemma 14. Let z0 ∈ Z
2, ϕ1, ϕ2 ∈ N

′ be such that ϕ2 ⊂ QM
s (sz0) and ((ϕ1 − sz0)∩QM

3s(o), ϕ2 − sz0) ∈ A′
s . Moreover,

let ψ ⊂R
2,M \QM

s (sz0) be a finite set such that for every z ∈ Z
2 either ((ϕ1 − sz)∩QM

3s(o), (ψ − sz)∩QM
s (o)) ∈ A′

s

or ψ ∩ QM
s (sz) =∅. Furthermore, assume that ϕ1 ∪ ψ ′ ∈ N

′ for all ψ ′ ⊂ ϕ2 ∪ ψ and also that ∂ in
z (ϕ1 ∪ ψ) = ∂ in

z (ϕ1)

and ∂out
z (ϕ1 ∪ ψ) = ∂out

z (ϕ1) for all z ∈ Z
2. Then, for every x ∈ ϕ1 ∪ ϕ2 ∪ ψ ,

hc(ϕ1 ∪ ϕ2 ∪ ψ,x) =
{

hc(ϕ2, x) if x ∈ ϕ2,
hc(ϕ1 ∪ ϕ2, x) if hg(ϕ1 ∪ ψ,x) ∈ Qs(sz0),
hc(ϕ1 ∪ ψ,x) otherwise.

Proof. Without loss of generality, we may assume that z0 = o. Define a function h′
c :R2,M → R

2,M by the right hand
side of the asserted identity in the statement of the lemma. We show that h′

c satisfies the characteristic properties of the
lilypond model on ϕ1 ∪ ϕ2 ∪ ψ and therefore coincides with hc(ϕ1 ∪ ϕ2 ∪ ψ, ·). The geometric descendant function
corresponding to h′

c is denoted by h′
g. First, we note that by definition of A′

s , the hard-core property and the existence
of stopping neighbors is clearly satisfied for every x ∈ ϕ2. Next, we claim that for every x ∈ ϕ1 ∪ ψ ,∣∣ξ − h′

g(x)
∣∣ ≤ ∣∣ξ − hg(ϕ1 ∪ ψ,x)

∣∣. (3)

This will imply the hard-core property. To prove (3) it suffices to consider the case where hg(ϕ1 ∪ ψ,x) ∈ Qs(o).
Assume the contrary, i.e., that |ξ −h′

g(x)| > |ξ −hg(ϕ1 ∪ψ,x)|. Then, by properties ∂ in
o (ϕ1 ∪ψ) = ∂ in

o (ϕ1), ∂out
o (ϕ1 ∪

ψ) = ∂out
o (ϕ1) and the definition of A′

s , this would imply that (η,w) = hc(ϕ1 ∪ ψ,x) ∈ R
2,M \ QM

3s(o), contradicting
|η − hg(ϕ1 ∪ ψ,x)| < |ξ − hg(ϕ1 ∪ ψ,x)|.

Next, we consider the issue of existence of stopping neighbors and put y = hc(ϕ1 ∪ψ,x). If hg(ϕ1 ∪ψ,x) ∈ Qs(o),
then this follows again from the properties ∂ in

o (ϕ1 ∪ ψ) = ∂ in
o (ϕ1) and ∂out

o (ϕ1 ∪ ψ) = ∂out
o (ϕ1). If x ∈ ∂out

o (ϕ1 ∪ ψ),
then an elementary geometric argument shows that hg(ϕ1 ∪ ψ,y) /∈ Qs(o), so that hg(ϕ1 ∪ ψ,x) ∈ I (ϕ1 ∪ ψ,y). It
remains to consider the case, where x ∈ R

2,M \ QM
s (o), but x /∈ ∂ in

o (ϕ1 ∪ ψ). Then, y is clearly a stopping neighbor
of x with respect to h′

c if hg(ϕ1 ∪ ψ,y) /∈ Qs(o). Furthermore, the case y ∈ (ϕ1 ∪ ψ) ∩ QM
s (o) \ ∂out

o (ϕ1 ∪ ψ) is not
possible, as it would imply hg(ϕ1 ∪ ξ, x) ∈ Qs(o). Finally, consider the case y ∈ ∂ in

o (ϕ1 ∪ψ) and denote by Py the first
intersection point of I (ϕ1 ∪ψ,y) and Qs(o). Then, the claim follows from the observation hg(ϕ1 ∪ ξ, x) ∈ [η,Py). �

Using Lemma 14, we can now complete the verification of condition (US).

Lemma 15. Let z0 ∈ Z
2, ϕ1, ϕ2 ∈ N

′ be such that ϕ2 ⊂ QM
s (sz0) and ((ϕ1 − sz0)∩QM

3s(o), ϕ2 − sz0) ∈ A′
s . Moreover,

let ψ ⊂R
2,M \QM

s (sz0) be a finite set such that for every z ∈ Z
2 either ((ϕ1 − sz)∩QM

3s(o), (ψ − sz)∩QM
s (o)) ∈ A′

s

or ψ ∩ QM
s (sz) =∅. Furthermore, assume that ϕ1 ∪ ψ ′ ∈ N

′ for all ψ ′ ⊂ ϕ2 ∪ ψ . Then, for every z ∈ Z
2,

1. ∂ in
z (ϕ1 ∪ ϕ2 ∪ ψ) = ∂ in

z (ϕ1).
2. ∂out

z (ϕ1 ∪ ϕ2 ∪ ψ) = ∂out
z (ϕ1).

3. Let x ∈ ϕ1. Then, either hc(ϕ1 ∪ ϕ2 ∪ ψ,x) ∈ ϕ2 or

hc(ϕ1 ∪ ϕ2 ∪ ψ,x) = hc(ϕ1 ∪ ψ,x) and x /∈ ∂ in
z0

(ϕ1 ∪ ψ).

Proof. The proof is obtained by using induction on the number of squares of the form Qs(sz) that admit a non-empty
intersection with ψ . If ψ =∅, then the conditions of Lemma 14 are satisfied and we can use the description of hc(ϕ1 ∪
ϕ2, ·) given there. In order to verify items 1 and 2 suppose that x ∈ ϕ1 ∪ ϕ2 is contained in the symmetric difference
of ∂ in

z (ϕ1 ∪ ϕ2) and ∂ in
z (ϕ1) or in the symmetric difference of ∂out

z (ϕ1 ∪ ϕ2) and ∂out
z (ϕ1). By the representation of hc

in Lemma 14, this can only happen if hg(ϕ1, x) ∈ Qs(sz0). But in this case, the definition of the event A′
s guarantees

that also hg(ϕ1 ∪ ϕ2, x) ∈ Qs(sz0), so that x cannot lie in either of the symmetric differences. Concerning item 3 if
hc(ϕ1 ∪ ϕ2, x) /∈ ϕ2, then we are in the third case of the representation in Lemma 14, and the assertion follows.

Next, we proceed with the induction step and decompose ψ as ψ = ψ(1) ∪ ψ(2), where ∅ 	= ψ(1) ⊂ QM
s (sz′) and

ψ(2) ⊂R
2,M \ QM

s (sz′) for some z′ ∈ Z
2. Applying the induction hypothesis with ψ(2) instead of ψ and ψ(1) instead

of ϕ2, we see that ∂ in
z (ϕ1 ∪ ψ) = ∂ in

z (ϕ1) and ∂out
z (ϕ1 ∪ ψ) = ∂out

z (ϕ1) for all z ∈ Z
2. Hence, we may again use the

description of hc(ϕ1 ∪ ϕ2, ·) provided in Lemma 14. Items 1–3 can now be checked using similar arguments as in
the case ψ = ∅, but for the convenience of the reader, we give some details. Concerning items 1 and 2 suppose that
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x ∈ ϕ1 ∪ϕ2 ∪ψ is contained in the symmetric difference of ∂ in
z (ϕ1 ∪ϕ2 ∪ψ) and ∂ in

z (ϕ1) or in the symmetric difference
of ∂out

z (ϕ1 ∪ ϕ2 ∪ ψ) and ∂out
z (ϕ1). This is only possible if x ∈ ϕ1 ∪ ψ . Like in the case ψ = ∅, we can exclude the

option hg(ϕ1 ∪ ψ,x) ∈ Qs(sz0). Finally, in the remaining case, we have hc(ϕ1 ∪ ϕ2 ∪ ψ,x) = hc(ϕ1 ∪ ψ,x), and we
may use the induction hypothesis to conclude that x cannot be contained in either of the symmetric differences. The
third item can now be verified using precisely the same argumentation as in the case ψ =∅. �

Proof of Proposition 4. It just remains to observe that part (a) of condition (US) follows from Lemma 12, whereas
part (b) follows from Lemma 15. �

6. Possible extensions

The present section concludes the paper by discussing possible extensions of the sprinkling approach to other Poisson-
based directed random geometric graphs of out-degree at most 1. The aim of the organization of the proof for the
absence of forward percolation (Theorem 1(1)) was to highlight that the arguments depend on the specific model
only via three crucial properties: continuity, the shielding condition (SH) and the uniform stopping condition (US).
Additionally, to simplify the presentation, we used sometimes that the geometric descendant of x ∈ X lies on the line
segment connecting hc(X,x) and hg(X,hc(X,x)), but removing this condition for a specific example should only be
a minor issue.

Apart from the anisotropic lilypond model that we have discussed in detail, another example to which the sprinkling
technique applies is given by the directed random geometric graph on a homogeneous Poisson point process, where for
some fixed k ≥ 1 for each point a descendant is chosen among the k nearest neighbors according to some distribution.
In fact, the verification of the crucial conditions for this example is far less involved than in the lilypond setting.

Moreover, it would be interesting to extend the sprinkling technique to further models of lilypond type. The com-
mon characteristic of the lilypond model considered in this paper and the lilypond model introduced in [2] is an
asymmetry in the growth-stopping protocol. When two line segments hit only one of the two ceases its growth. In
both models this asymmetry prevents one from using the classical argumentation for proving absence of percolation,
which is based on the absence of suitable descending chains. Although the sprinkling approach seems to be sufficiently
strong to deal also with the example considered in [2], there are two important differences that make the verification
of conditions (SH) and (US) considerably more involved. First, the latter model is isotropic, so that the shielding
property now has to prevent trespassings in all directions simultaneously. Second, it features two-sided growth so that
the sprinkling has to stop line segments entering a square at roughly the same point in time as before in order to ensure
that the configuration of the lilypond model outside the square remains largely unchanged. D. J. Daley also proposed
to investigate a higher-dimensional analog in R

d , where the two-sided line segments are replaced by the intersection
of balls with isotropic codimension 1 hyperplanes. Since the sprinkling approach is a priori not restricted to the planar
setting, it would be very interesting to investigate whether it is also applicable for proving the absence of percolation
in these higher-dimensional lilypond models.
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