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Abstract. We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive
the density of eigenvalues of product of k independent n × n matrices with i.i.d. complex Gaussian entries with a few of matrices
being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian
entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions
for limiting expected empirical spectral distributions of above mentioned ensembles.

Résumé. Nous montrons que la densité des valeurs propres pour trois classes d’ensembles de matrices aléatoires a une forme
déterminantale. D’abord nous dérivons la densité des valeurs propres de produits de k matrices n × n indépendantes avec entrées
i.i.d. gaussiennes avec certaines matrices inversées. Dans le deuxième exemple, nous calculons la même densité pour des produits
compatibles de matrices rectangulaires avec entrées i.i.d. gaussiennes et dans le dernier exemple pour des produits de matrices
unitaires tronquées aléatoires et indépendantes. Nous dérivons des expressions exactes pour les limites des distributions spectrales
de ces exemples.
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1. Introduction and main results

A point process χ on a locally compact Polish space Λ is a random integer-valued positive radon measure on Λ. If χ

almost surely assigns at most measure 1 to singletons, it is a simple point process. Let μ be a Radon measure on Λ.
If there exist functions ρk :Λk → [0,∞) for k ≥ 1, such that for any family of mutually disjoint subjects D1, . . . ,Dk

of Λ,

E

[
k∏

i=1

χ(Di)

]
=
∫
∏

i Di

ρk(x1, . . . , xk)dμ(x1) · · ·dμ(xk),
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then ρk, k ≥ 1 are called k-point correlation functions or joint intensities of a point process χ with respect to μ. In
addition, we shall require that ρk(x1, . . . , xk) vanish if xi = xj for some i �= j .

Let K(x, y) :Λ2 → C be a measurable function. A point process χ on Λ is said to be a determinantal process with
kernel K if it is simple and its joint intensities with respect to the measure μ satisfy

ρk(x1, . . . , xk) = det
(
K(xi, xj )

)
1≤i,j≤k

,

for every k ≥ 1 and x1, . . . , xk ∈ Λ. For a detailed discussion on determinantal point processes, we refer the reader to
[3,13,14] and [20].

In this article we show that the eigenvalues of certain classes of random matrix ensembles form determinantal
point processes on the complex plane. In particular, we have obtained the density of the eigenvalues of these matrix
ensembles and using that we have shown that they are determinantal.

Ginibre [9] introduced three ensembles of matrices with i.i.d. real, complex and quaternion Gaussian entries re-
spectively without imposing a Hermitian condition. He showed that the eigenvalues of an n × n matrix with i.i.d.
standard complex Gaussian entries form a determinantal process on the complex plane. Krishnapur [16] showed that
the eigenvalues of A−1B (known as spherical ensemble) form a determinantal point process on the complex plane
when A and B are independent random matrices with i.i.d. standard complex Gaussian entries. Akemann and Burda
[1] derived the eigenvalue density for the product of k independent n × n matrices with i.i.d. complex Gaussian en-
tries. In this case the joint probability distribution of the eigenvalues of the product matrix is found to be given by a
determinantal point process as in the case of Ginibre [9], but with a complicated weight given by a Meijer G-function
depending on k. Their derivation hinges on the generalized Schur decomposition for square matrices and the method
of orthogonal polynomials. They computed all eigenvalue density correlation functions exactly for finite n and fixed k.
A similar kind of study has been done on product of independent square matrices with quaternion Gaussian entries in
[15].

Now following the works in [1] and [16], it is a natural question to ask, what can be said about the eigenvalues of
product of k independent Ginibre matrices when a few of them are inverted? In particular, do the eigenvalues of A =
A

ε1
1 A

ε2
2 · · ·Aεk

k form a determinantal point process, where each εi is +1 or −1 and A1,A2, . . . ,Ak are independent
matrices with i.i.d. standard complex Gaussian entries? The answer is yes and the following theorem, our first result,
answers it precisely.

Theorem 1. Let A1,A2, . . . ,Ak be independent n×n random matrices with i.i.d. standard complex Gaussian entries.
Then the set of eigenvalues of A = A

ε1
1 A

ε2
2 · · ·Aεk

k , where each εi is +1 or −1, form a determinantal point process
with kernel

Kn(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)k(r!)p((n − r − 1)!)k−p

with respect to Lebesgue measure on C, where p = #{i: εi = 1,1 ≤ i ≤ k} and ω(z) is a weight function with

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

e−∑k
j=1 |xj |2

k∏
j=1

|xj |(1−εj )(n−1)

k∏
j=1

|dxj |2 (1)

and |dz|2 is the Lebesgue measure on complex plane, which is same as Re(dz) Im(dz). Equivalently, the vector of
eigenvalues of A has density proportional to

n∏
�=1

ω(z�)

n∏
i<j

|zi − zj |2

with respect to Lebesgue measure on Cn.
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We write

|dz|2ω(z) =
∫

h(x1,x2,...,xk)=z

g(x1, x2, . . . , xk)|dx1|2|dx2|2 · · · |dxk|2

if ∫
f (z)ω(z)|dz|2 =

∫
f
(
h(x1, x2, . . . , xk)

)
g(x1, x2, . . . , xk)|dx1|2|dx2|2 · · · |dxk|2

for all f :C→C integrable function.
In our next result, we deal with the eigenvalues of product of k independent rectangular matrices with i.i.d. complex

Gaussian entries. Osborn [19] derived the density of the eigenvalues of product of two rectangular matrices. From
there it follows that the eigenvalues of product of two rectangular matrices form a determinantal point process on the
complex plane. We generalise this result for product of k rectangular matrices.

Theorem 2. Let n1, n2, . . . , nk+1 be k + 1 positive integers such that n1 = nk+1 = min{n1, n2, . . . , nk} and
A1,A2, . . . ,Ak be independent rectangular matrices of dimension ni × ni+1 for i = 1,2, . . . , k, with i.i.d. stan-
dard complex Gaussian entries. Then the eigenvalues z1, z2, . . . , zn1 of A = A1A2 · · ·Ak form a determinantal point
process on the complex plane with kernel

Kn(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)k
∏k

j=1(nj − n1 + r)!
with respect to Lebesgue measure on C, where ω(z) is a weight function with

|dz|2ω(z) =
∫

x1···xk=z

e−∑k
j=1 |xj |2

k∏
j=1

|xj |2(nj −n1)
k∏

j=1

|dxj |2.

Equivalently, the vector of eigenvalues of A = A1A2 · · ·Ak has density proportional to

n1∏
�=1

ω(z�)

n1∏
i<j

|zi − zj |2

with respect to Lebesgue measure on C
n1 .

In a recent work [2], it was shown that the squares of singular values of product of rectangular matrices with i.i.d.
complex Gaussian entries also form a determinantal point process.

In [6], Dyson introduced circular unitary ensemble, which is the set of eigenvalues of a random unitary matrix
sampled from the Haar measure on the set of all n × n unitary matrices, U(n) and showed that this ensemble forms
a determinantal point process on S1. Życzkowski and Sommers [22] generalised the result of Dyson [6]. Let U be a
matrix drawn from the Haar distribution on U(n). Życzkowski and Sommers showed in [22] that the eigenvalues of
the left uppermost m×m block of U (where m < n) form a determinantal point process on D= {z ∈C: |z| ≤ 1}. They
found the exact distribution of the eigenvalues and from there it follows that they form a determinantal point process.
In our last example, we generalise the result of [22]. We show that the eigenvalues of product of truncated unitary
matrices and inverses of truncated unitary matrices are also determinantal. The following theorem states it precisely.

Theorem 3. Let U1,U2, . . . ,Uk be k independent Haar distributed unitary matrices of dimension ni × ni for
i = 1,2, . . . , k respectively, where m ≤ ni and A1,A2, . . . ,Ak be m × m left uppermost blocks of U1,U2, . . . ,Uk

respectively. Then the eigenvalues z1, z2, . . . , zm of A = A
ε1
1 A

ε2
2 · · ·Aεk

k , where each εi is +1 or −1 form a determi-
nantal point process on the complex plane with kernel

Kn(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)kCr
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with respect to Lebesgue measure on C, where

Cr =
k∏

i=1

Beta

(
m

1 − εi

2
+ 1 + εi

2
+ rεi, nj − m

)

and ω(z) is a weight function with

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

k∏
j=1

(
1 − |xj |2

)nj −m−1|xj |(m−1)(1−εj )1{|xj |≤1}(xj )|dxj |2.

Equivalently, the vector of eigenvalues of A = A
ε1
1 A

ε2
2 · · ·Aεk

k has density proportional to

m∏
�=1

ω(z�)
∏

1≤i<j≤m

|zi − zj |2

with respect to Lebesgue measure on Cm.

Proofs of the theorems rely greatly on RQ decomposition, Schur decomposition of a matrix and generalization of
Schur decomposition to product of rectangular matrices. We describe these decomposition in the next section. We also
use QR decomposition of a matrix in the proof of some lemmas stated in Section 5. We discuss QR decomposition
before proving those lemmas in the Appendix.

We organize this paper as follows. In Section 2, we define notation and describe basic facts about wedge product,
Schur and RQ decompositions. Then we introduce notion of generalized Schur decomposition for product of rectan-
gular matrices. We state a few lemmas which are used in the proof of above three theorems. We prove these lemmas
in Appendix A.1. In Sections 3 and 4, we prove Theorems 1 and 2, respectively. In Section 5, we state three lemmas
and using them we prove Theorem 3. Proofs of these lemmas are given in Appendix A.2.

In Section 6, we identify the limit of expected empirical distribution of these matrix ensembles. In particular, in
Theorem 19, we calculate the limiting expected empirical distribution of square radial part of eigenvalues of product of
Ginibre and inverse Ginibre matrices. Since one point correlation function of the corresponding point process, which
gives the expected empirical spectral distribution, does not depend on the angular part of the eigenvalues, the limiting
distribution of the radial part identifies the limiting spectral distribution completely. In Theorem 21, we calculate
the limit of expected empirical distribution of square radial part of eigenvalues of product of rectangular matrices
with independent complex Gaussian entries. We have a simple explicit expression for the limit in terms of uniform
distribution. Finally in Theorem 22 we calculate the same for product of truncated unitary matrices.

2. Notation and tools

In this section we describe notation and basic facts about wedge product, Schur decomposition and RQ decomposition.
We also develop a new technique to decompose a finite collection of rectangular matrices based on Schur and RQ
decompositions.

We denote the differential of a complex vector x as

Dx = (dx1,dx2, . . . ,dxn) (2)

and define

|Dx| :=
n∧

i=1

|dxi |2,

where

|dxi |2 = dxi ∧ dxi
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and dxi ∧ dxj denotes the wedge product between differentials dxi and dxj . For a complex matrix M , we denote

|DM| :=
∧
i,j

(
dM(i, j) ∧ dM(i, j)

)
. (3)

Here wedge product is taken only for the non-zero variables of matrix M .
If dyj =∑n

k=1 aj,k dxk , for 1 ≤ j ≤ n, then using the alternating property of wedge product, dx ∧ dy = −dy ∧ dx,
it is easy to see that

dy1 ∧ dy2 ∧ · · · ∧ dyn = det(aj,k)j,k≤n dx1 ∧ dx2 ∧ · · · ∧ dxn. (4)

Let U be a n × n unitary matrix with columns u1, u2, . . . , un and with non-negative real diagonal entries. Then the
Haar measure |dH(U)| on the set of such U can be expressed in terms of wedge product as follows

∣∣dH(U)
∣∣= n∧

i=1

n∧
j=i+1

∣∣u∗
j Dui

∣∣2. (5)

Let U = [u1 u2 · · · um] be a n × m matrix with orthonormal columns and non-negative real diagonal entries. Let
V = [um+1 um+2 · · · un] be a n × (n − m) matrix (function of U ) such that [U V ] is unitary. Then Haar measure on
the set of such U can be expressed as

∣∣dH(U)
∣∣= m∧

i=1

n∧
j=i+1

∣∣u∗
j Dui

∣∣2. (6)

For a detailed discussion on Haar measure, see [8,17].

Schur decomposition. If M is a n × n matrix with complex entries, then there exist a n × n unitary matrix U with
non-negative real diagonal entries, a strictly upper triangular matrix T and a diagonal matrix Z with diagonal elements
in decreasing lexicographic order (z ≥ w if 
(z) > 
(w) or 
(z) = 
(w) and �(z) ≥ �(w)) such that

M = U(Z + T )U∗. (7)

This decomposition is unique if Z has distinct diagonal entries and U has positive diagonal entries. The set of all n×n

complex matrices which admit unique Schur decomposition has full Lebesgue measure. We call this set of matrices
as M. The Lebesgue measure on M ∈ M can be written in terms of Lebesgue measure on Z,T and Haar measure on
U as follows

|DM| =
∏
i<j

|zi − zj |2
∣∣dH(U)

∣∣|DZ||DT |, (8)

where z1, z2, . . . , zn are the diagonal entries of Z, |DM|, |DZ|, |DT | are as defined in (3) and |dH(U)| is as defined
in (5). For proof of Schur decomposition (7), see [10] and for proof of (8), see (6.3.5) on p. 104 of [14].

RQ-decomposition. If M is a m×n matrix with complex entries with m ≤ n, then there exist a m×m upper triangular
matrix S and a m × n matrix U∗ with orthonormal rows and non-negative real diagonal elements such that

M = SU∗. (9)

This can be done by applying Gram–Schmidt orthogonalization process to the rows of M from bottom to top and
fixing the argument of diagonal entries of U∗ to be zero. If S is invertible and U has positive real diagonal entries,
then this decomposition is unique. Observe that if S is invertible then M has full rank. The set of m × n complex
matrices which admit unique RQ-decomposition has full measure. For a detailed proof of (9), see [10]. In the next
lemma we express Lebesgue measure on M in terms of Lebesgue measure on S and Haar measure on U .
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Lemma 4. Let M be a m × n (m ≤ n) complex matrix of rank m and decomposable uniquely as SU∗. Then

|DM| =
m∏

i=1

|Si,i |2(n−m+i)−1|DS|∣∣dH(U)
∣∣, (10)

where |dH(U)| is as defined in (6).

We prove this lemma in Appendix A.1. For a detailed discussion on Schur and RQ decompositions, we refer the
reader to [7,8,17] and [21].

2.1. Generalized Schur decomposition of rectangular matrices

In the following proposition we decompose a finite collection of rectangular matrices using the idea of Schur decom-
position and RQ decomposition.

Proposition 5. Let n1, n2, . . . , nk+1 be k + 1 integers such that nk+1 = n1 = min{n1, n2, . . . , nk} and Ai be a rectan-
gular matrix of size ni × ni+1 for i = 1,2, . . . , k. Then there exist k upper triangular matrices S1, S2, . . . , Sk of size
n1 × n1 with diagonal entries of S1S2 · · ·Sk in decreasing lexicographic order, and [Ui Vi], i = 1,2, . . . , k unitary
matrices with Ui ’s having non-negative real diagonal entries, and B2,B3, . . . ,Bk rectangular matrices with suitable
dimensions, such that

A1 = U1S1U
∗
2 ,

A2 = U2S2U
∗
3 + V2B2,

...

Ak−1 = Uk−1Sk−1U
∗
k + Vk−1Bk−1,

Ak = UkSkU
∗
1 + VkBk. (11)

We refer the decomposition in (11) as generalized Schur decomposition.

Proof. The first step in computing generalized Schur decomposition (11) is to apply the Schur decomposition to the
product of A1,A2, . . . ,Ak and using that, we have

A1A2 · · ·Ak = U1T U∗
1 , (12)

where U1 is n1 × n1 unitary matrix with non-negative real diagonal entries and T is upper triangular matrix with
diagonal entries in decreasing lexicographic order.

Next, by sequential application of RQ-decomposition starting from i = 1, we have U∗
i Ai = SiU

∗
i+1 for i =

1,2, . . . , k − 1 where Si is n1 ×n1 upper triangular matrix , U∗
i+1 is n1 ×ni+1 matrix with orthonormal rows and with

non-negative real diagonal entries. Sk be any n1 × n1 upper triangular matrix such that S1S2 · · ·Sk−1Sk = T .
Now we construct Vi uniquely from Ui such that [Ui Vi] is a ni × ni unitary matrix for i = 2,3, . . . , k.
Let e1, e2, . . . , eni

be standard basis for C
ni . Let ei1 be the basis vector with least index, not belonging to the

subspace spanned by the columns of Ui . Now take projection of ei1 onto orthogonal complement of the subspace
spanned by the columns of Ui and normalize it, call it v1. To choose v1 uniquely, we require that the first non-zero
component of it be positive. We take v1 as the first column of Vi .

Let ei2 be the basis vector with least index, not belonging to the subspace spanned of columns of Ui and v1. Now the
unit vector v2, obtained by normalizing the projection of ei2 onto the orthogonal complement of the subspace spanned
by the columns of Ui and v1, is chosen as second column of Vi . Again, to choose v2 uniquely we require that the first
non-zero component of it be positive. Proceeding this way, we get required Vi . Also observe that Bi = V ∗

i Ai . �
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Remark 6. The above decomposition will be unique if Schur decomposition in (12) and RQ decompositions in subse-
quent steps are unique i.e., S1S2 · · ·Sk has distinct diagonal entries, Ui ’s have positive real diagonal entries and Si ’s
are invertible. For fixed k, the set of k tuple (A1,A2, . . . ,Ak) of matrices for which generalized Schur decomposition
is unique has full measure.

In the next lemma, we express the Lebesgue measure on (A1,A2, . . . ,Ak) in terms of Lebesgue measure on
S1, S2, . . . , Sk−1, Sk , B2,B3, . . . ,Bk and Haar measure on U1, . . . ,Uk .

Lemma 7. Let Ai be a rectangular matrix of size ni × ni+1 for i = 1,2, . . . , k, where nk+1 = n1 = min{n1, n2, . . . ,

nk}. If Ai ’s are uniquely decomposable as in Proposition 5, then

k∏
i=1

|DAi | =
∏

1≤i<j≤n1

|zi − zj |2
k∏

i=1

∣∣det(Si)
∣∣2(ni+1−n1)

∣∣dH(Ui)
∣∣|DSi ||DBi |, (13)

where z1, z2, . . . , zn1 are the eigenvalues of A1A2 · · ·Ak and dH(Ui) is as defined in (6).

We refer (13) as Jacobian determinant formula corresponding to generalized Schur decomposition of rectangular
matrices.

Remark 8. Observe that if A1,A2, . . . ,Ak are square matrices of size n1 × n1, then (13) takes the following form

k∏
i=1

|DAi | =
∏

1≤i<j≤n1

|zi − zj |2
k∏

i=1

∣∣dH(Ui)
∣∣|DSi |. (14)

Generalized Schur decomposition and the change of measure are the main ingredients in the proofs of our theorems.
Proof of Lemma 7 is given in Appendix A.1.

3. Product of Ginibre matrices and inverse Ginibre matrices

In this section we prove Theorem 1. We begin with some remarks on this theorem.

Remark 9. (i) If k = 2, ε1 = −1 and ε2 = 1, then from (1) we get that

|dz|2ω(z) =
∫

x2/x1=z

e−(|x1|2+|x2|2)|x1|2(n−1)|dx1|2|dx2|2 = c
|dz|2

(1 + |z|2)(n+1)
,

with some constant c. Hence the density of the eigenvalues of A−1
1 A2 is proportional to

n∏
i=1

1

(1 + |zi |2)n+1

∏
i<j

|zi − zj |2.

From the above expression it is clear that the eigenvalues of A−1
1 A2 form a determinantal point process in a complex

plane. This result was proved by Krishnapur in [16] using a change of variable which differs from generalized Schur
decomposition.

(ii) If εi = 1 for i = 1,2, . . . , k, then by Theorem 1 it follows that the eigenvalues of A1A2 · · ·Ak form a deter-
minantal point process. This result is due to Akemann and Burda [1]. The key ingredient of their paper is Jacobian
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determinant computation for generalized Schur decomposition of square matrices. It is done by using Jacobian deter-
minant for Schur decomposition of a larger square matrix, which contains A1,A2, . . . ,Ak as sub blocks in positions
(1,2), (2,3), . . . , (k − 1, k) and (k,1), respectively and the rest being zero matrices. Whereas, we present a different
way of computing Jacobian determinant for generalized Schur decomposition of rectangular matrices (square matri-
ces follow as a special case) by breaking it into many simpler decompositions whose Jacobian’s can be computed very
easily.

Remark 10. Like in [1], by using Mellin transform, one can see that weight function ω(z) in Theorem 1 can be written
as

ω(z) = (2π)k−1G
p,k−p
k−p,p

[
(−n,−n, . . . ,−n)k−p

(0,0, . . . ,0)p

∣∣∣|z|2] ,

where p = #{i: εi = 1,1 ≤ i ≤ k} and the symbol Gnm
pq (· · · |z) denotes Meijer’s G-function. For a detailed discussion

on Meijer’s G-function, see [4], [12].

Proof of Theorem 1. The density of (A1,A2, . . . ,Ak) is proportional to

k∏
�=1

e−tr(A�A
∗
�)|DA�|.

Actually, here the proportional constant is 1
πkn2 , but to make life less painful for ourselves, we shall omit constants

in every step to follow. Since we are dealing with probability measures, the constants can be recovered at the end by
finding normalization constants.

Now by generalized Schur-decomposition (11), we have

A
εi

i = UiS
εi

i U∗
i+1 for i = 1,2, . . . , k,

where S1, S2, . . . , Sk are upper triangular matrices and U1,U2, . . . ,Uk are unitary matrices with Uk+1 = U1. Let the
diagonal entries of Si be (xi1, xi2, . . . , xin). One can see that eigenvalues z1, z2, . . . , zn of A = A

ε1
1 A

ε2
2 · · ·Aεk

k are
given by

zj =
k∏

i=1

x
εi

ij , j = 1,2, . . . , n.

Now, by using Jacobian determinant formula (14) for generalised Schur decomposition of square matrices, we get

k∏
i=1

∣∣DA
εi

i

∣∣= ∣∣Δ(z)
∣∣2 k∏

i=1

∣∣DS
εi

i

∣∣∣∣dH(Ui)
∣∣, (15)

where Δ(z) =∏
i<j (zi − zj ). For any square complex matrix A and complex vector x, using (4), it is easy to see that

∣∣(Dx)A
∣∣= ∣∣A(Dx)t

∣∣= ∣∣det(A)
∣∣2|Dx|, (16)

where Dx is as defined in (2). Since∣∣DA−1
∣∣= ∣∣A−1(DA)A−1

∣∣,
using (16), we have∣∣DA

εi

i

∣∣= ∣∣det(Ai)
∣∣4n((εi−1)/2)|DAi |. (17)



24 K. Adhikari et al.

By similar calculation for upper triangular matrices Si , we get∣∣DS
εi

i

∣∣= ∣∣det(Si)
∣∣2(n+1)((εi−1)/2)|DSi |. (18)

Now using (15), (17) and (18), and since |det(Si)| = |det(Ai)|, we get

k∏
i=1

|DAi | =
∣∣Δ(z)

∣∣2 k∏
i=1

∣∣det(Si)
∣∣(1−εi )(n−1)|DSi |

∣∣dH(Ui)
∣∣. (19)

The density of A1,A2, . . . ,Ak can be written in new variables as

∣∣Δ(z)
∣∣2 k∏

i=1

e−tr(SiS
∗
i )
∣∣det(Si)

∣∣(1−εi )(n−1)|DSi |
∣∣dH(Ui)

∣∣.
By integrating out the non-diagonal entries of S1, S2, . . . , Sk , we get the density of diagonal entries of S1, S2, . . . , Sk

to be proportional to

∣∣Δ(z)
∣∣2 k∏

i=1

n∏
j=1

e−|Si(j,j)|2 ∣∣Si(j, j)
∣∣(1−εi )(n−1)∣∣dSi(j, j)

∣∣2.
Hence the density of the vector (Z1,Z2, . . . ,Zn) of eigenvalues of A is proportional to

n∏
�=1

ω(z�)

n∏
i<j

|zi − zj |2

with a weight function

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

e−∑k
j=1 |xj |2

k∏
j=1

|xj |(1−εj )(n−1)
k∏

j=1

|dxj |2. (20)

Using this density formula and Fact 11, we show that the eigenvalues form a determinantal point process on the
complex plane.

Fact 11. Suppose {ϕk}nk=1 is an orthogonal set in L2(Λ). Then there exists a determinantal point process with kernel
K(z,w) =∑n

k=1 ϕk(z)ϕk(w) with respect to Lebesgue measure on Λ.

For proof of this fact we refer the reader to Lemma 4.5.1 of [14]. First observe that∏
i<j

|zi − zj | =
∣∣det

(
z
j−1
i

)
1≤i,j≤n

∣∣= ∣∣det
(
φj (zi)

)
1≤i,j≤n

∣∣,
where φj are monic polynomials of degree (j − 1). So

∏
i<j

|zi − zj |2 = det
[(

φj (zi)
)
i,j

(
φi(zj )

)
i,j

]= det

[
n∑

k=1

φk(zi)φk(zj )

]
i,j

.

If we choose φj ,1 ≤ j ≤ n to be orthonormal polynomials with respect to measure f (z)|dz|2, then

K(zi , zj ) =
√

f (zi)f (zj )

n∑
k=1

φk(zi)φk(zj )
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will be our required kernel for the correlation functions with respect to the Lebesgue measure on C, that is, for
1 ≤ k ≤ n, k-point correlation function will be given by det(K(zi , zj ))1≤i,j≤k .

Observe that, the weight function ω(z) in (20) is angle independent, that is, ω(z) is function of |z| only. It implies
that monic polynomials Pi(z) = zi are orthogonal with respect to this weight functions and we have

∫
za
(
zb
)
ω(z)|dz|2 =

k∏
j=1

∫
(xj )

εj a(xj )
εj be−|xj |2 |xj |(1−εj )(n−1)|dxj |2

= δab(2π)k(a!)p((n − a − 1)!)k−p
.

Therefore the kernel is given by

Kn(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)k(r!)p((n − r − 1)!)k−p
.

Hence the eigenvalues of A form a determinantal point process with above kernel with respect to Lebesgue measure
on C. �

4. Product of rectangular matrices

In this section we prove Theorem 2 borrowing some results from Section 2. Before that we make some remarks on
the assumption and on the weight function of Theorem 2.

Remark 12. The condition n1 = min{n1, n2, . . . , nk} in Theorem 2 is taken for simplicity. Since we want to calculate
density of non-zero eigenvalues of product of (compatible) rectangular matrices A1A2 · · ·Ak and the set of non-zero
eigenvalues of A1A2 · · ·Ak remains unaltered for any rotational combination of A1,A2, . . . ,Ak . So the set of non-zero
eigenvalues of A1A2 · · ·Ak is less or equal to min{n1, n2, . . . , nk}. Therefore, we can assume that n1 is the minimum
among n1, n2, . . . , nk .

Remark 13. Using Mellin transform, the weight function ω(z) in Theorem 2 can be written as

ω(z) = (2π)k−1G
k,0
0,k

[
–

(n1 − n1, n2 − n1, . . . , nk − n1)

∣∣∣|z|2] ,

where G
k,0
0,k denotes Meijer’s G-function.

Proof of Theorem 2. Density of A1,A2, . . . ,Ak is proportional to

k∏
i=1

e−tr(AiA
∗
i )|DAi |,

where |DAi | is as defined in (3). Now using the decomposition as discussed in Proposition 5 and also using (13), the
density of A1,A2, . . . ,Ak can be written in new variables as

∣∣Δ(Z)
∣∣2 k∏

i=1

e−tr(SiS
∗
i +BiB

∗
i )
∣∣det(Si)

∣∣2(ni+1−n1)|DSi |
∣∣dH(Ui)

∣∣|DBi |,

where Bi,Si are as in (11) respectively and

Δ(Z) =
n1∏

i<j

(zi − zj ) and zj =
k∏

i=1

Si(j, j) for j = 1,2, . . . , n1.
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We take B1 = 0 and |DB1| = 1. By integrating out the variables in B2, . . . ,Bk , U1,U2, . . . ,Uk and the non-diagonal
entries of S1, S2, . . . , Sk , we get the density of diagonal entries of S1, S2, . . . , Sk to be proportional to

∣∣Δ(Z)
∣∣2 k∏

i=1

n1∏
j=1

e−|Si (j,j)|2 ∣∣Si(j, j)
∣∣2(ni+1−n1)

∣∣dSi(j, j)
∣∣2.

Hence the density of z1, z2, . . . , zn1 is proportional to

n1∏
�=1

ω(z�)

n1∏
i<j

|zi − zj |2

with a weight function

|dz|2ω(z) =
∫

z1···zk=z

e−∑k
j=1 |zj |2

k∏
j=1

|zj |2(nj −n1)
k∏

j=1

|dzj |2.

Using this density formula we show that eigenvalues of A form a determinantal point process. Note that, the weight
function ω(z) is angle independent and hence, the monic polynomials Pi(z) = zi are orthogonal with respect to this
weight function. Now we have

∫
za
(
zb
)
ω(z)|dz|2 =

k∏
j=1

∫
(xj )

a(xj )
be−|xj |2 |xj |2(nj −n1)|dxj |2

= δab(2π)k
k∏

j=1

(nj − n1 + a)!

and the corresponding kernel of orthogonal polynomials is given by

Kn(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)k
∏k

j=1(nj − n1 + r)! .

Hence by Fact 11, the eigenvalues of A form a determinantal point process with above kernel K(z,w) with respect to
Lebesgue measure on C. �

5. Product of truncated unitary matrices

We begin this section with some remarks on Theorem 3. In particular we present some results that it generalises.

Remark 14. (i) If k = 1 and ε1 = 1, then Theorem 3 says that the eigenvalues z1, z2, . . . , zm of Am×m left-upper block
of Haar distributed unitary matrix

Un×n =
[

Am×m Bm×(n−m)

C(n−m)×m D(n−m)×(n−m)

]

form a determinantal point process with density proportional to

∏
1≤j<k≤m

|zj − zk|2
m∏

i=1

(
1 − |zi |2

)n−m−11{|zi |≤1}(zi). (21)
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This special case was proved by Życzkowski and Sommers in [22]. But our way of proof of Theorem 3 is completely
different from their proof.

(ii) For simplicity we have taken m×m left-upper blocks of matrices. But we can take any m×m blocks of matrices,
because their probability distributions are similar.

Remark 15. Using Mellin transform, the weight function ω(z) in Theorem 3 can be written as

(2π)k−1
k∏

j=1

�(nj − m)G
p,k−p
k,k

[
(−m, . . . ,−m,n1 − m, . . . , np − m)k

(0, . . . ,0,−np+1, . . . ,−nk)k

∣∣∣|z|2] ,

when εi = 1 for i = 1, . . . , p and εi = −1 for p + 1, . . . , k.

Before proving Theorem 3, we need to introduce some basic notation and facts. Let Mn be the space of all n × n

complex matrices equipped with Euclidean norm, ‖M‖ = √
tr(M∗M).

Weyl chamber. This is a subset of Cn and is defined as

Wn := {
(z1, z2, . . . , zn): z1 ≥ z2 ≥ · · · ≥ zn

}⊂C
n,

where z ≥ w if 
(z) > 
(w) or 
(z) = 
(w) and �(z) ≥ �(w). The metric on Weyl chamber is given by

‖z − w‖W = min
σ

√√√√ n∑
i=1

|zi − wσi |2,

minimum is taken over all permutations of {1,2, . . . , n}. Weyl chamber with this metric is a polish space. We take the
space of eigenvalues of n × n matrices as Weyl chamber through the following map Φn : (Mn,‖ · ‖) → (Wn,‖ · ‖W )

which is defined as

Φn(M) = (z1, z2, . . . , zn), (22)

where z1 ≥ z2 ≥ · · · ≥ zn are the eigenvalues of M . The map Φn is a continuous map. This can be seen from the fact
that roots of complex polynomial are continuous functions of its coefficients and eigenvalues are roots of characteristic
polynomial whose coefficients are continuous functions of matrix entries. Note that the map

Ψn,m :
(
Mn,‖ · ‖)→ (

Mm,‖ · ‖) (n ≥ m), (23)

taking every matrix to its m × m left uppermost block is also continuous.
The vector of ordered eigenvalues Z = (z1, z2, . . . , zm) of m × m left uppermost block of a n × n random matrix

defines a measure μ on Wm. In other words Z is Wm-valued random variable distributed according to μ. Suppose
there exists a function p(z1, z2, . . . , zm) such that expectation of any complex valued bounded continuous function f

on (Wm,‖ · ‖W ) is given by

E
[
f (Z)

]=
∫
Wm

f (z)p(z)|dz|2 =
∫
Cm

1

m!f (z)p(z)|dz|2, (24)

where p and f are extended to C
m by defining

f (z1, z2, . . . , zm) = f (z(1), z(2), . . . , z(m)), p(z1, z2, . . . , zm) = p(z(1), z(2), . . . , z(m)),

where {z1, z2, . . . , zm} = {z(1), z(2), . . . , z(m)} and z(1) ≥ z(2) ≥ · · · ≥ z(n) and |dz|2 is Lebesgue measure on C
m. Then

p(z) gives the joint probability density of eigenvalues Z. Also note that the set of symmetric continuous functions on
Cm are in natural bijection with set of continuous functions on (Wm,‖ · ‖W ).
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Haar measure. Let U(n) be the space of all n × n unitary matrices. It is a manifold of dimension n2 in R
2n2

. Haar
measure on U(n) is normalized volume measure on manifold U(n) which is denoted by HU(n). Define

Nm,n := {Y ∈Mn: Yi,j = 0,1 ≤ j < i ≤ m}, (25)

to be the set of all n × n matrices with zeros in the lower triangle of left upper most m × m block and

Vm,n := Nm,n ∩ U(n). (26)

But we suppress subscripts m,n from Vm,n and Nm,n when there is no confusion. Let HV be the normalized volume
measure on manifold Vm,n. Now we need the following lemmas to prove Theorem 3. We prove these lemmas in
Appendix A.2. The next lemma approximates Haar measure on unitary group by Lebesgue measure on a its open
neighbourhood in Mn.

Lemma 16. Let f :Mn → C be a continuous function. Then∫
f (U)

∣∣dHU(n)(U)
∣∣= lim

ε→0

∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| ,

where |DX| and ‖ · ‖ denote differential element of volume measure and Euclidean norm on Mn, manifold of n × n

complex matrices respectively and HU(n) is the normalized volume measure on manifold U(n).

Lemma 17 approximates volume measure on Vm,n by Lebesgue measure on its open neighbourhood in Nm,n.

Lemma 17. Let f :Mn → C be a continuous function. Then∫
f (V )

∣∣dHV (V )
∣∣= lim

ε→0

∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| ,

where |DX| and ‖ · ‖ denote differential element of volume measure and Euclidean norm on Nm,n respectively and
HV is the normalized volume measure on manifold Vn,m.

Lemma 18. The probability density of the vector of diagonal elements (Z1,Z2, . . . ,Zm) of m × m left uppermost
block of n × n random matrix distributed according to probability measure HV is proportional to

m∏
i=1

(
1 − |zi |2

)n−m−11{|zi |≤1}(zi).

Proof of Theorem 3. For the sake of simplicity, let ni = n for i = 1,2, . . . , k. Let z1 ≥ z2 ≥ · · · ≥ zm be the eigenval-
ues of A = A

ε1
1 A

ε2
2 · · ·Aεk

k where Ai be the left uppermost m×m block of Ui and U1,U2, . . . ,Uk be n×n independent
Haar distributed unitary matrices, εi = 1 or −1. We denote the vector of eigenvalues of A by

Z = (z1, z2, . . . , zm).

We use (24) to find the joint probability density of eigenvalues of A. Let f be any bounded continuous function
of Z. In computation of expectation of f (Z), we approximate Haar measure on direct product of k unitary groups by
normalised Lebesgue measure on direct product of their open neighbourhoods in M(n). By Lemma 16, we have

E
[
f (Z)

] =
∫

f (z)

k∏
i=1

∣∣dHUi (n)(Ui)
∣∣

= lim
εi→0

∫⋂k
i=1 ‖X∗

i Xi−I‖<εi
f (z)|DX1||DX2| · · · |DXk|∫⋂k

i=1 ‖X∗
i Xi−I‖<εi

|DX1||DX2| · · · |DXk| .
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Limit is taken for all εi one by one. For 1 ≤ i ≤ k, let

Xi =
[
Ai Bi

Ci Di

]
.

We apply generalised Schur decomposition to m×m left uppermost blocks of those k matrices (with powers εi ). Now
by generalized Schur-decomposition, we have

A
εi

i = SiT
εi

i S∗
i+1, i = 1,2, . . . , k, and k + 1 = 1,

where T1, T2, . . . , Tk are upper triangular matrices and S1, S2, . . . , Sk are unitary matrices with Sk+1 = S1. Let the
diagonal entries of Ti be (xi1, xi2, . . . , xim). We denote {xij : i = 1,2, . . . , k, j = 1,2, . . . ,m} by x. Now

Xi =
[
Ai Bi

Ci Di

]
=
[
Si+(1−εi )/2 0

0 I

]
Yi

[
S∗

i+(1+εi )/2 0
0 I

]
and

Yi =
[

Ti B̃i

C̃i D̃i

]
.

One can see that eigenvalues z1, z2, . . . , zm of A = A
ε1
1 A

ε2
2 · · ·Aεk

k are given by

zj =
k∏

i=1

x
εi

ij , j = 1,2, . . . ,m. (27)

Now, by using Jacobian determinant formula (14) for generalised Schur decomposition of square matrices, we get

k∏
i=1

∣∣DA
εi

i

∣∣= ∣∣Δ(z)
∣∣2 k∏

i=1

∣∣DT
εi

i

∣∣ k∏
i=1

∣∣dH(Si)
∣∣,

where Δ(z) =∏
i<j (zi − zj ). Since∣∣DA

εi

i

∣∣= ∣∣det(Ai)
∣∣4m((εi−1)/2)|DAi |,

∣∣DT
εi

i

∣∣= ∣∣det(Ti)
∣∣2(m+1)((εi−1)/2)|DTi |

and |det(Ti)| = |det(Ai)|, we get

k∏
i=1

|DAi | =
∣∣Δ(z)

∣∣2L(x)

k∏
i=1

|DTi |
∣∣dH(Si)

∣∣, (28)

where

L(x) =
k∏

i=1

∣∣det(Ti)
∣∣(1−εi )(m−1)

.

We integrate out the unitary matrix variables that come from this generalised Schur decomposition. Then by de-
approximating, we get back to integration on direct product of k copies of Vm,n. Using (28) and Lemma 17, we
get

E
[
f (Z)

] = lim
εi→0

∫⋂k
i=1 ‖Yi

∗Yi−I‖<εi
|Δ(z)|2f (x)L(x)|DY1||DY2| · · · |DYk|∫⋂k

i=1 ‖Yi
∗Yi−I‖<εi

|Δ(z)|2L(x)|DY1||DY2| · · · |DYk|

= C

∫ ∣∣Δ(z)
∣∣2f (x)L(x)

k∏
i=1

∣∣dHVi
(Vi)

∣∣, (29)
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where Vi = Nm,n ∩ Ui (n) and C−1 = ∫ |Δ(z)|2L(x)
∏k

i=1 |dHVi
(Vi)|. We want to integrate out all the variables

except the first m diagonal entries of each Vi . We do that by applying Lemma 18 to each Vi and get joint probability
density of these diagonal variables (xi1, xi2, . . . , xim). So we end up with joint probability density of x and that is
proportional to

m∏
�=1

k∏
j=1

(
1 − |xj�|2

)n−m−1|xj�|(m−1)(1−εj )1{|xj�|≤1}(xj�)|dxj�|2
∏

1≤i<j≤m

|zi − zj |2.

Now using (27), from the above we get that the joint probability density of Z is proportional to

m∏
�=1

ω(z�)
∏

1≤i<j≤m

|zi − zj |2

with a weight function

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

k∏
j=1

(
1 − |xj |2

)n−m−1|xj |(m−1)(1−εj )1{|xj |≤1}(xj )|dxj |2.

This completes the proof of the theorem when all ni are equal. If ni are not all equal, we will have in (29), Vi =
Nm,ni

∩ U(ni). After integrating out all unwanted variables, we will have joint probability density of Z proportional
to

m∏
�=1

ω(z�)
∏

1≤i<j≤m

|zi − zj |2

with a weight function

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

k∏
j=1

(
1 − |xj |2

)nj −m−1|xj |(m−1)(1−εj )1{|xj |≤1}(xj )|dxj |2.

Now using this density formula we show that the eigenvalues of A form a determinantal point process on the
complex plane. Since the weight function ω(z) is angle independent, the monic polynomials Pi(z) = zi are orthogonal
with respect to this ω(z). Then we have∫

za
(
zb
)
ω(z)|dz|2

=
k∏

j=1

∫
(xj )

εj a(xj )
εj b
(
1 − |xj |2

)nj −m−1|xj |(m−1)(1−εj )1{|xj |≤1}(xj )|dxj |2

= δab(2π)k
k∏

j=1

Beta

(
m · 1 − εj

2
+ 1 + εj

2
+ a · εj , nj − m

)
︸ ︷︷ ︸

Ca

.

Corresponding kernel of orthogonal polynomials is given by

K(z,w) =√
ω(z)ω(w)

n−1∑
r=0

(zw)r

(2π)kCr

.

Hence by Fact 11 the eigenvalues of A form a determinantal point process with above kernel K(z,w) with respect to
Lebesgue measure on C. �
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6. Limiting spectral distributions

In this section we calculate the expected limiting spectral distribution of product of Ginibre and inverse of Ginibre
matrices, product of compatible rectangular matrices and product of truncated unitary matrices. For result on limit of
empirical spectral distribution of product of independent square matrices with independent entries, we refer the reader
to [11,18].

Theorem 19. Let A1,A2, . . . ,Ak be independent n × n random matrices with i.i.d. standard complex Gaussian
entries. Then the limiting expected empirical distribution of square radial part of eigenvalues of(

A1√
n

)ε1
(

A2√
n

)ε2

· · ·
(

Ak√
n

)εk

,

where each εi is either 1 or −1, is the same as the distribution of

Up

(
1

1 − U

)k−p

,

where U is a random variable distributed uniformly on [0,1] and p = #{εi : εi = 1}.

Proof. Let A = A
ε1
1 A

ε2
2 · · ·Aεk

k and p = #{εi : εi = 1}. We showed in Theorem 1 that the eigenvalues of A form a
determinantal point process with kernel

Kn(x, y) =√
ω(x)ω(y)

n−1∑
a=0

(xy)a

(2π)k(a!)p((n − a − 1)!)k−p
,

where ω(z) is given by

|dz|2ω(z) =
∫

x
ε1
1 ···xεk

k =z

e−∑k
j=1 |xj |2

k∏
j=1

|xj |(1−εi )(n−1)
k∏

j=1

|dxj |2.

Then the scaled one-point correlation function 1
n
Kn(z, z) gives the density of the expected empirical spectral distri-

bution of A where

Kn(z, z) = ω(z)

n−1∑
a=0

|z|2a

(2π)k(a!)p((n − a − 1)!)k−p
.

Let (Xn,1,Xn,2, . . . ,Xn,k) be random variables with joint probability density

1

n
e−∑k

j=1 |xj |2
k∏

j=1

|xj |(1−εj )(n−1)
n−1∑
a=0

|xε1
1 x

ε2
2 · · ·xεk

k |2a

(2π)k(a!)p((n − a − 1)!)k−p
.

Then 1
n
Kn(z, z) is the density of the random variable X

ε1
n,1X

ε2
n,2 · · ·Xεk

n,k . Now the density of expected empirical spectral
distribution of(

A1√
n

)ε1
(

A2√
n

)ε2

· · ·
(

Ak√
n

)εk

is the density of random variable(
Xn,1√

n

)ε1
(

Xn,2√
n

)ε2

· · ·
(

Xn,k√
n

)εk

.
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Since the joint probability density of (Xn,1,Xn,2, . . . ,Xn,k) is rotational invariant, we calculate the density only for
radial part of(

Xn,1√
n

)ε1
(

Xn,2√
n

)ε2

· · ·
(

Xn,k√
n

)εk

=: Zn.

Now we have

|Zn|2 =
( |Xn,1|2

n

)ε1
( |Xn,2|2

n

)ε2

· · ·
( |Xn,k|2

n

)εk

=
(

Rn,1

n

)ε1
(

Rn,2

n

)ε2

· · ·
(

Rn,k

n

)εk

, say.

The joint probability density of (Rn,1,Rn,2, . . . ,Rn,k) is proportional to

1

n
e−∑k

j=1 rn,j

k∏
j=1

|rn,j |(1−εj )(n−1)/2
n−1∑
a=0

(r
ε1
n,1r

ε2
n,2 · · · rεk

n,k)
a

(a!)p((n − a − 1)!)k−p

and the density f (r) of Rn,j is given by

f (r) = 1

n
e−r

n−1∑
a=0

ra

a! , 0 < r < ∞.

So the density of
Rn,j

n

e−nr
n−1∑
a=0

(nr)a

a! = P
[
Pois(nr) ≤ n − 1

]→
{

1 if 0 < r < 1,

0 otherwise,

as n → ∞, where Pois(λ) (λ > 0) is a discrete random variable with probability mass function

P
(
Pois(λ) = k

)= λke−λ

k! for k ≥ 0.

Hence we have

Rn,j

n

D→ U as n → ∞, (30)

where U is a random variable distributed uniformly on [0,1]. The joint density of Rn,j ,Rn,k is

1

n
e−(x+y)

n−1∑
a=0

(xy)a

a!a!

if both εj , εk are either +1 or −1. Then

E
[|Rn,j − Rn,k|2

]
=
∫ ∞

0

∫ ∞

0

1

n
e−(x+y)(x − y)2

n−1∑
a=0

(xy)a

a! dx dy

= 2

n

∫ ∞

0

∫ ∞

0
e−(x+y)

n−1∑
a=0

xa+2ya

a!a! dx dy − 2

n

∫ ∞

0

∫ ∞

0
e−(x+y)

n−1∑
a=0

xa+1ya+1

a!a! dx dy
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= 2

n

[
n−1∑
a=0

{
(a + 2)(a + 1) − (a + 1)2}]

= n + 1.

Therefore(
Rn,j

n
− Rn,k

n

)
L2→ 0 as n → ∞. (31)

If εj = 1, εk = −1, then the joint density of Rn,j ,Rn,k is

1

n
e−(x+y)

n−1∑
a=0

xayn−1−a

a!(n − 1 − a)! .

Therefore we have

E
[|Rn,j + Rn,k − n|2]
= 1

n

∫ ∞

0

∫ ∞

0
e−(x+y)(x + y − n)2

n−1∑
a=0

xay(n−a−1)

a!(n − a − 1)! dx dy

= 2

n

∫ ∞

0
e−x

n−1∑
a=0

xa+2

a! dx − 4
∫ ∞

0
e−x

n−1∑
a=0

xa+1

a! dx

+ 2

n

∫ ∞

0

∫ ∞

0
e−(x+y)

n−1∑
a=0

xa+1yn−a

a!(n − a − 1)! dx dy + n2

= 2

n

n−1∑
a=0

(a + 2)(a + 1) − 4
n−1∑
a=0

(a + 1) + 2

n

n−1∑
a=0

(a + 1)(n − a) + n2

= 2

n

n−1∑
a=0

(n + 2)(a + 1) − 4
n−1∑
a=0

(a + 1) + n2

= (n + 2)(n + 1) − 2n(n + 1) + n2 = n + 2

and hence(
Rn,j

n
+ Rn,k

n
− 1

)
L2→ 0 as n → ∞. (32)

Now combining (30), (31) and (32), we get

(
Rn,1

n

)ε1
(

Rn,2

n

)ε2

· · ·
(

Rn,k

n

)εk D→ Up

[
1

1 − U

]k−p

,

where p = #{εi : εi = 1}. �

Remark 20. If k = 1 and ε = 1, then it follows from Theorem 19 that the expected limiting spectral distribution of
properly scaled Ginibre matrix is well known circular law. If k = 2 with ε1 = −1, ε2 = 1, we get the expected limiting
spectral distribution of spherial ensemble.
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In the following theorem we describe the limiting distribution of the radial part of the eigenvalues of product
of rectangular matrices. Limit of empirical spectral distribution of product of independent rectangular matrices has
been derived in [5], but the limiting density is obtained in terms of M-transform. However, we have a simple explicit
expression in terms of uniform distribution for the limit.

Theorem 21. Let A1,A2, . . . ,Ak be independent rectangular matrices of dimension ni × ni+1 for i = 1,2, . . . , k,
with nk+1 = n1 = min{n1, n2, . . . , nk}, and with i.i.d. standard complex Gaussian entries. If

nj

n1
→ αj as n1 → ∞ for

j = 2,3, . . . , k, then the limiting expected empirical distribution of square radial part of eigenvalues of A1√
n

A2√
n

· · · Ak√
n

is the same as the distribution of following random variable

U(U − 1 + α2) · · · (U − 1 + αk),

where U is a uniform random variable on [0,1].

Proof. We have shown in Theorem 2 that the eigenvalues of A1A2 · · ·Ak form a determinantal point process with
kernel

Kn(x, y) =√
ω(x)ω(y)

n−1∑
a=0

(xy)a

(2π)k
∏k

j=1(nj − n1 + a)! ,

where ω(z) is the weight function, given by

|dz|2ω(z) =
∫

x1x2...xk=z

e−∑k
j=1 |xj |2

k∏
j=1

|xj |2(nj −n1)
k∏

j=1

|dxj |2.

Then the scaled one-point correlation function 1
n
Kn(z, z) gives the density of the expected empirical spectral distri-

bution of A1A2 · · ·Ak . Let n1 = n and (Xn,1,Xn,2, . . . ,Xn,k) be random variables with joint probability density

1

n
e−∑k

j=1 |xj |2
k∏

j=1

|xj |2(nj −n)

n−1∑
a=0

|x1x2 · · ·xk|2a

(2π)k
∏k

j=1(nj − n + a)! .

Then the density of (Xn,1Xn,2 · · ·Xn,k) is given by 1
n
Kn(z, z). Now the density of expected empirical spectral dis-

tribution of A1√
n

A2√
n

· · · Ak√
n

is the same as the density of the random variable Zn = Xn,1√
n

Xn,2√
n

· · · Xn,k√
n

. Clearly, the joint

probability density of (Xn,1,Xn,2, . . . ,Xn,k) is rotational invariant. So we calculate the density of square of radial part
of Zn. We have

|Zn|2 = |Xn,1|2
n

|Xn,2|2
n

· · · |Xn,k|2
n

= Rn,1

n

Rn,2

n
· · · Rn,k

n
, say.

The joint probability density of (Rn,1,Rn,2, . . . ,Rn,k) is

1

n
e−∑k

j=1 rj

k∏
j=1

r
(nj −n)

j

n−1∑
a=0

(r1r2 · · · rk)a∏k
j=1(nj − n + a)! .

Now by routine calculation it can be shown that

Rn,1

n

D→ U as n → ∞, (33)

E(Rn,1 − Rn,j ) = (n − nj ) for j = 2,3, . . . , k, (34)

E
[
(Rn,1 − Rn,j )

2]= (n − nj )
2 + nj + 1 for j = 2,3, . . . , k, (35)
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where U is a uniform random variable on [0,1]. By (34) and (35), we have

Rn,1

n
− Rn,j

n
− (1 − αj )

L2→ 0 for j = 2,3, . . . , k. (36)

Therefore by (33) and (36), we conclude that the limiting distribution of |Zn|2 is the same as the distribution of the
following random variable

U(U − 1 + α2) · · · (U − 1 + αk).

This completes proof of the theorem. �

In the following theorem we describe the limiting distribution of radial part of eigenvalues of product of truncated
unitary matrices.

Theorem 22. Let U1,U2, . . . ,Uk be k independent Haar distributed unitary matrices of dimension ni × ni for i =
1,2, . . . , k respectively and A1,A2, . . . ,Ak be m×m left uppermost blocks of U1,U2, . . . ,Uk respectively. If ni

m
→ αi

as m → ∞ for i = 1,2, . . . , k, then the limiting expected empirical distribution of square radial part of eigenvalues
of A

ε1
1 A

ε2
2 · · ·Aεk

k is the same as the distribution of following random variable

k∏
i=1

(
(1 − εi)/2 + εiU

αi − (1 + εi)/2 + εiU

)εi

,

where U is a random variable uniformly distributed on [0,1] and each εi is +1 or −1.

Proof. We have shown that the eigenvalues of A
ε1
1 A

ε2
2 · · ·Aεk

k form a determinantal point process with kernel

Km(x, y) =√
ω(x)ω(y)

m−1∑
a=0

(xy)a

(2π)kCa

,

where Ca =∏
{j : εj =1} B(a + 1, nj − m)

∏
{j : εj =−1} B(m − a,nj − m) and ω(z) is the weight function, given by

|dz|2ω(z) =
∫

x
ε1
1 x

ε2
2 ···xεk

k =z

k∏
j=1

(
1 − |xj |2

)(nj −m−1)|xj |(1−εj )(m−1)1|xj |≤1

k∏
j=1

|dxj |2.

Then the density of expected empirical spectral distribution of A
ε1
1 A

ε2
2 · · ·Aεk

k is given by 1
m
Km(z, z). Let

(Xm,1,Xm,2, . . . ,Xm,k) be random variables with joint probability density

1

m

k∏
j=1

(
1 − |xj |2

)(nj −m−1)|xj |(1−εj )(m−1)1|xj |≤1

m−1∑
a=0

|xε1
1 x

ε2
2 · · ·xεk

k |2a

(2π)kCa

.

Then it is easy to see that the density of Zm = X
ε1
m,1X

ε2
m,2 · · ·Xεk

m,k is also 1
m
Km(z, z). Clearly, the joint probability

density of (Xm,1,Xm,2, . . . ,Xm,k) is rotational invariant. So we calculate the density for square radial part of Zm. We
have

|Zm|2 = |Xm,1|2ε1 |Xm,2|2ε2 · · · |Xm,k|2εk = R
ε1
m,1R

ε2
m,2 · · ·Rεk

m,k, say.

Now the joint probability density of (Rm,1,Rm,2, . . . ,Rm,k) is

1

m

k∏
j=1

(1 − rj )
(nj −m−1)r

((1−εj )/2)(m−1)

j 10<rj ≤1

m−1∑
a=0

|rε1
1 r

ε2
2 · · · rεk

k |a
Ca

.
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For εi = 1, density of Rm,i for i = 1,2, . . . ,m is given by

1

m

m−1∑
a=0

(ni − m + a)!
a!(ni − m − 1)! (1 − r)(ni−m−1)ra.

Therefore for any � ∈ N, we have

E
[
R�

m,i

] =
∫ ∞

0

1

m

m−1∑
a=0

(ni − m + a)!
a!(ni − m − 1)! (1 − r)(ni−m−1)r�+a

= 1

m

m−1∑
a=0

(ni − m + a)!
a!(ni − m − 1)!

(� + a)!(n − m − 1)!
(n − m + � + r)!

= 1

m

m−1∑
a=0

(a + �)(a + � − 1) · · · (r + 1)

(ni − m + a + �)(ni − m + a + � − 1) · · · (ni − m + a + 1)

→
∫ 1

0

x�

(αi − 1 + x)�
dx as m → ∞

= E
[(

U

αi − 1 + U

)�]
, (37)

where U is uniform random variable on [0,1]. By similar way it can be shown that if εi = −1, then for any � ∈ N,

E
[
R�

m,i

]→ E
[(

1 − U

αi − U

)�]
as m → ∞. (38)

If εi = 1 and εj = 1, then it is not hard to see that

E
[

(αi − 1)Rm,i

1 − Rm,i

− (αj − 1)Rm,j

1 − Rm,j

]2

→ 0 as m → ∞, (39)

and if εi = +1 and εj = −1, then

E
[

(αi − 1)Rm,i

1 − Rm,i

+ (αj − 1)Rm,j

1 − Rm,j

− 1

]2

→ 0 as m → ∞. (40)

Now by (37), (38), (39) and (40), it follows that the limiting distribution of |Zm|2 is the same as the distribution of the
random variable

k∏
i=1

(
(1 − εi)/2 + εiU

αi − (1 + εi)/2 + εiU

)εi

and this completes the proof. �

Appendix

In this appendix we prove the lemmas stated in Sections 2 and 5. In Appendix A.1, we keep the proofs of Lemmas 4
and 7 stated in 2. In Appendix A.2, we prove the lemmas used in the proof of Theorem 3 in Section 5.
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A.1. Proofs of Lemmas 4 and 7

Proof of Lemma 4. Recall that for any m × n complex matrix M of rank m can be written as

M = SU∗, (41)

where S is a m × m upper triangular matrix and U∗ has orthonormal rows with non-negative real diagonal entries. If
all diagonal entries of U are positive, then this decomposition is unique. Now from (41), we get

dM = S
(
dU∗)+ (dS)U∗.

Let V be such that [U V ] is n × n unitary matrix.

Λ := (dM)[U V ] = (
S
(
dU∗)+ (dS)U∗)[U V ]

= S
(
dU∗)[U V ] + dS[I 0]

= SΩ + [dS 0], (42)

where Ω := (dU∗)[U V ] = (ωi,j ) and Λ = (λi,j ) are m × n matrices of one forms. Also observe that, the leftmost
m × m block of Ω is skew-Hermitian.

Now we want to write the Lebesgue measure on M in terms of Lebesgue measure on S and Haar measure on U .
For this we must find the Jacobian determinant for the change of variables from {dMi,j ,dMi,j ,1 ≤ i ≤ m,1 ≤ j ≤ n}
to {dSi,j ,1 ≤ i, j ≤ m} and Ω . Since for any fixed unitary matrix W , the transformation M → MW is unitary on the
set of m × n complex matrices, we have

|DM| =
∧
i,j

(λi,j ∧ λi,j ). (43)

Thus we just have to find the Jacobian determinant for the change of variables from Λ to Ω,dS and their conjugates.
We write (42) in the following way

λi,j = dSi,j +
m∑

k=1

Si,kωk,j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Si,iωi,j + [∑m
k=i+1 Si,kωk,j ] if j < i ≤ m,

dSi,i + Si,iωi,i + [∑m
k=i+1 Si,kωk,j ] if i = j,

dSi,j + [∑m
k=i Si,kωk,j ] if i < j ≤ m,

Si,iωi,j + [∑m
k=i+1 Si,kωk,j ] if j > m.

(44)

Now we arrange {λi,j , λi,j } in the ascending order given by the following relation

(i, j) ≤ (r, s) if i > r or if i = r and j ≤ s.

Also observe that the expressions inside square brackets in (44) involve only those one-forms that have already ap-
peared before in the given ordering of one-forms {λi,j , λi,j }. Recall that the leftmost m × m block of Ω is skew-
Hermitian, that is, ωi,j = −ωj,i for i, j ≤ m. Now taking wedge products of λi,j in the above mentioned order and
using the transformation rules given in (44), and with the help of last two observations, we get that

∧
i,j

|λi,j |2 =
m∏

i=1

|Si,i |2(n−m+i−1)
∧
i

|dSi,i + Si,iωi,i |2
∧
i<j

|dSi,j |2
∧
i<j

|ωi,j |2

=
m∏

i=1

|Si,i |2(n−m+i−1)
∧
i

|dSi,i |2
∧
i<j

|dSi,j |2
∧
i<j

|ωi,j |2. (45)
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We arrive at the last step in (45) by observing that ωk,k

∧
i<j |ωi,j |2 = 0 for any k ≤ m, because {Un×m: U∗U = I,

Ui,i > 0} is a smooth manifold of dimension (2nm − m2 − m) and its complement in {Un×m: U∗U = I,Ui,i ≥ 0} is
of measure zero and ωk,k

∧
i<j |ωi,j |2 is an (2nm − m2 − m + 1)-form.

Finally, using (43) and (45) we arrive at the following Jacobian determinant formula

|DM| =
m∏

i=1

|Si,i |2(n−m+i)−1|DS|∣∣dH(u)
∣∣.

This completes the proof of the lemma. �

Proof of Lemma 7. Let us recall from Proposition 5 that given k rectangular matrices A1,A2, . . . ,Ak , there exist
upper triangular square matrices S1, S2, . . . , Sk with diagonal entries of S1S2 · · ·Sk in decreasing lexicographic order,
and [Ui Vi], i = 1,2, . . . , k unitary matrices with Ui ’s having non-negative real diagonal entries, and B2,B3, . . . ,Bk

rectangular matrices with suitable dimensions, such that

A1 = U1S1U
∗
2 ,

A2 = U2S2U
∗
3 + V2B2,

...

Ak−1 = Uk−1Sk−1U
∗
k + Vk−1Bk−1,

Ak = UkSkU
∗
1 + VkBk.

Now, we apply the following transformations step by step to arrive at Jacobian determinant formula (13) for general-
ized Schur decomposition.

Step 1. We first transform

(A1,A2, . . . ,Ak) → (X1,X2, . . . ,Xk),

where Xi = Ai for i = 1,2, . . . , k − 1 and

Xk =
[
A1A2 · · ·Ak−1

V ∗
k

]
Ak,

where V ∗
k is (nk − n1) × nk matrix with orthonormal rows. Also the rows of V ∗

k are orthogonal to rows of
A1A2 · · ·Ak−1. It is easy to see that the Jacobian determinant formula for this transformation is given by

k∏
i=1

|DAi | = det
(
(A1A2 · · ·Ak−1)(A1A2 · · ·Ak−1)

∗)−n1
k∏

i=1

|DXi |. (46)

Step 2. By applying Schur-decomposition to upper n1 × n1 block of Xk we get

Xk =
[
U1T U∗

1
Bk

]
,

where Bk = V ∗
k Ak . Using (8), the Lebesgue measure on Xk can be written in terms of U1, T ,Bk as follows

|DXk| =
∣∣Δ(T )

∣∣2∣∣dH(U1)
∣∣|DT ||DBk|, (47)

where |dH(U1)| is Haar measure on U(n1)/U(1)n1 , |DT | is the Lebesgue measure on T and

Δ(T ) =
∏

1≤i<j≤n1

(Ti,i − Tj,j ).
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If we denote the eigenvalues of A1A2 · · ·Ak by z1, z2, . . . , zn1 , then Δ(T ) is basically equal to

Δ(T ) =
∏

1≤i<j≤n1

(Ti,i − Tj,j ) =
∏

1≤i<j≤n1

(zi − zj ).

Step 3. Now we apply the following transformation

X1 → U∗
1 X1 = S1U

∗
2 ,

where U1 is as in Step 2 and second part of above equation is by RQ-decomposition of U∗
1 X1. U∗

2 is n1 × n2 matrix
with orthonormal rows and non-negative real diagonal entries and S1 is n1 ×n1 upper triangular matrix. We shall omit
matrices X1 for which U∗

1 X1 is not of full rank (this set is of measure zero). Now using (10), the Lebesgue measure
on X1 can be written in terms of U2, S1 as follows

|DX1| = J (S1)
∣∣dH(U2)

∣∣|DS1|, (48)

where

J (S1) =
n1∏
i=1

∣∣S1(i, i)
∣∣2(n2−n1+i−1)

.

Step i + 2 for i = 2,3, . . . , k − 1. At (i + 2)th step we apply the following transformation

Xi →
[
U∗

i

V ∗
i

]
Xi =

[
SiU

∗
i+1

Bi

]
,

where Ui is as in Step i + 1 and [Ui Vi] is an unitary matrix. The second part of the above equation is obtained by
RQ-decomposition of U∗

i Xi , where U∗
i+1 is n1 × ni+1 matrix with orthonormal rows and non-negative real diagonal

entries, and Si is n1 × n1 upper triangular matrix. Also note that Bi = V ∗
i Xi = V ∗

i Ai for 2 ≤ i ≤ k − 1. We shall omit
matrices Xi for which U∗

i Xi is not of full rank (this set is of measure zero). Now using (10), the Lebesgue measure
on Xi can be written in terms of Ui+1, Si,Bi as

|DXi | = J (Si)
∣∣dH(Ui+1)

∣∣|DSi ||DBi |, (49)

where

J (Si) =
n1∏

j=1

∣∣Si(j, j)
∣∣2(ni+1−n1+j−1)

.

Step k + 2. Now we transform T to Sk as follows

T → Sk := (S1S2 · · ·Sk−1)
−1T .

The Jacobian determinant formula for this transformation is given by

|DT | =
k−1∏
i=1

L(Si)|DSk|, (50)

where

L(Si) =
n1∏

j=1

∣∣Si(j, j)
∣∣2(n1−j+1)

.
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Applying the above transformations in the given order, we can write Lebesgue measure on (A1,A2, . . . ,Ak) in
terms of U1,U2, . . . ,Uk, S1, S2, . . . , Sk,B2,B3, . . . ,Bk . Also observe that

A1A2 · · ·Ak−1 = U1S1S2 · · ·Sk−1U
∗
k , U∗

k Ak = SkU
∗
1 .

So

det(A1A2 · · ·Ak−1)(A1A2 · · ·Ak−1)
∗ = det(S1S2 · · ·Sk−1)

2. (51)

Now combining (46) to (51), we get that

k∏
i=1

|DAi | = ∣∣Δ(T )
∣∣2 k−1∏

i=1

J (Si)L(Si)
∣∣det(Si)

∣∣−2n1
k∏

i=1

∣∣dH(Ui)
∣∣|DSi |

k∏
i=2

|DBi |

=
∏

1≤i<j≤n1

|zi − zj |2
k∏

i=1

∣∣det(Si)
∣∣2(ni+1−n1)

∣∣dH(Ui)
∣∣|DSi ||DBi |, (52)

where z1, z2, . . . , zn1 are the eigenvalues of A1A2 · · ·Ak . �

A.2. Proofs of Lemmas 16, 17 and 18

In this subsection we prove the Lemmas 16, 17 and 18 stated in Section 5. To prove these lemmas we compute
Jacobian determinant formula for QR-decomposition of matrices in Mn and Nm,n.

Jacobian computation for QR-decomposition in Mn. QR-decomposition can be thought of as polar decomposition
for matrices. Any matrix M ∈ Mn can be written as

M = QR,

where Q is unitary matrix and R is upper triangular matrix with non-negative diagonal entries. This can be done by
applying Gram–Schmidt orthogonalization process to the columns of M from left to right. Then

Mj =
j∑

i=1

QiRi,j ,

where Mj and Qj are j th columns of M and Q respectively. We would like to write Lebesgue measure on M in terms
of Haar measure on Q and Lebesgue measure on R. Since M1 = R1,1Q1, so Lebesgue measure on M1 is given by

|DM1| = R2n−1
1,1 dR1,1 dσTn(Q1),

where dσTn denotes volume measure on unit sphere T
n in C

n. Once Q1 is fixed, any new column M2 can be written
as

M2 = Q1R1,2 + Q2R2,2,

where Q2 is unit vector orthogonal to Q1 and R2,2 ≥ 0. By unitary invariance of Lebesgue measure, Lebesgue measure
on M2 can be written as

|DM2| = R2n−3
2,2 dR2,2|dR1,2|2 dσ

Tn∩Q⊥
1
(Q2),

where Q⊥
1 is the sub-space which is perpendicular to Q1 and dσ

Tn∩Q⊥
1

denotes volume measure on manifold T
n ∩ Q⊥

1 .
Continuing this way, Lebesgue measure on Mi ,

|DMi | = R
2(n−i+1)−1
i,i dRi,i |dR1,i |2|dR2,i |2 · · · |dRi−1,i |2 dσTn∩{Q1,Q2,...,Qi−1}⊥(Qi).
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Therefore we have

|DM| =
n∏

i=1

|DMi |

=
[

n∏
i=1

R
2(n−i+1)−1
i,i dRi,i

][∏
i<j

|dRi,j |2
][ n∏

i=1

dσTn∩{Q1,Q2,...,Qi−1}⊥(Qi)

]
.

We can see that measure on Q given by[
n∏

i=1

dσTn∩{Q1,Q2,...,Qi−1}⊥(Qi)

]

is Haar measure on unitary group U(n). So, finally we have

|DM| =
[

n∏
i=1

R
2(n−i+1)−1
i,i dRi,i

][∏
i<j

|dRi,j |2
]∣∣dHU(n)(Q)

∣∣. (53)

Jacobian computation for QR-decomposition in Nm,n. First recall from (25) that Nm,n = {Y ∈ Mn: Yi,j = 0,

1 ≤ j < i ≤ m} and Vm,n =Nm,n ∩ U(n). Any matrix M ∈Nm,n can be written as

M = QR,

where Q is unitary matrix in Vm,n and R is upper triangular matrix with non-negative diagonal entries. Then

Mj =
j∑

i=1

QiRi,j ,

where Mj and Qj are j th columns of M and Q respectively. We would like to write Lebesgue measure on M in terms
of Haar measure on Q and Lebesgue measure on R.

Note M1 = R1,1Q1 where Q1 is unit vector orthogonal to e2, e3, . . . , em, where e1, e2, . . . , en are standard basis
vectors in C

n. So Lebesgue measure on M1, |DM1| = R
2(n−m+1)−1
1,1 dR1,1 dσTn∩{e2,...,em}⊥(Q1) and dσTn∩{e2,...,em}⊥

denotes volume measure on manifold T
n ∩ {e2, . . . , em}⊥ in C

n. Once Q1 is fixed, second column M2 can be written
as

M2 = Q1R1,2 + Q2R2,2,

where Q2 is unit vector orthogonal to Q1, e3, . . . , em, and R2,2 ≥ 0. By unitary invariance of Lebesgue measure,
Lebesgue measure on M2 can be written as

|DM2| = R
2(n−m+1)−1
2,2 dR2,2|dR1,2|2 dσTn∩{Q1,e3,...,em}⊥(Q2).

Continuing this way, Lebesgue measure on Mi for i < m is given by

|DMi | = R
2(n−m+1)−1
i,i dRi,i |dR1,i |2|dR2,i |2 · · · |dRi−1,i |2 dσTn∩{Q1,...,Qi−1,ei+1,...,em}⊥(Qi)

and for i ≥ m is given by

|DMi | = R
2(n−i+1)−1
i,i dRi,i |dR1,i |2|dR2,i |2 · · · |dRi−1,i |2 dσTn∩{Q1,...,Qi−1}⊥(Qi).
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Therefore

|DM| =
n∏

i=1

|DMi |

=
[

m−1∏
i=1

R
2(n−m+1)−1
i,i dRi,i

][
n∏

i=m

R
2(n−i+1)−1
i,i dRi,i

][∏
i<j

|dRi,j |2
]

×
[

m−1∏
i=1

dσTn∩{Q1,...,Qi−1,ei+1,...,em}⊥(Qi)

][
n∏

i=m

dσTn∩{Q1,Q2,...,Qi−1}⊥(Qi)

]
.

We can see that measure given by[
m−1∏
i=1

dσTn∩{Q1,...,Qi−1,ei+1,...,em}⊥(Qi)

][
n∏

i=m

dσTn∩{Q1,Q2,...,Qi−1}⊥(Qi)

]

is Haar measure on Vm,n. So, finally we have

|DM| =
[

m−1∏
i=1

R
2(n−m+1)−1
i,i dRi,i

][
n∏

i=m

R
2(n−i+1)−1
i,i dRi,i

]

×
[∏

i<j

|dRi,j |2
]∣∣dHV (Q)

∣∣. (54)

Proof of Lemma 16. Any n × n complex matrix X of rank n admits QR-decomposition

X = US,

where U is unitary matrix, S is upper triangular matrix with positive real diagonal entries. Then by (53),

|DX| = J (S)
∣∣dHU(n)(U)

∣∣|DS|,
where J (S) is the Jacobian determinant of transformation due to QR-decomposition and is given by

J (S) =
n∏

i=1

|Si,i |2(n−i+1)−1.

So we get∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| =
∫
‖S∗S−I‖<ε

f (US)J (S)|dHU(n)(U)||DS|∫
‖S∗S−I‖<ε

J (S)|dHU(n)(U)||DS| .

Since f is uniformly continuous on the region {X: ‖X∗X − I‖ < ε}, given any r ∈N, there exists εr > 0 such that

∣∣f (US) − f (U)
∣∣< 1

2r
for all

∥∥S∗S − I
∥∥< εr .

Therefore∣∣∣∣
∫
‖S∗S−I‖<εr

f (US)J (S)|dHU(n)(U)||DS|∫
‖S∗S−I‖<εr

J (S)|dHU(n)(U)||DS| −
∫

f (U)
∣∣dHU(n)(U)

∣∣∣∣∣∣< 1

2r
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and hence

lim
ε→0

∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| =
∫

f (U)
∣∣dHU(n)(U)

∣∣.
This completes the proof. �

Proof of Lemma 17. Let X ∈Nm,n be of full rank, then by QR-decomposition, we have

X = V S, V ∈ V := Nm,n ∩ U(n),

where V is n × n unitary matrix whose (i, j)th entry is zero for 1 ≤ j < i ≤ m and S is upper triangular matrix with
positive real diagonal entries. Then by (54)

dX = Jm(S)
∣∣dHV (V )

∣∣|DS|,
where

Jm(S) =
m∏

i=1

|Si,i |2(n−m)+1
n∏

i=m+1

|Si,i |2(n−i)+1.

Using this decomposition we get∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| =
∫
‖S∗S−I‖<ε

f (V S)Jm(S)|dHV (V )||DS|∫
‖S∗S−I‖<ε

Jm(S)|dHV (V )||DS| .

Since f is uniformly continuous on region {X: ‖X∗X − I‖ < ε}, given any r ∈ N, there exists εr > 0 such that

∣∣f (V S) − f (V )
∣∣< 1

2r
for all

∥∥S∗S − I
∥∥< εr .

Therefore∣∣∣∣
∫
‖S∗S−I‖<εr

f (V S)Jm(S)|dHV (V )||DS|∫
‖S∗S−I‖<εr

Jm(S)|dHV (V )||DS| −
∫

f (V )
∣∣dHV (V )

∣∣∣∣∣∣< 1

2r

and hence

lim
ε→0

∫
‖X∗X−I‖<ε

f (X)|DX|∫
‖X∗X−I‖<ε

|DX| =
∫

f (V )
∣∣dHV (V )

∣∣.
This completes the proof of the lemma. �

Now we shall prove Lemma 18. The key ingredient of the proof is Co-area formula on manifold. Here we state the
Co-area formula without proof. Before stating the Co-area formula we need to introduce some notation. Fix a smooth
map f :M → N from an manifold of dimension n to a manifold of dimension k. We denote derivative of f at p ∈ M

by

Dp(f ) :Tp(M) → Tf (p)N.

We denote

Mreg := set of regular points of f,

J
(
Dp(f )

) := generalized determinant of Dp(f ),

ρM := volume measure on M.
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Lemma 23 (Co-area formula). With notation and setting as above, let φ be any non-negative Borel-measurable
function on M . Then

(1) The function p �→ J (Dp(f )) on M is Borel-measurable.
(2) The function q �→ ∫

φ(p)dρMreg∩f −1(q)(p) on N is Borel-measurable.
(3) The integral formula:∫

M

φ(p)J
(
Dp(f )

)
dρM(p) =

∫
N

(∫
φ(p)dρMreg∩f −1(q)(p)

)
dρN(q) (55)

holds.

For the proof of Co-area formula see [3] (p. 442).

Proof of Lemma 18. Recall from (26), that V := Vm,n =Nm,n ∩ U(n). Define

V0 = {
Vn×m: V ∗V = I,Vij = 0 ∀1 ≤ j < i ≤ m

}
and g :V → V0 be projection map such that g(V ) is a matrix of dimension n × m by removing last n − m columns
from V . Now by Co-area formula (55), we have∫

f (z)
∣∣dHV (V )

∣∣= ∫ (∫
f (z)

∣∣dHg−1(V0)
(V )

∣∣)∣∣dHV0(V0)
∣∣. (56)

For a fixed V0 ∈ V0 (so z1, z2, . . . , zm are also fixed), g−1(V0) is a sub-manifold of V . It is isometric to the set of
(n − m) tuples of orthonormal unit vectors in C

n which are orthogonal to m columns of V0. So g−1(V0) is isometric
to the manifold U(n − m). Jacobian in the Co-area formula for projection maps is equal to one. So from (56), we get

E
[
f (Z)

]= C

∫
f (z)

∣∣dHV0(V0)
∣∣,

where zi = V0(i, i). Note that V0 is a manifold of dimension 2nm − 2m2 + m in R
2nm−m2+m and its normalized

volume measure is denoted by HV0 . Similarly we define

Vi = {
Vn×m−i : V ∗V = I,Vs,t = 0 ∀1 ≤ s < t ≤ m

}
and denote its normalized volume measure by HVi

. Here also we denote Vi(�, �) by z�, where Vi ∈ Vi .
Let g0 :V0 → V1 be projection map such that g0(V0) is a matrix of dimension n× (m−1) by removing last column

from V0. Again by Co-area formula∫
f (z)

∣∣dHV0(V0)
∣∣= ∫ (∫

f (z)
∣∣dH

g−1
0 (V1)

(V )
∣∣)∣∣dHV1(V1)

∣∣.
For a fixed V1 ∈ V1 (so z1, z2, . . . , zm−1 are also fixed), g−1

0 (V1) is a sub-manifold of V0. It is isometric to the set
of unit vectors in C

n which are orthogonal to m − 1 columns of V1 whose mth coordinates are zero. So g−1
0 (V1) is

isometric to the manifold

T1 =
{

(zm, a1, a2, . . . , an−m) ∈ C
n−m+1: |zm|2 +

n−m∑
i=1

|ai |2 = 1

}
.

When integrating f (z) with respect to H
g−1

0 (V1)
, because of zm being the only Z variable involved, we get

∫
f (z)

∣∣dHV0(V0)
∣∣= ∫

f (z)|dHT1 |
∣∣dHV1(V1)

∣∣.
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Now, by integrating out a1, a2, . . . , an−m, we get∫
f (z)

∣∣dHV0(V0)
∣∣= C

∫
f (z)

(
1 − |zm|2)n−m−11{|zm|≤1}(zm)

∣∣dHV1(V1)
∣∣|dzm|2. (57)

Again by applying Co-area formula on the right hand side of (57) and using similar argument as above, we get that

E
[
f (Z)

]= C

∫
f (z)

m∏
�=m−1

(
1 − |z�|2

)n−m−11{|z�|≤1}(z�)
∣∣dHV2(V2)

∣∣ m∏
�=m−1

|dz�|2.

Thus by consecutive application of Co-area formula i times, we get

E
[
f (Z)

]= C

∫
f (z)

m∏
�=m−i+1

(
1 − |z�|2

)n−m−11{|z�|≤1}(z�)
∣∣dHVi

(Vi)
∣∣ m∏
�=m−i+1

|dz�|2.

Proceeding this way, finally we get

Ef (Z) = C

∫
f (z)

m∏
�=1

(
1 − |z�|2

)n−m−11{|z�|≤1}(z�)

m∏
�=1

|dz�|2

and this completes the proof. �
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