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Abstract. We study a class of piecewise deterministic Markov processes with state space R
d × E where E is a finite set. The

continuous component evolves according to a smooth vector field that is switched at the jump times of the discrete coordinate.
The jump rates may depend on the whole position of the process. Working under the general assumption that the process stays
in a compact set, we detail a possible construction of the process and characterize its support, in terms of the solutions set of a
differential inclusion. We establish results on the long time behaviour of the process, in relation to a certain set of accessible points,
which is shown to be strongly linked to the support of invariant measures. Under Hörmander-type bracket conditions, we prove that
there exists a unique invariant measure and that the processes converges to equilibrium in total variation. Finally we give examples
where the bracket condition does not hold, and where there may be one or many invariant measures, depending on the jump rates
between the flows.

Résumé. Nous étudions une classe de processus de Markov déterministes par morceaux, sur espace d’états R
d × E où E est

un ensemble fini. La composante continue du processus évolue suivant le flot d’un champ de vecteur, qui change lorsque la
composante discrète saute. Les taux de saut peuvent dépendre des deux composantes. Sous l’hypothèse que le processus reste
dans un ensemble compact, nous détaillons une construction possible et caractérisons son support en termes de solution d’une
inclusion différentielle. Nous étudions ensuite le comportement en temps long, en faisant apparaître un certain ensemble de points
accessibles, qui se trouve être fortement lié au support des mesures invariantes. Sous des conditions de type Hörmander sur les
crochets de Lie entre les champs de vecteurs, nous montrons qu’il existe une unique mesure invariante vers laquelle le processus
converge en variation totale. Nous donnons enfin des exemples où la condition d’unicité n’est pas vérifiée, et où le nombre de
mesures invariantes dépend des taux de saut entre les flots.
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1. Introduction

Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many applied areas (molecular
biology [27], storage modelling [6], Internet traffic [14,17,18], neuronal activity [7,25], . . . ). Roughly speaking, a
Markov process is a PDMP if its randomness is only given by the jump mechanism: in particular, it admits no diffusive
dynamics. This huge class of processes has been introduced by Davis [10]. See [11,19] for a general presentation.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/14-AIHP619
mailto:michel.benaim@unine.ch
mailto:stephane.leborgne@univ-rennes1.fr
mailto:florent.malrieu@univ-tours.fr
mailto:pierre-andre.zitt@univ-mlv.fr


Qualitative properties of certain PDMP 1041

In the present paper, we deal with an interesting subclass of the PDMPs that plays a role in molecular biology
[7,27] (see also [29] for other motivations). We consider a PDMP evolving on R

d × E, where d ≥ 1 and E is a finite
set, as follows: the first coordinate moves continuously on R

d according to a smooth vector field that depends on
the second coordinate, whereas the second coordinate jumps with a rate depending on the first one. Of course, most
of the results in the present paper should extend to smooth manifolds. This class of Markov processes is reminiscent
of the so-called iterated random functions in the discrete time setting (see [12] for a good review of this topic).

We are interested in the long time qualitative behaviour of these processes. A recent paper by Bakhtin and Hurth
[2] considers the particular situation where the jump rates are constant and prove the beautiful result that, under
a Hörmander-type condition, if there exists an invariant measure for the process, then it is unique and absolutely
continuous with respect to the “Lebesgue” measure on R

d × E. Here we consider a more general situation and focus
also on the convergence to equilibrium. We also provide a basic proof of the main result in [2].

Let us define our process more precisely. Let E be a finite set, and for any i ∈ E, F i :Rd �→R
d be a smooth vector

field. We assume throughout that each F i is bounded and we denote by Csp an upper bound for the “speed” of the
deterministic dynamics:

sup
x∈Rd ,i∈E

∥∥F i(x)
∥∥≤ Csp < ∞.

We let Φi = {Φi
t } denote the flow induced by F i . Recall that

t �→ Φi
t (x) = Φi(t, x)

is the solution to the Cauchy problem ẋ = F i(x) with initial condition x(0) = x. Moreover, we assume that there
exists a compact set M ⊂R

d that is positively invariant under each Φi , meaning that:

∀i ∈ E,∀t ≥ 0, Φi
t (M) ⊂ M. (1)

We consider here a continuous time Markov process (Zt = (Xt , Yt )) living on M × E whose infinitesimal generator
acts on functions

g :M × E → R,

(x, i) �→ g(x, i) = gi(x),

smooth1 in x, according to the formula

Lg(x, i) = 〈
F i(x),∇gi(x)

〉+ ∑
j∈E

λ(x, i, j)
(
gj (x) − gi(x)

)
, (2)

where

(i) x �→ λ(x, i, j) is continuous;
(ii) λ(x, i, j) ≥ 0 for i �= j and λ(x, i, i) = 0;

(iii) for each x ∈ M , the matrix (λ(x, i, j))ij is irreducible.

The process is explicitly constructed in Section 2 and some of its basic properties (dynamics, invariant and em-
pirical occupation probabilities) are established. In Section 3.1 we describe (Theorem 3.4) the support of the law of
the process in terms of the solutions set of a differential inclusion induced by the collection {F i : i ∈ E}. Section 3.2
introduces the accessible set which is a natural candidate to support invariant probabilities. We show (Proposition 3.9)
that this set is compact, connected, strongly positively invariant and invariant under the differential inclusion induced
by {F i : i ∈ E}. Finally, we prove that, if the process has a unique invariant probability measure, its support is charac-
terized in terms of the accessible set.

1Meaning that gi is the restriction to M of a smooth function on R
d .
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Section 4 contains the main results of the present paper. We begin by a slight improvement of the regularity results
of [2]: under Hörmander-like bracket conditions, the law of the process after a large enough number of jumps or at
a sufficiently large time has an absolutely continuous component with respect to the Lebesgue measure on R

d × E.
Moreover, this component may be chosen uniformly with respect to the initial distribution. The proofs of these results
are postponed to Sections 6 and 7. We use these estimates in Section 4.2 to establish the exponential ergodicity (in the
sense of the total variation distance) of the process under study. In Section 5, we show that our assumptions are sharp
thanks to several examples. In particular, we stress that, when the Hörmander condition is violated, the uniqueness of
the invariant measure may depend on the jump mechanism between flows, and not only on the flows themselves.

Remark 1.1 (Quantitative results). In the present paper, we essentially deal with qualitative properties of the asymp-
totic behavior for a large class of PDMPs. Under more stringent assumptions, [4] gives an explicit rate of convergence
in Wasserstein distance, via a coupling argument.

Remark 1.2 (Compact state space). The main results in the present paper are still valid even if the state space is no
longer compact provided that the excursions out of some compact sets are suitably controlled (say with a Lyapunov
function). Nevertheless, as shown in [5], the stability of Markov processes driven by an infinitesimal generator as
(2) may depend on the jump rates. As a consequence, it is difficult to establish, in our general framework, sufficient
conditions for the stability of the process under study without the invariance assumption (1); results in this direction
may however be found in the recent [8].

2. Construction and basic properties

In this section we explain how to construct explicitly the process (Zt )t≥0 driven by (2). Standard references for the
construction and properties of more general PDMPs are the monographs [11] and [19]. In our case the compactness
allows a nice construction via a discrete process whose jump times follow an homogeneous Poisson process, similar
to the classical “thinning” method for simulating nonhomogeneous Poisson processes (see [22,28]).

2.1. Construction

Since M is compact and the maps λ(·, i, j) are continuous, there exists λ ∈R+ such that

max
x∈M,i∈E

∑
j∈E,j �=i

λ(x, i, j) < λ.

Let us fix such a λ, and let

Q(x, i, j) = λ(x, i, j)

λ
, for i �= j and Q(x, i, i) = 1 −

∑
j �=i

Q(x, i, j) > 0.

Note that Q(x) = (Q(x, i, j))i,j∈E is an irreducible aperiodic Markov transition matrix and that (2) can be rewritten
as

Lg = Ag + λ(Qg − g),

where

Ag(x, i) = 〈
F i(x),∇gi(x)

〉
and Qg(x, i) =

∑
j∈E

Q(x, i, j)gj (x). (3)

Let us first construct a discrete time Markov chain (Z̃n)n≥0. Let (Nt )t≥0 be a homogeneous Poisson with intensity λ;
denote by (Tn)n≥0 its jump times and (Un)n≥1 its interarrival times. Let Z̃0 ∈ M ×E be a random variable independent
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of (Nt )t≥0. Define (Z̃n)n = (X̃n, Ỹn)n on M × E recursively by:

X̃n+1 = ΦỸn(Un+1, X̃n),

P[Ỹn+1 = j |X̃n+1, Ỹn = i] = Q(X̃n+1, i, j).

Now define (Zt )t≥0 via interpolation by setting

∀t ∈ [Tn,Tn+1), Zt = (
ΦỸn(t − Tn, X̃n), Ỹn

)
. (4)

The memoryless property of exponential random variables makes (Zt )t≥0 a continuous time càdlàg Markov process.
We let P = (Pt )t≥0 denote the semigroup induced by (Zt )t≥0. Denoting by C0 (resp. C1) the set of real valued
functions f :M × E → R that are continuous (resp. continuously differentiable) in the first variable, we have the
following result.

Proposition 2.1. The infinitesimal generator of the semigroup P = (Pt )t≥0 is the operator L given by (2). Moreover,
Pt is Feller, meaning that it maps C0 into itself and, for f ∈ C0, limt→0 ‖Ptf − f ‖ = 0.

The transition operator P̃ of the Markov chain Z̃ also maps C0 to itself, and if Kt and K̃ are defined by

Ktg(x, i) = g
(
Φi

t (x), i
)

and K̃f =
∫ ∞

0
λe−λtKtf dt, (5)

then P̃ can be written as:

P̃ g(x, i) = E
[
g(Z̃1)|Z0 = (x, i)

]=
∫ ∞

0
KtQg(x, i)λe−λt dt

= K̃Qg(x, i). (6)

Proof. For each t ≥ 0, Pt acts on bounded measurable maps g :M × E → R according to the formula

Ptg(x, i) = E
[
g(Zt )|Z0 = (x, i)

]
.

For t ≥ 0 let Jt = KtQ. It follows from (4) that

Ptg =
∑
n≥0

E[1{Nt=n}JU1 ◦ · · · ◦ JUn ◦ Kt−Tng]. (7)

By Lebesgue continuity theorem and (7), Ptg ∈ C0 whenever g ∈ C0. Moreover, setting apart the first two terms in
(7) leads to

Ptg = e−λtKtg + λe−λt

∫ t

0
KuQKt−ug du + R(g, t), (8)

where |R(g, t)| ≤ ‖g‖P[Nt > 1] = ‖g‖(1 − e−λt (1 + λt)). Therefore limt→0 ‖Ptg − g‖ = 0.
The infinitesimal generator of (Kt ) is the operator A defined by (3). Thus 1

t
(Ktg − g) → Ag, therefore, by (8),

Ptg − g

t
−−−→
t→0

Ag − λg + λQg,

and the result on (Pt ) follows. The expression (6) of P̃ is a consequence of the definition of the chain. From (6) one
can deduce that P̃ is also Feller. �

Remark 2.2 (Discrete chains and PDMPs). The chain Z̃ records all jumps of the discrete part Y of the PDMP Z,
but, since Q(x, i, i) > 0, Z̃ also contains “phantom jumps” that cannot be seen directly on the trajectories of Z.
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Other slightly different discrete chains may crop up in the study of PDMPs. The most natural one is the process
observed at (true) jump times. In another direction, the chain (Θn)n∈N introduced in [9] corresponds (in our setting) to
the addition of phantom jumps at rate 1. For this chain (Θn), the authors prove (in a more general setting) equivalence
between stability properties of the discrete and continuous time processes.

Similar equivalence properties will be shown below for our chain Z̃ (Proposition 2.4, Lemma 2.5). Its advantage
lies in the simplicity of its definition; in particular it leads to a simulation method that does not require the integration
of jump rates along trajectories.

Notation. Throughout the paper we may write Px,i[·] for P[·|Z0 = (x, i)] and Ex,i[·] for E[·|Z0 = (x, i)].

2.2. First properties of the invariant probability measures

Let M(M ×E) (resp. M+(M ×E) and P(M ×E)) denote the set of signed (resp. positive, and probability) measures
on M × E. For μ ∈ M(M × E) and f ∈ L1(μ) we write μf for

∫
f dμ. Given a bounded operator K :C0 → C0 and

μ ∈ M(M × E) we let μK ∈ M(M × E) denote the measure defined by duality:

∀g ∈ C0, (μK)g = μ(Kg).

The mappings μ �→ μPt and μ �→ μP̃ preserve the sets M+(M × E) and P(M × E).

Definition 2.3 (Notation, stability). We denote by Pinv (resp. P̃inv) the set of invariant probabilities for (Pt ) (resp. P̃ ),

μ ∈ Pinv ⇐⇒ ∀t ≥ 0, μPt = μ;
μ ∈ P̃inv ⇐⇒ μP̃ = μ.

We say that the process Z (or Z̃) is stable if it has a unique invariant probability measure.
For n ∈ N

∗ and t > 0 we let Π̃n and Πt the (random) occupation measures defined by

Π̃n = 1

n

n∑
k=1

δ
Z̃k

and Πt = 1

t

∫ t

0
δZt .

By standard results for Feller chains on a compact space (see e.g. [13]), the set P̃inv is nonempty, compact (for the
weak-� topology) and convex. Furthermore, with probability one every limit point of (Πn)n≥1 lies in P̃inv.

The following result gives an explicit correspondence between invariant measures for the discrete and continuous
processes.

Proposition 2.4 (Correspondence for invariant measures). The mapping μ �→ μK̃ maps P̃inv homeomorphically
onto Pinv and extremal points of P̃inv (i.e. ergodic probabilities for P̃ ) onto extremal points of Pinv (ergodic probabil-
ities for Pt ).

The inverse homeomorphism is the map μ �→ μQ restricted to Pinv.
Consequently, the continuous time process (Zt ) is stable if and only if the Markov chain (Z̃n) is stable.

Proof. For all f ∈ C1, integrating by parts
∫∞

0
dKtf

dt
e−λt dt and using the identities dKtf

dt
= AKtf = KtAf leads to

K̃(λI − A)f = λf = (λI − A)K̃f. (9)

Let μ ∈P(M × E). Then, using (9) and the form of L gives

μK̃Lf = μK̃(A − λI)f + λμK̃Qf = λ(−μf + μP̃f ), (10)

μL(K̃f ) = μ(A − λI)K̃f + λμQK̃f = λ(−μf + μQK̃f ). (11)
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If μ ∈ P̃inv, (10) implies (μK̃)Lf = 0 for all f ∈ C1 and since C1 is dense in C0 this proves that μK̃ ∈ Pinv. Similarly,
if μ ∈ Pinv, (11) implies μ = μQK̃ . Hence μQ = μQK̃Q = μQP̃ proving that μQ ∈ P̃inv. Furthermore the identity
μ = μQK̃ for all μ ∈Pinv shows that the maps μ �→ μK̃ and μ �→ μQ are inverse homeomorphisms. �

Lemma 2.5 (Comparison of empirical measures). Let f :M × E �→R be a bounded measurable function. Then

lim
t→∞Πtf − Π̃Nt K̃f = 0 and lim

n→∞ΠTnf − Π̃nK̃f = 0

with probability one.

Proof. Decomposing the continuous time interval [0, t] along the jumps yields:

Πtf = Nt

t

(
1

Nt

Nt−1∑
i=0

∫ Ti+1

Ti

f (Zs)ds + rt

)
,

where ‖rt‖ ≤ ‖f ‖UNt +1
Nt

.

Now Nt → ∞ a.s. and P [Un/n ≥ ε] = e−λnε , so that rt → 0 a.s. Since 	tf is bounded and Nt/t → λ, this
implies:

Πtf − λ

Nt

Nt−1∑
i=0

∫ Ti+1

Ti

f (Zs)ds
a.s.−−−→

t→∞ 0.

Now, note that

λ

∫ Ti+1

Ti

f (Zs)ds = λ

∫ Ui+1

0
f
(
φỸi

s (X̃i), Ỹi

)
ds = λ

∫ ∞

0
1s≤Ui+1Ksf (X̃i, Ỹi )ds.

Integrating the Ui+1 yields K̃f (X̃i, Ỹj ), therefore

Mn =
n−1∑
i=0

(
λ

∫ Ti+1

Ti

f (Zs)ds − K̃f (X̃i, Ỹi)

)

is a martingale with increments bounded in L2: E[(Mn+1 − Mn)
2] ≤ 2‖f ‖2. Therefore, by the strong law of large

numbers for martingales, limn→∞ Mn

n
= 0 almost surely, and the result follows. �

As in the discrete time framework, the set Pinv is nonempty compact (for the weak-� topology) and convex. Fur-
thermore, with probability one, every limit point of (Πt )t≥0 lies in Pinv.

Finally, one can check that an invariant measure for the embedded chain and its associated invariant measure for
the time continuous process have the same support. Given μ ∈ P(M × E) let us denote by supp(μ) its support.

Lemma 2.6. Let μ ∈ P̃inv. Then μ and μK̃ have the same support.

Proof. Let (x, i) ∈ supp(μ) and let U be a neighborhood of x. Then for t0 > 0 small enough and 0 ≤ t ≤ t0, Φi−t (U)

is also a neighborhood of x. Thus

(μK̃)
(
U × {i})=

∫ ∞

0
λe−λtμ

(
Φi−t (U) × {i})dt ≥ λ

∫ t0

0
e−λtμ

(
Φi−t (U) × {i})dt > 0.

This proves that supp(μ) ⊂ supp(μK̃). Conversely, let ν = μK̃ and (x, i) ∈ supp(ν) and let U be a neighborhood
of x. Then

μ
(
U × {i})= (νQ)

(
U × {i})=

∑
j∈E

∫
U

Qji(x)ν
(
dx × {j})≥

∫
U

Qii(x)ν
(
dx × {i})> 0.
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As a consequence, supp(μ) ⊃ supp(μK̃). �

2.3. Law of pure types

Let λM and λM×E denote the Lebesgue measures on M and M × E.

Proposition 2.7 (Law of pure types). Let μ ∈ P̃inv (resp. Pinv) and let μ = μac + μs be the Lebesgue decomposition
of μ with μac the absolutely continuous (with respect to λM×E) measure and μs the singular (with respect to λM×E)
measure. Then both μac and μs are in P̃inv (resp. Pinv), up to a multiplicative constant. In particular, if μ is ergodic,
then μ is either absolutely continuous or singular.

Proof. The key point is that K̃ and Q, hence P̃ = K̃Q, map absolutely continuous measures into absolutely contin-
uous measures. For μ ∈ P̃inv the result now follows from the following simple Lemma 2.8 applied to P̃ . �

Lemma 2.8. Let (Ω,A,P ) be a probability space. Let M (respectively M+,P,Mac) denote the set of signed
(positive, probability, absolutely continuous with respect to P ) measures on Ω . Let K :M → M,μ �→ μK be a
linear map that maps each of the preceding sets into itself. Then if μ ∈ P is a fixed point for K with Lebesgue
decomposition μ = μac + μs, both μac and μs are fixed points for K .

Proof. Write μK = μacK + μsK = μacK + νac + νs with μsK = νac + νs the Lebesgue decomposition of μsK .
Then, by uniqueness of the decomposition, μac = μacK + νac. Thus, μac ≥ μacK . Now either μac = 0 and there is
nothing to prove or, we can normalize by μac(Ω) and we get that μac = μacK . �

3. Supports and accessibility

3.1. Support of the law of paths

In this section, we describe the shape of the support of the distribution of (Xt )t≥0 and we show that it can be linked to
the set of solutions of a differential inclusion (which is a generalisation of ordinary differential equations).

Let us start with a definition that will prove useful to encode the paths of the process Zt .

Definition 3.1 (Trajectories and adapted sequences). For all n ∈ N
∗ let

Tn = {
(i,u) = (

(i0, . . . , in), (u1, . . . , un)
) ∈ En+1 ×R

n+
}

and

T
i,j
n = {

(i,u) ∈ Tn: i0 = i, in = j
}
.

Given (i,u) ∈ Tn and x ∈ M , define (xk)0≤k≤n by induction by setting x0 = x and xk+1 = Φ
ik−1
uk

(xk): these are the
points obtained by following F i0 for a time u0, then F i1 for a time u1, etc.

We also define a corresponding continuous trajectory. Let t = (t0, . . . , tn) be defined by t0 = 0 and tk = tk−1 + uk

for k = 1,2, . . . , n and let (ηx,i,u(t))t≥0 be the function (η(t))t≥0 given by

ηx,i,u(t) = η(t) =
⎧⎨
⎩

x if t = 0,
Φ

ik−1
t−tk−1

(xk−1) if tk−1 < t ≤ tk for k = 1, . . . , n,

Φ
in
t−tn

(xn) if t > tn.
(12)

Finally, let p(x, i,u) = Q(x1, i0, i1)Q(x2, i1, i2) · · ·Q(xn, in−1, in), and

Tn,ad(x) = {
(i,u) ∈ Tn: p(x, i,u) > 0

}
.

An element of Tn,ad(x) is said to be adapted to x ∈ M .
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Lemma 3.2. Let (i,u) ∈ Tn. Then, for any (x, i) ∈ M × E, any T ≥ 0, and any δ > 0,

Px,i

[
sup

0≤t≤T

∥∥Xt − ηx,i,u(t)
∥∥≤ δ

]
> 0.

Proof. Suppose first that (i,u) ∈ Tn is adapted to x and that i starts at i. By continuity, there exist δ1 and δ2 such that

max
i=1,...,n

|si − ui | ≤ δ1 �⇒
{

sup0≤t≤T ‖ηx,i,s(t) − ηx,i,u(t)‖ ≤ δ,

p(x, i, s) ≥ δ2.

Let (U1, . . . ,Un,Un+1) be n + 1 independent random variables with an exponential law of parameter λ and U =
(U1, . . . ,Un). Then,

Px,i

[
sup

0≤t≤T

∥∥Xt − ηx,i,u(t)
∥∥≤ δ

]

≥ P

[
max

l=1,...,n
|Ul − ul | ≤ δ1,Un+1 ≥ T − tn + δ1, (Ỹ0, . . . , Ỹn) = i

]

≥ δ2P

[
max

l=1,...,n
|Ul − ul | ≤ δ1,Un+1 ≥ T − tn + δ1

]

≥ δ2

[
n∏

l=1

(
e−λ(ul−δ1) − e−λ(ul+δ1)

)]
e−λ(T −tn+δ1) > 0.

In the general case, (i,u) ∈ Tn is not necessarily adapted and may start at an arbitrary i0. However, for any T > 0 and
δ > 0, there exists (j,v) ∈ Tn′,ad(x) (for some n′ ≥ n) such that j0 = i and

sup
0≤t≤T

∥∥ηx,j,v(t) − ηx,i,u(t)
∥∥≤ δ,

since Q(x) is, by construction, irreducible and aperiodic (this allows to add permitted transitions from i to i0 and
where i has not permitted transitions, with times between the jumps as small as needed). �

After these useful observations, we can describe the support of the law of (Xt )t≥0 in terms of a certain differential
inclusion induced by the vector fields {F i : i ∈ E}.

For each x ∈ R
d , let co(F )(x) ⊂R

d be the compact convex set defined as

co(F )(x) =
{∑

i∈E

αiF
i(x): αi ≥ 0,

∑
i∈E

αi = 1

}
.

Let C(R+,Rd) denote the set of continuous paths η :R+ �→ R
d equipped with the topology of uniform convergence

on compact intervals. A solution to the differential inclusion

η̇ ∈ co(F )(η) (13)

is an absolutely continuous function η ∈ C(R+,Rd) such that η̇(t) ∈ co(F )(η(t)) for almost all t ∈ R+. We let Sx ⊂
C(R+,Rd) denote the set of solutions to (13) with initial condition η(0) = x.

Lemma 3.3. The set Sx is a nonempty compact connected set.

Proof. Follows from standard results on differential inclusion, since the set-valued map co(F ) is upper semicontinu-
ous, bounded with nonempty compact convex images; see [1] for details. �

Theorem 3.4. If X0 = x ∈ M then, the support of the law of (Xt )t≥0 equals Sx .
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Proof. Obviously, any path of X is a solution of the differential inclusion (13). Let η ∈ Sx , and ε > 0. Set

Gt(x) = {
v ∈ {

F i(x), i ∈ E
}
:
〈
v − η̇(t), x − η(t)

〉
< ε

}
.

Since η̇(t) ∈ co(F )(η(t)) almost surely, Gt(x) is nonempty. Furthermore, (t, x) �→ Gt(x) is uniformly bounded,
lower semicontinuous in x, and measurable in t . Hence, using a result by Papageorgiou [26], there exists ξ :R → R

d

absolutely continuous such that ξ(0) = x and ξ̇ (t) ∈ Gt(ξ(t)) almost surely. In particular,

d

dt

∥∥ξ(t) − η(t)
∥∥2 = 2

〈
ξ̇ (t) − η̇(t), ξ(t) − η(t)

〉
< 2ε

so that

sup
0≤t≤T

∥∥ξ(t) − η(t)
∥∥2 ≤ 2εT .

Thus, without loss of generality, one can assume that η is such that

η̇(t) ∈
⋃
i∈E

{
F i

(
η(t)

)}

for almost all t ∈R+. Set

∀i ∈ E, Ωi = {
t ∈ [0, T ]: η̇(t) = F i

(
η(t)

)}
.

Let C be the algebra consisting of finite unions of intervals in [0, T ]. Since the Borel σ -field over [0, T ] is generated
by C, there exists, for all i ∈ E, Ji ∈ C such that, the set {Ji : i ∈ E} forms a partition of [0, T ], and for i ∈ E

λ(Ωi�Ji) ≤ ε,

where λ stands for the Lebesgue measure over [0, T ] and A�B is the symmetric difference of A and B . Hence,
there exist numbers 0 = t0 < t1 < · · · < tN+1 = T and a map i :k �→ ik from {0, . . . ,N} to {1, . . . , n0}, such that
(tk, tk+1) ⊂ Jik . Introduce ηx,i,u given by formula (12). For all tk ≤ t ≤ tk+1,

ηx,i,u(t) − η(t) = ηx,i,u(tk) − η(tk)

+
∫ t

tk

(
F ik

(
ηx,i,u(s)

)− F ik
(
η(s)

))
ds +

∫ t

tk

(
F ik

(
η(s)

)− η̇(s)
)

ds.

Hence, by Gronwall’s lemma, we get that∥∥ηx,i,u(t) − η(t)
∥∥≤ eK(tk+1−tk)

(∥∥ηx,i,u(tk) − η(tk)
∥∥+ mk

)
,

where K is a Lipschitz constant for all the vector fields (F i) and

mk = 2Cspλ
([tk, tk+1] \ Ωik

)
.

It then follows that, for all k = 0, . . . ,N and tk ≤ t ≤ tk+1,

∥∥ηx,i,u(t) − η(t)
∥∥≤

k∑
l=0

eK(tk+1−tl )ml ≤ eKT
N∑

l=0

ml ≤ eKT

|E|∑
i=1

λ(Ji \ Ωi) ≤ eKT ε.

This, with Lemma 3.2, shows that Sx is included in the support of the law of (Xt )t≥0 and concludes the proof. �

In the course of the proof, one has obtained the following result which is stated separately since it will be useful in
the sequel.
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Lemma 3.5. If η :R+ →R
d is such that

η̇(t) ∈
⋃
i∈E

{
F i

(
η(t)

)}

for almost all t ∈ R+, then, for any ε > 0 and any T > 0, there exists (i,u) ∈ Tn (for some n) such that∥∥ηx,i,u(t) − η(t)
∥∥≤ ε.

3.2. The accessible set

In this section we define and study the accessible set of the process X as the set of points that can be “reached from
everywhere” by X and show that long term behavior of X is related to this set.

Definition 3.6 (Positive orbit and accessible set). For (i,u) ∈ Tn, let Φ i
u be the “composite flow”:

Φ i
u(x) = Φ

in−1
un

◦ · · · ◦ Φi0
u1

(x). (14)

The positive orbit of x is the set

γ +(x) =
{
Φ i

u(x): (i,u) ∈
⋃

n∈N∗
Tn

}
.

The accessible set of (Xt ) is the (possibly empty) compact set Γ ⊂ M defined as

Γ =
⋂
x∈M

γ +(x).

Remark 3.7. If y = Φ i
u(x) for some (i,u) then y is the limit of points of the form Φ

j
v(x) where (j,v) is adapted to x.

It implies that

Γ =
⋂
x∈M

{
Φ i

u(x): (i,u) adapted to x
}
. (15)

Remark 3.8. The accessible set Γ is called the set of D-approachable points and is denoted by L in [2].

3.2.1. Topological properties of the accessible set
The differential inclusion (13) induces a set-valued dynamical system Ψ = {Ψt } defined by

Ψt(x) = Ψ (t, x) = {
η(t): η ∈ Sx

}
enjoying the following properties

(i) Ψ0(x) = {x},
(ii) Ψt+s(x) = Ψt(Ψs(x)) for all t, s ≥ 0,

(iii) y ∈ Ψt(x) ⇒ x ∈ Ψ−t (y).

For subsets I ⊂R and A ⊂R
d we set

Ψ (I,A) =
⋃

(t,x)∈I×A

Ψt(x).

A set A ⊂ R
d is called strongly positively invariant under Ψ if Ψt(A) ⊂ A for t ≥ 0. It is called invariant if for all

x ∈ A there exists η ∈ Sx
R

such that η(R) ⊂ A. Given x ∈ R
d , the (omega) limit set of x under Ψ is defined as

ωΨ (x) =
⋂
t≥0

Ψ[t,∞[(x).
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Lemma 3.9. The set ωΨ (x) is compact connected invariant and strongly positively invariant under Ψ .

Proof. It is not hard to deduce the first three properties from Lemma 3.3. For the last one, let p ∈ ωΨ (x), s > 0 and
q ∈ Ψs(p). By Lemma 3.5, for all ε > 0, there exists n ∈ N and (i,u) ∈ Tn such that ‖Φ i

u(p) − q‖ < ε. Continuity of
Φ i

u makes the set

Wε = {
z ∈ M :

∥∥Φ i
u(z) − q

∥∥< ε
}

an open neighborhood of p. Hence Wε ∩ Ψ[t,∞[(x) �= ∅ for all t > 0. This proves that the distance between the sets
{q} and Ψ[t,∞[(x) is smaller than ε. Since ε is arbitrary, q belongs to Ψ[t,∞[(x). �

Remark 3.10. For a general differential inclusion with an upper semicontinuous bounded right-hand side with com-
pact convex values, the omega limit set of a point is not (in general) strongly positively invariant, see e.g. [3].

Proposition 3.11 (Properties of the accessible set). The set Γ satisfies the following:

(i) Γ =⋂
x∈M ωΨ (x),

(ii) Γ = ωΨ (p) for all p ∈ Γ ,
(iii) Γ is compact, connected, invariant and strongly positively invariant under Ψ ,
(iv) either Γ has empty interior or its interior is dense in Γ .

Proof. (i) Let x ∈ M and y ∈ Ψt(x). Then γ +(y) ⊂ Ψ[t,∞](x). Hence Γ ⊂ Ψ[t,∞[(x) for all x. This proves that
Γ ⊂ ⋂

x∈M ωΨ (x). Conversely let p ∈ ⋂
x∈M ωΨ (x). Then, for all t > 0 and x ∈ M , p ∈ Ψ[t,∞[(x) ⊂ γ +(x) where

the latter inclusion follows from Lemma 3.5. This proves the converse inclusion.
(ii) By Lemma 3.5, ωΨ (p) ⊂ Γ . The converse inequality follows from (i).
(iii) This follows from (ii) and Lemma 3.9.
(iv) Suppose int(Γ ) �=∅. Then there exists an open set U ⊂ Γ and

⋃
t,i Φ

i
t(U) is an open subset of Γ dense in Γ . �

An equilibrium p for the flow Φ1 is a point in M such that F 1(p) = 0. It is called an attracting equilibrium if there
exists a neighborhood U of p such that

lim
t→∞

∥∥Φ1
t (x) − p

∥∥= 0

uniformly in x ∈ U . In this case, the basin of attraction of p is the open set

B(p) =
{
x ∈R

d : lim
t→∞

∥∥Φ1
t (x) − p

∥∥= 0
}
.

Proposition 3.12 (Case of an attracting equilibrium). Suppose the flow Φ1 has an attracting equilibrium p with
basin of attraction B(p) that intersects all orbits: for all x ∈ M \B(p), γ +(x) ∩B(p) �=∅. Then

(i) Γ = γ +(p),
(ii) if furthermore Γ ⊂ B(p), then Γ is contractible. In particular, it is simply connected.

Proof. The proof of (i) is left to the reader. To prove (ii), let h : [0,1] × Γ → Γ be defined by

h(t, x) =
{

Φ1
− log(1−t)(x) if t < 1,

p if t = 1.

It is easily seen that h is continuous. Hence the result. �
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3.2.2. The accessible set and recurrence properties
In this section, we link the accessibility (which is a deterministic notion) to some recurrence properties for the em-
bedded chain Z̃ and the continuous time process Z.

Proposition 3.13 (Returns near Γ – discrete case). Assume that Γ �=∅. Let p ∈ Γ and U be a neighborhood of p.
There exist m ∈ N and δ > 0 such that for all i, j ∈ E and x ∈ M

Px,i

[
Z̃m ∈ U × {j}]≥ δ.

In particular,

Px,i

[∃l ∈ N, Z̃l ∈ U × {j}]= 1.

Note that, in the previous proposition, the same discrete time m works for all x ∈ M . In the continuous time
framework, one common time t does not suffice in general; however one can prove a similar statement if one allows
a finite number of times:

Proposition 3.14 (Returns near Γ – continuous case). Assume that Γ �= ∅. Let p ∈ Γ and U be a neighborhood
of p. There exist N ∈ N, a finite open covering O1, . . . ,ON of M , N times t1, . . . , tN > 0 and δ > 0 such that, for all
i, j ∈ E and x ∈Ok ,

Px,i

[
Ztk ∈ U × {j}]≥ δ.

Since Γ is positively invariant under each flow Φi we deduce from Proposition 3.14 the following result.

Corollary 3.15. Assume Γ has nonempty interior. Then

Px,i[∃t0 ≥ 0,∀t ≥ t0,Zt ∈ Γ × E] = 1.

Propositions 3.13 and 3.14 are direct consequences of Lemma 3.2 and of the following technical result.

Lemma 3.16. Assume Γ �=∅. Let p ∈ Γ , U be a neighborhood of p and i, j ∈ E. There exist m ∈ N
∗, ε, β > 0, finite

sequences (i1,u1), . . . , (iN,uN) ∈ T
ij
m and an open covering O1, . . . ,ON of M (i.e. M = O1 ∪ · · · ∪ON ) such that

for all x ∈ M and τ ∈R
m+:

x ∈Ok and
∥∥τ − uk

∥∥≤ ε �⇒ Φ ik
τ (x) ∈ U and p

(
x, ik, τ

)≥ β.

Furthermore, m,ε and β can be chosen independent of i, j ∈ E.

Proof. Fix i and j , and let V be a neighborhood of p with closure V ⊂ U . For all β > 0, define the open sets

O(i,u, β) = {
x ∈ M: Φ i

u(x) ∈ V,p(x, i,u) > β
}
.

By (15), one has

M =
⋃
n

(⋃
β>0

⋃
(i,u)∈Tij

n

O(i,u, β)

)
. (16)

Now, since one can add “false” jumps (i does not change and u equals 0) to (i,u) without changing Φ i
u(x),

∀(i,u) ∈ T
ij
n ,∀n′ ≥ n,∀β,∃β ′ > 0,

(
i′,u′) ∈ T

ij

n′ such that O(i,u, β) ⊂O
(
i′,u′, β ′)
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(just add n′ − n false jumps at the beginning and let β ′ = β(infM Q(x, i, i))n
′−n). Therefore the union over n in (16)

is increasing: by compactness, there exists m such that

M ⊂
⋃
β>0

⋃
(i,u)∈Tij

m

O(i,u, β).

Note that by monotonicity, m can be chosen uniformly over i and j . The union in β increases as β decreases, so by
compactness again there exists β0 (independent of i, j ) such that

M ⊂
⋃

(i,u)∈Tij
m

O(i,u, β0).

A third invocation of compactness shows that for some finite N ,

M ⊂
N⋃

k=1

Ok,

where Ok = O(ik,uk, β0) for some (ik,uk) in T
ij
m . Since V ⊂ U , the distance between V and Uc is positive (once

more by compactness). Choosing ε small enough therefore guarantees that for x ∈Ok and ‖v − uk‖ < ε, Φv
i (x) ∈ U .

This concludes the proof. �

3.3. Support of invariant probabilities

The following proposition relates Γ to the support of the invariant measures of Z̃ or Z. We state and prove the result
for Z̃ and rely on Lemma 2.6 for Z.

Proposition 3.17 (Accessible set and invariant measures).

(i) If Γ �=∅ then Γ × E ⊂ supp(μ) for all μ ∈ P̃inv and there exists μ ∈ P̃inv such that supp(μ) = Γ × E.
(ii) If Γ has nonempty interior, then Γ × E = supp(μ) for all μ ∈ P̃inv.

(iii) Suppose that Z̃ is stable with invariant probability π , then supp(π) = Γ × E.

Proof. (i) follows from Proposition 3.13. Also, since Γ is strongly positively invariant, there are invariant measures
supported by Γ × E. (ii) follows from (i) and Corollary 3.15. To prove (iii), let (p, i) ∈ supp(π). Let U ,V be open
neighborhoods of p with U ⊂ V compact. Let 0 ≤ f ≤ 1 be a continuous function on M which is 1 on U and 0 outside
V and let f̃ (x, j) = f (x)δj,i . Suppose Z0 = (x, j). Then, with probability one,

lim inf
n→∞

1

n
�
{
1 ≤ k ≤ n: Z̃k ∈ V × {i}}≥ lim

n→∞
1

n

n∑
k=1

f̃ (Z̃k) ≥ π
(
U × {i})> 0.

Hence (Z̃n) visits infinitely often U × {i}. In particular, p ∈ γ +(x). This proves that supp(π) ⊂ Γ × E. The converse
statement follows from (i). �

Remark 3.18. The example given in Section 5.4 shows that the inclusion Γ ×E ⊂ supp(μ) may be strict when Γ has
empty interior. On the other hand, the condition that Γ has nonempty interior is not sufficient to ensure uniqueness
of the invariant probability since there exist smooth minimal flows that are not uniquely ergodic. An example of such
a flow can be constructed on a 3-manifold by taking the suspension of an analytic minimal nonuniquely ergodic
diffeomorphism of the torus constructed by Furstenberg in [16] (see also [24]). As shown in [2] (see also Section 4)
a sufficient condition to ensure uniqueness of the invariant probability is that the vector fields verify a Hörmander
bracket property at some point in Γ .
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4. Absolute continuity and ergodicity

4.1. Absolute continuity of the law of the processes

Let x0 be a point in M . The image of u �→ Φu(x0) is a curve; one might expect that, if i �= j , the image of
(s, t) �→ Φ

j
t (Φi

s(x0)) should be a surface. Going on composing the flow functions in this way, one might fill some
neighbourhood of a point in R

d .
Recall that, if i is a sequence of indices i = (i0, . . . , im) and u is a sequence of times u = (u1, . . . , um), Φ i

u :M → M

is the composite map defined by (14).
Suppose that for some x0 the map v �→ Φ i

v(x0) is a submersion at u. Then the image of the Lebesgue measure on a
neighbourhood of u is a measure on a neighbourhood of Φ i

u(x0) equivalent to the Lebesgue measure. If the jump rates
λi are constant functions, the probability Px0,i0[Z̃m ∈ · × {im}] is just the image by u ∈ R

m �→ Φ i
u(x0) ∈ R

d of the
product of exponential laws on R

m. We get that there exist U0 a neighborhood of x0, V0 a neighborhood of Φ i
u(x0),

and a constant c > 0 such that:

∀x ∈ U0, Px,i0

[
Z̃m ∈ · × {im}]≥ cλRd (· ∩ V0).

Let us fix a t > 0 and consider now the function v �→ Φ
im
t−v1−···−vk

(Φ i
v(x0)) defined on v1 + · · · + vm < t . For the

same reason, if this function is a submersion at u, then the law of Xt has an absolutely continuous part with respect to
λRd .

The two following theorems state a stronger result (with a local uniformity with respect to initial and final positions)
both for the embedded chain and the continuous time process.

Theorem 4.1 (Absolute continuity – discrete case). Let x0 and y be two points in M and a sequence (i,u) such that
Φ i

u(x0) = y. If v �→ Φ i
v(x0) is a submersion at u, then there exist U0 a neighborhood of x0, V a neighborhood of y,

an integer m and a constant c > 0 such that

∀x ∈ U0,∀i, j ∈ E, Px,i

[
Z̃m ∈ · × {j}]≥ cλRd (· ∩ V). (17)

Theorem 4.2 (Absolute continuity – continuous case). Let x0 and y be two points in M and a sequence (i,u) ∈ Tm

such that Φ i
u(x0) = y. If v �→ Φ

im
s−(v1+···+vm)Φ

i
v(x0) is a submersion at u for some s > u1 + · · · + um, then for all

t0 > u1 + · · · + um, there exist U0 a neighborhood of x0, V a neighborhood of y and two constants c, ε > 0 such that

∀x ∈ U0,∀i, j ∈ E,∀t ∈ [t0, t0 + ε], Px,i

[
Zt ∈ · × {j}]≥ cλRd (· ∩ V). (18)

The proofs of these results are postponed to Section 6.
Unfortunately, the hypotheses of these two theorems are not easy to check, since one needs to “solve” the flows.

However, they translate to two very nice local conditions. To write down these conditions, we need a bit of additional
notation. Let F0 the collection of vector fields {F i : i ∈ E}. Let Fk = Fk−1 ∪ {[F i,V ],V ∈ Fk−1} (where [F,G]
stands for the Lie bracket of two vector fields F and G) and Fk(x) the vector space (included in R

d ) spanned by
{V (x),V ∈Fk}.

Similarly, starting from G0 = {F i − Fj , i �= j}, we define Gk by taking Lie brackets with the vector fields
{F i : i ∈ E}, and Gk(x) the corresponding subspace of Rd .

Definition 4.3. We say that the weak bracket condition (resp. strong bracket condition) is satisfied at x ∈ M if there
exists k such that Fk(x) =R

d (resp. Gk(x) =R
d ).

These two conditions are called A (for the stronger) and B (for the weaker) in [2]. Since Gk(x) is a subspace
of Fk(x), the strong condition implies the weak one. The converse is false, a counter-example is given below in
Section 5.1.

Theorem 4.4. If the weak (resp. strong) bracket condition holds at x0 ∈ M , then the conclusion of Theorem 4.1 (resp.
Theorem 4.2) holds.
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This theorem is a version of Theorem 2 from [2] with an additional uniformity with respect to the initial point
and the time t . Thanks to Theorems 4 and 5 in [2], one can deduce the hypotheses of Theorems 4.1 and 4.2 from the
bracket conditions. The proofs in [2] are elegant but nonconstructive; we give a more explicit proof in Section 7.

4.2. Ergodicity

4.2.1. The embedded chain
Theorem 4.5 (Convergence in total variation – discrete case). Suppose there exists p ∈ Γ at which the weak
bracket condition holds. Then the chain Z̃ admits a unique invariant probability π̃ , absolutely continuous with respect
to the Lebesgue measure λM×E on M ×E. Moreover, there exist two constants c > 1 and ρ ∈ (0,1) such that, for any
n ∈ N,∥∥P[Z̃n ∈ ·] − π̃

∥∥
TV ≤ cρn,

where ‖ · ‖TV stands for the total variation norm.

Proof. By Proposition 3.13 and Theorem 4.4, there exist a neighborhood U0 of p, integers m and K , a measure ψ on
M × E absolutely continuous with respect to λM×E and c > 0 such that, setting A = U0 × E,

(i) Px,i[Z̃m ∈ A] ≥ δ for all (x, i) ∈ M × E,
(ii) Px,i[Z̃K ∈ ·] ≥ cψ(·) for all (x, i) ∈ A.

These two properties make Z̃ an Harris chain with recurrence set A (see e.g. [15], Section 7.4). It is recurrent, aperiodic
(by (i)) and the first hitting time of A has geometric tail (by (i) again). Therefore, by usual arguments, two copies of
Z̃ may be coupled in a time T that has geometric tail; this implies the exponential convergence in total variation
toward its (necessarily unique) invariant probability π̃ (see e.g. the proof of Theorem 4.10 in [15], Section 7.4 or [23],
Section I.3, for details).

Finally, observe that, by (ii) and Theorem 4.4, π̃ ≥ δcψ . Therefore π̃ac (the absolutely continuous part of π̃ with
respect to λM×E) is nonzero. Then, Proposition 2.8 ensures that π̃ is absolutely continuous with respect to λM×E . �

As pointed out in [2], Theorem 1 (see also Theorem 2.4), under the hypotheses of Theorem 4.5, (Zt )t≥0 admits a
unique invariant probability measure π , and π is absolutely continuous with respect to λM×E . Moreover, under the
hypotheses of Theorem 4.5, with probability one

lim
n→∞ Π̃n = π̃ and lim

t→∞Πt = π̃K̃.

Under the strong bracket assumption, we prove in the next section that the distribution of Zt itself converges, and
not only its empirical measure.

4.2.2. The continuous time process
Theorem 4.6 (Convergence in total variation – continuous case). Suppose that there is a point p ∈ Γ at which
the strong bracket condition is satisfied. Let π be the unique invariant probability measure of Z. Then there exist two
constants c > 1 and α > 0 such that, for any t ≥ 0,∥∥P[Zt ∈ ·] − π

∥∥
TV ≤ ce−αt . (19)

Proof. The proof consists in showing that there exist a neighborhood U of p, t > 0, j ∈ E and β > 0 such that for all
x ∈ M and i ∈ E,

Px,i

[
Zt ∈ U × {j}]≥ β. (20)

This property and (18) ensure that two processes starting from anywhere can be coupled in some time t with positive
probability. This, combined with Theorem 4.4, implies (19) by the usual coupling argument (see [23]).
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Theorem 4.4 gives us two open sets U0, V (with p ∈ U0), a time s0 and ε > 0 such that

∀x ∈ U0,∀t ∈ [s0, s0 + ε],∀i,∀j, Px,i

[
Zt ∈ · × {j}]≥ cλRd (· ∩ V). (21)

Moreover, we have seen in Proposition 3.14 that there exist m times t1, . . . , tm > 0, m open sets O1, . . . ,Om (cover-
ing M) and δ > 0 such that, for all i, j ∈ E and x ∈ Ok ,

Px,i

[
Ztk ∈ U0 × {j}]≥ δ. (22)

We can suppose that V is included in one of the Ok (just shrink V if necessary). Then, there exists s ∈ {t1, . . . , tm}
such that

∀y ∈ V,∀i,∀j, Py,i

[
Zs ∈ U0 × {j}]≥ β1. (23)

From (21) and (23), we get a time t0 (= s0 + s) and β2 > 0, such that

∀x ∈ U0,∀t ∈ [t0, t0 + ε],∀i,∀j, Px,i

[
Zt ∈ U0 × {j}]≥ β2.

The Markov property then gives that, for every integer n, one has

∀x ∈ U0,∀t ∈ [nt0, nt0 + nε],∀i,∀j, Px,i

[
Zt ∈ U0 × {j}]≥ βn

2 . (24)

We can suppose that t1 is the largest of the m times (tk)1≤k≤m. Let n be such that for every k between 1 and m there
exists vk ∈ [0, nε] such that t1 = tk + vk . Take such numbers (vk)1≤k≤m. If x belongs to Ok , by (22) and (24), for all
i and j ,

Px,i

[
Zt1+nt0 ∈ U0 × {j}]= Px,i

[
Ztk+nt0+vk

∈ U0 × {j}]≥ δβn
2 .

This concludes the proof. �

5. Examples

5.1. On the torus

Consider the system defined on the torus Td =R
d/Zd by the constant vector fields F i = ei , where (e1, . . . , ed) is the

standard basis on R
d . Then, as argued in [2], the weak bracket condition holds everywhere, and the strong condition

does not hold. Therefore the chain Z̃ is ergodic and converges exponentially fast, the empirical means of (Z̃n) and
(Zt ) converge, but the law of Zt is singular with respect to the invariant measure for any t > 0 provided it is true for
t = 0.

5.2. Two planar linear flows

Let A be a 2×2 real matrix whose eigenvalues η1, η2 have negative real parts. Set E = {0,1} and consider the process
defined on R

2 × E by

F 0(x) = Ax and F 1(x) = A(x − a)

for some a ∈ R
2. The associated flows are Φ0

t (x) = etAx and Φ1
t (x) = etA(x − a) + a. Each flow admits a unique

equilibrium (which is attracting): 0 and a respectively.
First note that, by using the Jordan decomposition of A, it is possible to find a scalar product 〈·〉 on R

2 (depending
on A) and some number 0 < α ≤ min(−Re(η1),−Re(η2)) such that 〈Ax,x〉 ≤ −α〈x, x〉. Therefore〈

A(x − a), x
〉≤ −α〈x, x〉 − 〈Aa,x〉 ≤ ‖x‖(−α‖x‖ + ‖Aa‖).
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This shows that, for R > ‖Aa‖/α, the ball M = {x ∈ R
2,‖x‖ ≤ R} is positively invariant by Φ0 and Φ1. Moreover

every solution to the differential inclusion induced by {F 0,F 1} eventually enters M . In particular M × E is an
absorbing set for the process Z.

Another remark that will be useful in our analysis is that

det
(
F 0(x),F 1(x)

)= det(A)det(a, x),

so that

det
(
F 0(x),F 1(x)

)
> 0 (resp. = 0) ⇔ det(a, x) > 0 (resp. = 0). (25)

Case 1: a is an eigenvector. If a is an eigenvector of A, then the line Ra is invariant by both flows, so that

Γ = γ +(0) = [0, a]
and there is a unique invariant probability π (and its support is Γ by Proposition 3.17). Indeed, it is easily seen that Γ

is an attractor for the set-valued dynamics induced by F 0 and F 1. Therefore the support of every invariant measure
equals Γ . If we consider the process restricted to Γ , it becomes one-dimensional and the strong bracket condition
holds, proving uniqueness.

Remark 5.1. If X0 /∈ Ra, X will never reach Γ . As a consequence, the law of Xt and π are singular for any t ≥ 0.
In particular, their total variation distance is constant, equal to 1. Note also that, the strong bracket condition being
satisfied everywhere except on Ra, the law of Xt at any positive finite time has a nontrivial absolutely continuous part.

Remark 5.2. Consider the following example: A = −I , a = (1,0) and Ra is identified to R. If the jump rates are
constant and equal to λ, it is easy to check (see [20,27]) that the invariant measure μ on [0,1] × {0,1} is given by:

μ = 1

2
(μ0 × δ0 + μ1 × δ1),

where μ0 and μ1 are Beta laws on [0,1]:
μ0(dx) = Cλx

λ−1(1 − x)λ dx,

μ1(dx) = Cλx
λ(1 − x)λ−1 dx.

In particular, this example shows that the density of the invariant measure (with respect to the Lebesgue measure) may
be unbounded: when the jump rate λ is smaller than 1, the densities blow up at 0 and 1.

Case 2: Eigenvalues are reals and a is not an eigenvector. Suppose that the two eigenvalues η1 and η2 of A are
negative real numbers and that a is not an eigenvector of A.

Let γ0 = {Φ0
t (a), t ≥ 0} and γ1 = {Φ1

t (0), t ≥ 0}. Note that γ1 and γ0 are image of each other by the transformation
T (x) = a−x. The curve γ0 (resp. γ1) crosses the line Ra only at point a (resp. 0). Otherwise, the trajectory t �→ Φ0

t (a)

would have to cross the line Ker(A− η1I ) which is invariant. This makes the curve γ = γ0 ∪ γ1 a simple closed curve
in R

2 crossing Ra at 0 and a. By Jordan curve theorem, R2 \ γ = B ∪ U where B is a bounded component and U an
unbounded one. We claim that

Γ = B.

To prove this claim, observe that thanks to (25), F 0 and F 1 both point inward B at every point of γ . This makes B
positively invariant by Φ0 and Φ1. Thus Γ ⊂ B. Conversely, γ ⊂ Γ (because 0 and a are accessible from everywhere).
If x ∈ B there exists s > 0 such that Φ0−s(x) ∈ γ (because limt→−∞ |Φ0

t (x)| = +∞) and necessarily Φ0−s(x) ∈ γ1.
This proves that x ∈ γ +(0). Finally note that the strong bracket condition is verified in Γ \ Ra, proving uniqueness
and absolute continuity of the invariant probability.
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Fig. 1. A sample path of Xt (in red and blue on the online version) for the third case in Section 5.2, where A and a are given by (26). The outer
closed curve is the support of the invariant probability measure.

Remark 5.3. Note that if the jump rates are small, the situation is similar to the one described in Remark 5.2: the
process spends a large amount of time near the attractive points, and the density is unbounded at these points. By the
way, this is also the case on the boundary of Γ .

Case 3: Eigenvalues are complex conjugate. Suppose now that the eigenvalues have a nonzero imaginary part.
By Jordan decomposition, it is easily seen that trajectories of Φi converge in spiralling, so that the mappings
τ i(x) = inf{t > 0: Φi

t (x) ∈ Ra} and hi(x) = Φi
τ i (x)

are well defined and continuous. Let H : Ra → Ra be the map

h0 ◦ h1 restricted to Ra. Since two different trajectories of the same flow have empty intersection, the sequence
xn = Hn(0) is decreasing (for the ordering on Ra inherited from R). Being bounded (recall that M is compact and
positively invariant), it converges to x∗ ∈ Ra such that x∗ = H(x∗). Let now γ 0 = {Φ1

t (x∗),0 ≤ t ≤ τ 1(x∗)}, γ 1 =
{Φ0

t (h1(x∗)),0 ≤ t ≤ τ 0(h1(x∗))} and γ = γ 0 ∪ γ 1. Reasoning as previously shows that Γ is the closure of the
bounded component of R2 \ γ and that there is a unique invariant and absolutely continuous invariant probability.

We illustrate this situation in Figure 1, with

A =
(−1 −1

1 −1

)
and a =

(
1
0

)
. (26)

Remark 5.4. Once again, if the jump rates are small, then the density is unbounded at 0 but also on the set{
Φ1

t (0), t ≥ 0
}∪ {

Φ0
t (a), t ≥ 0

}
.

5.3. A simple criterion for the accessible set to have a nonempty interior

Here is a simple criteria in dimension 2 that ensures that Γ has a nonempty interior.

Proposition 5.5. Assume that M ⊂ R
2 and E = {0,1}. Suppose that F 1 has a globally attracting equilibrium p,

where the Jacobian DF 1(p) has non real eigenvalues with negative real parts. If F 0(p) �= 0, then p lies in the
interior of Γ .
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Fig. 2. The flows near the attracting point p in Proposition 5.5.

Fig. 3. Field lines of F 0 and F 1 in the example of Section 5.4 with α = 3. The field lines for F 0 are straight lines pointing to (α,α). The shaded

region is γ +(a, a−1).

Proof. Proposition 3.12 ensures that p belongs to Γ . As illustrated by Figure 2, from the equilibrium p, one can
follow F 0 and reach x, then follow F 1, and switch back to F 0 to reach any point in the shaded region. �

5.4. Knowing the flows is not enough

In this section we study a PDMP on R
2 × {0,1} such that the strong bracket condition holds everywhere except on Γ

and which may have one or three ergodic invariant probability measures, depending on the jump rates of the discrete
part of the process.

This model has been suggested by O. Radulescu. The continuous part of the process takes its values on R
2 whereas

its discrete part belongs to {0,1}. For simplicity we will denote (in a different way than in the beginning of the paper)
by (Xt , Yt ) ∈ R

2 the continuous component. The discrete component (It )t≥0 is a continuous time Markov chain on
E = {0,1} with jump rates (λi)i∈E . Let α > 0. The two vector fields F 0 and F 1 are given by

F 0(x, y) =
(−x + α

−y + α

)
and F 1(x, y) =

(−x + α

1+y2

−y + α

1+x2

)

with (x, y) ∈ R
2. Notice that the quarter plane (0,+∞)2 is positively invariant by Φ0 and Φ1 (see Figure 3). In the

sequel we assume that (X0, Y0) belongs to (0,+∞)2.



Qualitative properties of certain PDMP 1059

5.4.1. Properties of the two vector fields
Obviously, the vector fields F 0 has a unique stable point (α,α). The description of F 1 is more involved and depends
on α.

Lemma 5.6. Let us define

a = α +√|α2 − 4|
2

and b =
(√

4/27 + α2 + α

2

)1/3

−
(√

4/27 + α2 − α

2

)1/3

. (27)

Notice that b is positive and is the unique real solution of b3 + b = α. The critical points of F 1 depend on α:

• if α ≤ 2, then F 1 admits a unique critical point (b, b) and it is stable,
• if α > 2, then F 1 admits three critical points: (b, b) is unstable whereas (a, a−1) and (a−1, a) are stable.

Proof. If (x, y) is a critical point of F 1 then (x, y) solves{
x(1 + y2) = α,

y(1 + x2) = α.

As a consequence, x is solution of

0 = x5 − αx4 + 2x3 − 2αx2 + (
1 + α2)x − α = (

x2 − αx + 1
)(

x3 + x − α
)
.

The equation x3 + x − α = 0 admits a unique real solution b given by (27). It belongs to (0, α). Obviously, if α ≤ 2,
(b, b) is the unique critical point of F 1 whereas, if α > 2 then a and a−1 are the roots of x2 − αx + 1 = 0 and
F 1 admits the three critical points: (b, b), (a, a−1) and (a−1, a). Let us have a look to the stability of (b, b). The
eigenvalues of Jac(F 1)(b, b) are given by

η1 = −3 + 2b

α
= −1 − 2

α − b

α
and η2 = 1 − 2b

α
= b3 − b

α

and are respectively associated to the eigenvectors (1,1) and (1,−1). Since b < α, η1 is smaller than −1. Moreover,
η2 has the same sign as b − 1 i.e. the same sign as α − 2. As a conclusion, (b, b) is stable (resp. unstable) if α < 2
(resp. α > 2).

Assume now that α > 2. Then Jac(F 1)(a, a−1) has two negative eigenvalues −1 ± 2α−1. Then, the critical points
(a, a−1) and (a−1, a) are stable. �

In the sequel, we assume that α > 2. One can easily check that the sets

D = {
(x, x): x > 0

}
, L = {

(x, y): 0 < y < x
}
, U = {

(x, y): 0 < x < y
}

are strongly positively invariant by Φ0 and Φ1. Moreover, thanks to Proposition 3.12, the accessible set of (X,Y ) is

Γ = {
(x, x): x ∈ [b,α]}.

In the sequel, we prove that Γ may, or may not, be the set of all recurrent points, depending on the jump rates λ0 and
λ1.

Proposition 5.7. If λ1 > λ0(cα − 1), with c = 3
√

3/8 then (X,Y, I ) admits a unique invariant measure and its
support is Γ × E.

If λ1/λ0 is small enough, then (X,Y, I ) admits three ergodic measures and they are supported by

Γ × E = γ +(α,α) × E, γ +(a, a−1
)× E and γ +(a−1, a

)× E.
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Remark 5.8. This dichotomy is essentially due to the fact that the stable manifold {(x, x): x ∈ R} of the unstable
critical point (b, b) of F 1 is strongly positively invariant by Φ0 (see Figure 3). Moreover, the region γ +(a, a−1) has
non empty interior and its boundary is the union of the segment [(a, a−1), (α,α)], the segment Γ and the intersection
with L of the unstable manifold of (b, b) for Φ1.

The following two sections are dedicated to the proof of Proposition 5.7.

5.4.2. Transience
The goal of this section is to prove the first part of Proposition 5.7.

Lemma 5.9. Assume that (X0, Y0) ∈ L. Then, for any t > 0,

0 < Xt − Yt ≤ (X0 − Y0) exp

(
−
∫ t

0
α(Is)ds

)
,

with α(0) = 1 and α(1) = 1 − cα < 0 with c = (3/8)
√

3.

Proof. If It = 0 then

d

dt
(Xt − Yt ) = −(Xt − Yt ).

On the other hand, if It = 1 then

d

dt
(Xt − Yt ) = −(Xt − Yt ) + α

X2
t − Y 2

t

(1 + X2
t )(1 + Y 2

t )

= −(
1 − αh(Xt ,Yt )

)
(Xt − Yt ),

where the function h is defined on [0,∞)2 by

h(x, y) = x + y

(1 + x2)(1 + y2)
.

The unique critical point of h on [0,∞)2 is (1/
√

3,1/
√

3) and h reaches its maximum at this point:

c := sup
x,y>0

h(x, y) = 3
√

3

8
.

As a consequence, for any t ≥ 0,

d

dt
(Xt − Yt ) ≤ −α(It )(Xt − Yt ), where

{
α(0) = 1,

α(1) = 1 − cα.

Integrating this relation concludes the proof. �

Corollary 5.10. Assume that (X0, Y0) ∈ L. If λ1 > λ0(cα − 1) then (Xt , Yt ) converges exponentially fast to D almost
surely. More precisely,

lim sup
t→∞

1

t
log (Xt − Yt ) ≤ −λ1 − (cα − 1)λ0

λ0 + λ1
< 0 a.s. (28)

In particular, the process (X,Y, I ) admits a unique invariant measure μ. Its support is the set

S = {
(x, x, i): x ∈ [b,α], i ∈ {0,1}}.
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Proof. The ergodic theorem for the Markov process (It )t≥0 ensures that

1

t

∫ t

0
α(Is)ds

a.s.−−−→
t→∞

∫
α(i)dν(i),

where the invariant measure ν of the process (It )t≥0 is the Bernoulli measure with parameter λ0/(λ0 +λ1). The upper
bound (28) is a straightforward consequence of Lemma 5.9. This ensures that the process leaves any compact subset
of L and U . �

5.4.3. Recurrence
In this section, we aim at proving the second part of Proposition 5.7. Let us define the following new variables:

Ut = Xt + Yt

2
and Vt = Xt − Yt

2
.

Of course (U,V, I ) is still a PDMP. If

d

dt

(
Xt

Yt

)
= F 1(Xt , Yt ) then

d

dt

(
Ut

Vt

)
= G1(Ut ,Vt ),

where

G1(u, v) = 1

2

(
1 1
1 −1

)
F 1(u + v,u − v) =

(
−u + α(1+u2+v2)

(1+(u+v)2)(1+(u−v)2)

−v + 2αuv

(1+(u+v)2)(1+(u−v)2)

)
.

Corollary 5.10 ensures that, if λ1/λ0 is large enough, then Vt goes to 0 exponentially fast. Let us show that this is
no longer true if λ1/λ0 is small enough. Let ε > 0. Assume that, with positive probability, Vt ∈ (0, ε) for any t ≥ 0.
Then, for any time t ≥ 0, (Ut ,Vt ) ∈ [b,α] × [0, ε]. Indeed, one can show that Ut ∈ [b,α] for any t ≥ 0 as soon as it
is true at t = 0. The following lemma states that the vector field G1 can be compared to a vector field H 1 (which is
simpler to study).

Lemma 5.11. Assume that (u, v) ∈ [b,α]× [0, ε]. Then there exist uc ∈ (b,α) and K,δ, γ, γ̃ > 0 (that do not depend
on ε) such that bε = b + Kε2 and

G1
1(u, v) ≤ H 1

1 (u, v) where H 1
1 (u, v) = −δ(u − bε)

and

G1
2(u, v) ≥ H 1

2 (u, v) where H 1
2 (u, v) = (

(γ + γ̃ )1{u≤uc} − γ̃
)
v.

Proof. Notice firstly that there exists c > 0 such that

∀(u, v) ∈ [b,α] × [0, ε], ∣∣(1 + (u + v)2)(1 + (u − v)2)− (
1 + u2)2∣∣≤ cε2. (29)

Thus, using that u3 + u − α = (u − b)(u2 + bu + α/b) and u > b we get that

G1
1(u, v) ≤ −u + α

1 + u2
+ cε2

≤ −(u − b)
u2 + bu + α/b

1 + u2
+ cε2

≤ −(u − b)
2b2 + α/b

1 + α2
+ cε2.
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We get the desired upper bound for G1
1 with

δ = 2b2 + α/b

1 + α2
, K = c/δ and bε = b + Kε2.

Similarly, equation (29) ensures that

G1
2(u, v) ≥ vg(u) where g(u) = 2αu

(1 + u2)2
− 1 − cε2.

If ε is small enough, it is easily seen that g(b) > 0, g(α) < 0 and g is decreasing on [b,α]. Thus, if ũ is the unique
zero of g on (b,α), then one can choose

uc = ũ + b

2
, γ = g(uc) and γ̃ = −g(α).

To get a simpler bound in the sequel we can even set γ̃ = −g(α) ∨ 1. �

Finally, define H 0
1 (u, v) = G0

1(u, v) = −(u − α) and H 0
2 (u, v) = G0

2(u, v) = −v and introduce the PDMP
(Ũ , Ṽ , Ĩ ) where Ĩ = I is the switching process of (U,V, I ) and (Ũ , Ṽ ) is driven by H 0 and H 1 instead of G0

and G1. From Lemma 5.11, we get that

∀t ≥ 0, Ut ≤ Ũt and Ṽt ≤ Vt

assuming that (Ũ0, Ṽ0, Ĩ0) = (U0,V0, I0). The last step is to study briefly the process (Ũ , Ṽ , Ĩ ). From the definition
of the vector fields that drive (Ũ , Ṽ , Ĩ ), one has

d

dt
Ṽt =

{−Ṽt if It = 0,
((γ + γ̃ )1{Ũt≤uc} − γ̃ )Vt if It = 1.

This ensures that

1

t
log

Ṽt

Ṽ0
≥ 1

t

∫ t

0

(
(γ + γ̃ )1{Is=1,Ũs≤uc} − γ̃

)
ds (30)

since γ̃ ≥ 1. If λ1/λ0 is small enough, then (Is, Ũs) spends an arbitrary large amount of time near (1, bε) (and it
can be assumed that bε < uc if ε is small enough). Thus, the right-hand side of (30) converges almost surely to a
positive limit as soon as λ1/λ0 is small enough. As a consequence, V cannot be bounded by ε forever. The Markov
property ensures that (X,Y ) can reach any neighborhood of (a, a−1) with probability 1 and thus, (a, a−1) belongs to
the support of the invariant measure. This concludes the proof of the second part of Proposition 5.7.

6. Absolute continuity – proofs of global criteria

This section is devoted to the proof of Theorems 4.1 and 4.2. The main idea of the proof has already been given before
the statements; the main difficulty lies in providing estimates that are (locally) uniform in the starting point (x, i), the
region of endpoints V × E, and the discrete time m or the continuous time t .

After seeing in Section 6.1 what the submersion hypothesis means in terms of vector fields, we establish in Sec-
tion 6.2 a parametrized version of the local inversion lemma. This provides the uniformity in the continuous part x of
the starting point, and enables us to prove in Section 6.3 a weaker version of Theorem 4.1. In Section 6.4 we show
how to prove the result in its full strength. Finally, the fixed time result (Theorem 4.2) is proved in Section 6.5.
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Fig. 4. The global condition. In this picture (i0, i1, i2) = (1,2,3). The trajectory starts at x0, and follows F i0 = F 1 for a time u1. At the first jump,
it starts following F i1 = F 2; we pull this tangent vector back to x0. The next tangent vector F i2 = F 3 (at x2) has to be pulled back by the two
flows. If the three tangent vectors we obtain at x0 span Tx0M , v �→ Φi

v(x0) is a submersion.

6.1. Submersions, vector fields and pullbacks

Before going into the details of the proof, let us see how one can interpret the submersion hypotheses of our regularity
theorems.

Recall that, for x and i fixed, we are interested in the map

ψ :Rm →R
d ,

v �→ Φ i
v(x).

To see if this is a submersion at u, we compute the partial derivatives with respect to the vi : these are elements of
TxmM , and ψ is a submersion if and only if these m vectors span TxmM . This is the case if and only if their inverse
image by DΦ i

u span Tx0M . An easy computation (see also Figure 4) shows that these vectors are given by:

C̃(i,u) = {
F i0(x0),Φ

�
1F

i1(x0), . . . ,Φ
�
mF im(x0)

}
, (31)

where Φ�
k is the composite pullback:

Φ�
k = Φi0,�

u1
◦ · · · ◦ Φ

ik−1,�
uk

. (32)

Note that Φ�
k depends on i and u, but we hide this dependence for the sake of readability.

6.2. Parametrized local inversion

Let us first prove a “uniform” local inversion lemma, for functions of t that depend on a parameter x.

Remark 6.1. Even if x lives in some R
d , we do not write it in boldface, for the sake of coherence with the rest of the

paper.

Lemma 6.2. Let d and m be two integers, and let f be a C1 map from R
m ×R

d to R
m,

f : (t, x) �→ f (t, x) = fx(t).

For any fixed x, fx maps R
m to itself; we denote its derivative at t by (Dfx)t. Suppose that, for some points x0 and

t0, (Dfx0)t0 is invertible. Then we can find a neighborhood J ⊂ R
d of x0, an open set I ⊂ R

m and, for all x ∈ J , an
open set Wx ⊂ R

m, such that:

f̃x :

{
Wx → I,

t �→ fx(t)

is a diffeomorphism. Moreover, for any integer k ≤ m, and any neighborhood W of t0, we can choose I , J and the
Wx so that:
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(i) I is a Cartesian product I1 × I2 where I1 ⊂R
k , I2 ⊂R

m−k ;
(ii) ∀x ∈ J,Wx ⊂ W .

Proof. We “complete” the map f by defining:

H :

{
R

m ×R
d → R

m ×R
d,

(t, x) �→ (fx(t), x).

The function H is C1, and its derivative can be written in block form:

DH(t,x) =
(

(Dfx)t �

0 Id

)
.

Since (Dfx0)t0 is invertible, (DH)t0,x0 is invertible. We apply the local inversion theorem to H : there exist open
sets U0, V0 such that H maps U0 to V0 diffeomorphically. In order to satisfy the properties (i) and (ii), we restrict
H two times. First we define U1 = U0 ∩ (W × R

d), and V1 = H(U1). Since V1 is open it contains a product set
V = I1 × I2 × J , and we let U = H−1(V). For any (y, x) ∈ I × J , define gx(y) the first component of H−1(y, x):
composing by H , we see that fx(gx(y)) = y.

The set Wx = {t ∈R
m; (t, x) ∈ U} is open, and included in W . Since fx maps Wx to I , gx is its inverse; since both

are C1, f̃x is a diffeomorphism. �

Lemma 6.3. Let T be a continuous random variable in R
m, with density hT . Let d ≤ m, and let φ be a C1 map from

R
m ×R

d to R
d :

φ : (t, x) �→ φx(t).

Suppose that, for some x0, t0, (Dφx0)t0 :Rm →R
d has full rank d . Suppose additionally that hT is bounded below by

c0 > 0 on a neighborhood of t0.
Then there exist a constant c > 0, a neighborhood J of x0 and a neighborhood I1 of φx0(t0) such that:

∀x ∈ J, P
[
φ(T , x) ∈ ·]≥ cλRd (· ∩ I1). (33)

In other words, φ(T , x) has an absolutely continuous part with respect to the Lebesgue measure.

Proof. We know that (Dφx0)t0 has rank d . Without loss of generality, we suppose that the first d columns are inde-
pendent. In other words, writing t = (u,v) ∈ R

d × R
m−d , we suppose that the derivative of ψx,v : u �→ φx0(u,v) is

invertible in u0 for v = v0.
Once more, we “complete” φ and define:

fx :

{
R

d ×R
m−d → R

d ×R
m−d,

(u,v) �→ (φx(u,v),v).

By Lemma 6.2 applied with k = d , we can find I1 ⊂ R
d , I2 ⊂ R

m−d , J ⊂ R
d and (Wx)x∈J ⊂ R

m such that fx maps
diffeomorphically Wx to I1 × I2. Call f̃x this diffeomorphism. By property (ii) of the lemma, we can ensure that Wx

is included in a given neighborhood of t0. Since Dfx = (Dψx,v
0

�
I

)
, we can choose this neighborhood so that:

∀x ∈ J,∀t ∈ Wx, hT (t)
∣∣det

(
(Dfx)t

)∣∣−1 ≥ c′ > 0 (34)

for some strictly positive constant c′.
Write the random variable T as a couple (U,V ), and let A be a Borel set included in I1,

P
[
φ(T , x) ∈ A

] ≥ P
[
φ(T , x) ∈ A,V ∈ I2

]
= P

[
fx(U,V ) ∈ A × I2

]
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≥ P
[
(U,V ) ∈ f̃ −1

x (A × I2)
]

=
∫

f̃ −1
x (A×I2)

hT (u,v)du dv

=
∫

f̃ −1
x (A×I2)

hT (u,v)
∣∣det

(
(Df̃x)u,v

)∣∣−1 · ∣∣det
(
(Df̃x)

)
u,v

∣∣du dv.

Since f̃ −1
x (A × I2) ⊂ Wx , we may use the bound (34). Then we can change variables by defining (s,v) = f̃x(u,v).

We obtain:

P
[
φ(T , x) ∈ A

] ≥ c′
∫

f̃ −1
x (A×I2)

∣∣det
(
(Df̃x)

)
u,v

∣∣du dv = c′
∫

A×I2

ds dv

≥ c′λRd (A)λRm−d (I2).

Therefore (33) holds with c = c′λRm−d (I2). �

6.3. A slightly weaker global condition

Proposition 6.4 (Regularity at jump times – weak form). Let x0 be a point in M , and (i,u) an adapted sequence
in Tm, such that min0≤i≤m ui > 0.

If v �→ Φ i
v(x0) is a submersion at u, then there exists U0 a neighborhood of x0, V0 a neighborhood of Φ i

u(x0) and
a constant c > 0 such that:

∀x ∈ U0, Px,i0

[
Z̃m ∈ · × {im}]≥ cλRd (· ∩ V0), (35)

where i0 and im are the first and last elements of i.

Remark 6.5. This result is a weaker form of Theorem 4.1:

• the hypothesis is stronger – the sequence (i,u) must be adapted with strictly positive terms;
• the conclusion is weaker – it lacks uniformity for the discrete component, for the starting point and the final point.

Proof of Proposition 6.4. Recall (Ui)i≥1 is the sequence of interarrival times of a homogeneous Poisson process.
Let FPoi be the sigma field generated by (Ui)i≥1. Set U = (U1, . . . ,Um) and Ỹ = (Ỹ0, . . . , Ỹm). By continuity, there
exists a neighborhood U0 of x0, and numbers δ1, δ2 > 0 such that p(x, i,v) ≥ δ2 for all x ∈ U0 and v ∈ R

m such that
‖v − u‖ = max1≤i≤m |vi − ui | ≤ δ1. Therefore

Px,i0 [X̃m ∈ ·, Ỹm = im] ≥ P
[
Φ i

U(x) ∈ ·, Ỹ = i,‖U − u‖ ≤ δ1
]

= E
[
P
[
Φ i

U(x) ∈ ·, Ỹ = i,‖U − u‖ ≤ δ1|FPoi
]]

≥ δ2P
[
Φ i

U(x) ∈ ·,‖U − u‖ ≤ δ1
]

= δ2δ3P
[
Φ i

U(x) ∈ ·|‖U − u‖ ≤ δ1
]

= δ2δ3P
[
Φ i

T(x) ∈ ·],
where δ3 = P[‖U − u‖ ≤ δ1] > 0 and T = (T1, . . . , Tm) is a vector of independent random variables such that for
each i, the distribution of Ti is given by

P[Ti < t] = P
[
Ui < t ||Ui − ui | ≤ δ1

]
.

On [ui − δ1, ui + δ1] this is eλδ1−e−λ(t−ui )

eλδ1−e−λδ1
so Ti has the density

fTi
(t) = 1[ui−δ1,ui+δ1](t)

λe−λ(t−ui)

eλδ1 − e−λδ1
(36)
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which is continuous at the point ui .
Lemma 6.3 then applies, yielding (17), with U0 and V0 given by J and I1 of Lemma 6.3. �

6.4. Gaining uniformity

6.4.1. Uniformity at the beginning
The uniformity on the discrete component follow from two main ideas:

• use the irreducibility and aperiodicity to move the discrete component,
• use the finite speed given by compactness to show that this can be done without moving too much.

The vector fields F i are continuous and the space is compact, so the speed of the process is bounded by a constant
Csp.

Definition 6.6 (Shrinking). For any open set U and any t > 0, define Ut the shrunk set:

Ut = {
x ∈ A,d

(
x,Uc

)
> Cspt

}
. (37)

This set is open, and nonempty for 0 < t < t(U). If x ∈ Ut , then Px,i[Xt ∈ U ] = 1.

Lemma 6.7 (Uniformity at the beginning). Let U be a nonempty open set. There exist 0 < ε1 < ε2, an integer mb ,
an open set U ′ ⊂ U and a constant c such that:

∀x ∈ U ′,∀i, j, Px,i

[∀t ∈ [ε1, ε2],Zt ∈ U × {j}]≥ c,

∀x ∈ U ′,∀i, j, Px,i

[
Z̃mb

∈ U × {j}]≥ c.

Proof. Let ε2 < t(U), U ′ = Uε2 and ε1 = ε2/2. There is a positive probability that between t = 0 and t = ε1, the index
jumps from i to j , and does not jump again before time t = ε2; the fact that Xt ∈ U is guaranteed by the definition of
U ′. The second result is similar; if all jump rates are positive, we can even choose mb = 1. �

6.4.2. Uniformity at the end
Lemma 6.8 (Gain of discrete uniformity). If V is an open set and i ∈ E, then there exist c′, V ′, te and me such that,
if μ ≥ c(λV × δi),

μPte ≥ c′(λV ′×E),

μP̃ me ≥ c′(λV ′×E).

The proof will use the following result:

Lemma 6.9 (Propagation of absolute continuity). There is a constant Cdiv that only depends on the set M and the
vector fields F i such that, for all V , i,

(λV × δi)Kt ≥ e−Cdivt (λVt
× δi),

where Vt is the shrunk set defined in (37) and Ktf (x, i) = Φi
t f (x, i).

Proof. Since Φi
t is a diffeomorphism from R

d to itself, for any positive map f on R
d × E we get by change of

variables:∫
f
(
Φi

t (x), i
)

dλV (x) =
∫

f (x, i)
∣∣DΦi

t

∣∣−1 dλΦi
t (V)(x).
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If we let h(t) = |DΦi
t |, one of the classical interpretation of the divergence operator (see e.g. [21], Proposition 16.33)

yields h′(t) = h(t)divF i(Φi
t (x)). By compactness,

∃Cdiv,∀x ∈ M,∀i,
∣∣divF i(x)

∣∣≤ Cdiv.

Therefore h(t)−1 ≥ exp(−Cdivt).
Since by definition of the shrunk set, Φi

t (V) ⊃ Vt ,∫
f
(
Φi

t (x), i
)

dλV (x) ≥ exp(−Cdivt)

∫
f (x, i)dλVt

(x),

and Lemma 6.9 follows. �

Proof of Lemma 6.8. Fix a point x ∈ V . Since the matrix Q(x) = Q(x, i, j) is irreducible and aperiodic, there exists
an integer m such that for all i, j , there exists a sequence i(i, j) = (i0 = i, i1(i, j), . . . , im−1(i, j), im(i, j) = j) that
satisfies

∏m
l=1 Q(x, il−1(i, j), il(i, j)) > 0. Without loss of generality (since we can always replace V by a smaller

set) we suppose that

∀x ∈ V,∀i, j,∀l, Q
(
x, il−1(i, j), il(i, j)

)≥ cQ > 0. (38)

Fix i and j . From (7) we can rewrite Pt as:

Pt =
∑
n≥0

λne−λt

∫
{u∈Rn:

∑n
i=1 ui<t}

(Ku1QKu2Q · · ·KunQKt−∑
ui

)du1 · · · dun.

Therefore:

(λV ⊗ δi)Pt ≥ λme−λt

∫
u∈Rm:

∑
ui<t

(λV ⊗ δi)Ku1Q · · ·KumQKt−∑
ui

du1 · · · dum.

By Lemma 6.9 and the lower bound (38),

(λV ⊗ δi)Ku1Q ≥ e−Cdivu1(λVu1
⊗ δi)Q

≥ cQe−Cdivu1(λVu1
⊗ δi1).

Repeating these two lower bounds m times yields:

(λV ⊗ δi)Pt ≥ λme−λte−Cdivt cm
Q

(∫
u∈Rm:

∑
ui<t

du1 · · · dum

)
λVt

⊗ δj

≥ (λcQt)m

m! e−(λ+Cdiv)tλVt
⊗ δj .

This implies that

(λV ⊗ δi)Pt ≥ c(λ, t, cQ,m)λVt×E.

For t small enough, Vt = V ′ is nonempty, and the first part of the lemma follows.
The statement for P̃ m is proved similarly, starting from the bound

P̃ m ≥
∫

{u∈Rm:
∑m

i=1 ui<t}
(Ku1QKu2Q · · ·KunQ)du1 · · · dum,

written for a t small enough so that Vt is nonempty. �
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6.4.3. Proof of Theorem 4.1
The hypothesis gives the existence of (i,u) such that v �→ Φ i

v(x0) is a submersion at u, or in other words that the
family C̃(i,u) defined by (31) has full rank. If (i,u) is not adapted to x0, by the irreducibility hypothesis, there exists
an m and a sequence (i′,u′) ∈ Tm such that (i′,u′) is adapted and describes the same trajectory (just add instantaneous
transitions where it is needed). The new family C̃(i′,u′) contains all vectors from C̃(i,u), so

rank
(
C̃(i′,u′)

)≥ rank
(
C̃(i,u)

)
.

Now, for any m, the mapping: (i,u) �→ C̃(i,u) from Tm to (Rd)m is continuous. Since the rank is a lower semicontin-
uous function, the mapping

Tm → N,

(i,u) �→ rank
(
C̃(i,u)

)
is lower semicontinuous. Since being adapted is an open condition, there exists a sequence (i′′,u′′) ∈ Tm such that
every component of u′′ is strictly positive, and rank (C̃(i′′,u′′)) ≥ rank (C̃(i′,u′)).

In other words, if the submersion hypothesis of Theorem 4.1 holds, then the stronger hypothesis of Proposition 6.4
holds for a (possibly longer) adapted sequence with nonzero terms.

By Proposition 6.4, there exists U , V and c such that

∀x ∈ U, Px,i0

[
Z̃m ∈ · × {im}]≥ cλV (·).

Using Lemma 6.7 to gain uniformity at the beginning, we get the existence of m′ = mb + m, U ′ and c′ such that:

∀x ∈ U ′,∀i ∈ E, Px,i

[
Z̃m′ ∈ · × {im}]≥ c′λV (·),

or in other words:

∀x ∈ U ′,∀i ∈ E, (δx,i)P̃
m′ ≥ c′λV ⊗ δim.

Finally we apply Lemma 6.8 to i = im and the measure μ = δx,i P̃
m′

to get uniformity at the end: for m′′ = m′ + me ,

∀x ∈ U ′,∀i ∈ E, (δx,i)P̃
m′′ ≥ c′′λV ′×E,

which is exactly the conclusion of Theorem 4.1.

6.5. Absolute continuity at fixed time

The hypothesis of Theorem 4.2 is that ψ : v �→ Φi
t−∑

vi
◦ Φ i

v has full rank at u. Reasoning as in Section 6.1, we can
compute the derivatives with respect to the vi , and write the rank condition at the initial point x0: the submersion
hypothesis holds if and only if the family

C(i,u) = {(
F i0 − Φ�

mF im
)
(x0),

(
Φ�

1F
i1 − Φ�

mF im
)
(x0),

. . . ,
(
Φ�

m−1F
im−1 − Φ�

mF im
)
(x0)

}
(39)

has full rank.
Let us now turn to the proof of (18).
By the same continuity arguments as above, we suppose without loss of generality that the sequence (i,u) is

adapted to x0 and that all elements of u are positive. Moreover, there exist U0, δ1 and δ2 such that, if x ∈ U0 and
v ∈ R

m satisfies ‖v − u‖ ≤ δ1, then
∑

vi < t0 and p(x,v, i) ≥ δ2.
Define two events

A = “the process jumps exactly m times before time t0” ∩ {‖U − u‖ ≤ δ1
}
,

B = {Ỹ = i}.
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The event A is FPoi-measurable. By definition of δ1, δ2,

1APx,i0 [B|FPoi] ≥ δ21A

≥ δ21{Um+1>t0}1{‖U−u‖≤δ1}.

On the event B , Zt0 = (ψ(U), im), so:

Px,i0

[
Zt0 ∈ · × {im}] ≥ Px,i0

[
A ∩ B ∩ (

Zt0 ∈ · × {im})]
= Px,i0

[
A ∩ B ∩ (

ψ(U) ∈ ·)]
= E

[
Px,i0 [B|FPoi]1A1ψ(U)∈·

]
≥ δ2

[{Uk+1 > t0} ∩ {‖U − u‖ ≤ δ1
}∩ ψ(U) ∈ ·]

≥ δ2e−λt0P
[{‖U − u‖ ≤ δ1

}∩ ψ(U) ∈ ·]
≥ δ2δ3e−λt0P

[
ψ(U) ∈ ·|‖U − u‖ ≤ δ1

]
,

where δ3 = P[‖U − u‖ ≤ δ1]. The reasoning leading to equation (36) still applies. Thanks to Lemma 6.3, this implies
(18), but only with i = i0, j = im and ε = 0.

To prove the general form of (18) with the additional freedom in the choice of i, j and t , we first use Lemma 6.7
to find a neighborhood U ′

0 of x0, and three constants 0 < ε1 < ε2 and c > 0 such that:

∀x ∈ U ′
0, Px,i

[∀t ∈ [ε1, ε2],Zt ∈ U0 × {i0}
]≥ c.

Let t ′0 = t0 − ε1 and ε = ε2 − ε1, so that [t ′0, t ′0 + ε] = [t0 + ε1, t0 + ε2]. Then, for any x ∈ U ′
0, and any t ∈ [t ′0, t ′0 + ε],

Px,i[Xt ∈ ·] ≥ Ex,i

[
1{Zt−t0 ∈U0×{i0}}PZt−t0

[Xt0 ∈ ·]]
≥ c′λRm(· ∩ V0).

An application of Lemma 6.8 proves that we can also gain uniformity at the end; this concludes the proof of Theo-
rem 4.2.

7. Constructive proofs for the local criteria

7.1. Regularity at jump times

To prove the local criteria, we show that they imply the global ones for appropriate (and small) times u1, . . . , um. We
introduce some additional notation for some families of vector fields.

Definition 7.1. The round letters F , G, H will denote families of vector fields on M . For a family F , Fx is the
corresponding family of tangent vectors at x.

If i = (i0, . . . , im) is a sequence of indices and u = u(t) = (u1(t), . . . , um(t)) is a sequence of “time” functions, we
denote by Fi,u =Fi,u(t) the family of vector fields:{

F i0,Φ�
1F

i1 , . . . ,Φ�
mF im

}
. (40)

This family depends on t via the Φ�
k (see (32)).

We begin by a simple case where there are just two vector fields, F 1 and F 2, and we want regularity at a jump
time, starting from (say) (x,1). To simplify matters further, suppose that the dimension d is two.

In the simplest case, F 1(x) and F 2(x) span the tangent plane R
2. Then, for t small enough, these vectors “stay

independent” along the flow of X2: F 2(x) and (Φ
2,�
t F 1)(x) are independent. So the global condition holds for t small

enough.



1070 M. Benaïm et al.

To understand where Lie brackets enter the picture, let us first recall that they appear as a Lie derivative that
describes how X changes when pulled back by the flow of F i for a small time: at any given point x,

lim
t→0

1

t

(
Φ

i,�
t X(x) − X(x) − t[F i,X](x)

)= 0.

Staying at a formal level for the time being, let us write this as:

Φ
i,�
t X = X − t

[
F i,X

]
(x) + o(t). (41)

Suppose now that F 1 and F 2 are collinear at x, but that F 1(x) and [F 1,F 2](x) span R
2. We have just seen that:

Φ
2,�
t

(
F 1)= F 1 + t

[
F 2,F 1]+ o(t).

Let u(t) = (t, t) and i = (1,2,1), and look at Fi,u(t). If the “o(1)” terms behave as expected,

Fi,u(t) = (
F 1,Φ

1,�
t

(
F 2),Φ1,�

t Φ
2,�
t

(
F 1))

= (
F 1,F 2 + t

[
F 1,F 2]+ o(t),F 1 + t

[
F 2,F 1]+ o(t) + t

[
F 1,F 1]+ t2[F 1,

[
F 2,F 1]]+ o

(
t2))

= (
F 1,F 2 + t

[
F 1,F 2]+ o(t),F 1 + t

[
F 2,F 1]+ o(t)

)
.

By hypothesis, rank (F 1(x), [F 2,F 1](x)) = 2. Therefore, for t small enough, the lower semicontinuity of the rank
ensures:

rank
(
Fi,u(t)

) = rank
(
F 1,F 2 + t

[
F 1,F 2]+ o(t), t

[
F 2,F 1]+ o(t)

)
= rank

(
F1,F2 + t

[
F 1,F 2]+ o(t),

[
F 2,F 1]+ o(1)

)
≥ rank

(
F 1,F 2,

[
F 2,F 1])

= 2,

and the global condition holds.
To treat the general case, let us first define the o(1) notation. For any smooth vector field X =∑

i X
i(x) ∂

∂xi
, let

‖X‖k = max
α,|α|≤k

max
x∈M

max
i

∣∣∂αXi(x)
∣∣.

If X(t) is a family of vector fields depending on the parameter t , we write X(t) = o(1) if

∀k ≥ 0, lim
t→0

∥∥X(t)
∥∥

k
= 0. (42)

The previous case shows two main ingredients in the proof:

• to introduce the brackets, we have to alternate between flows,
• the method works because we can express various vectors and Lie brackets as (approximate) linear combinations

of vectors in Fi,u(t), for good choices of u and i.

Let us abstract the second ingredient in a definition.

Definition 7.2. Let G = {G1, . . . ,Gn} be a fixed family of vector fields and H(t) a family depending on t . If there
exist continuous functions λij : (0,∞) → R, and vector fields Ri(t), such that:

∀i ≤ n, Gi =
∑

λij (t)Hj (t) + Ri(t),

and Ri(t) = o(1), we say that H(t) (asymptotically) generates G.
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Fig. 5. The Hanoï construction. The sequence (ĩ; ũ) is obtained by inserting the sequence (i; (u, v)) in-between two copies of the original sequence
(i;u). The “middle” time u is much larger than all the other times.

Remark 7.3. We allow the λij (t) to blow up when t → 0. Because of this, even if the Hj(0) are defined, Gi does not
necessary lie in their linear span. For example, if H1(t) = (1,0) and H2(t) = (0, t), H(t) asymptotically generates
any family of constant vector fields in R

2, even if H2(0) = (0,0) degenerates.

Lemma 7.4. If H(t) generates G, then for any point x, there is a tx such that:

∀t < tx, rank
(
H(t)x

)≥ rank(Gx).

This result will be proved below. The last ingredient in the proof is to introduce different time scales in the alterna-
tion between vector fields. Let us write u(t) � v(t) if u(t) = o(v(t)) when t goes to zero.

Lemma 7.5 (Towers of Hanoï). Suppose that, for some i = (i0, . . . , im) and u(t) = (u1(t), . . . , um(t)), Fi,u(t) gen-
erates G. Suppose that for all j , uj (t) takes positive values and limt→0 uj (t) = 0. Choose two functions u(t) and v(t)

such that v(t) � u(t), u(t) � 1 and uj (t) � u(t), for all j . Define ũ(t) and ĩ by concatenation (see Figure 5):

ũ(t) = (
u1(t), u2(t), . . . , um(t), v(t), u(t), u1(t), . . . , um(t)

);
(43)

ĩ = (i0, i1, . . . , im, i, i0, i1, . . . , im).

Then Fĩ,ũ(t) generates G ∪ {F i} ∪ {[F i,G],G ∈ G}.

The name comes from the fact that, in analogy with the towers of Hanoï, in order to gain brackets by F i (the lower
disk), we have to move according to i,u (move all the upper disks), then move the lower disk, then move the upper
disks once again.

Once these lemmas are known, Theorem 4.4 follows quite easily.

Proof of Theorem 4.4. Let us reason by induction. Starting from the empty family, we can construct thanks to
Lemma 7.5 a u(t) and an i such that Fi,u(t) generates any number of F i and iterated brackets [F i1 , [F i2 , . . . ,F ik ]].
If Rd is generated by these brackets, Lemma 7.4 shows that Fi,u(t) has full rank for some tx . Therefore, the global
condition is satisfied for the choice of times (u1(tx), u2(tx), . . . , um(tx)). �

Let us turn to the proofs of the lemmas.

Proof of Lemma 7.4. Define a family H̃(t) by H̃i =∑
λij (t)Hj (t) = Gi − Ri(t). At every point x, every vector in

H̃x is a combination of vectors in Hx . Therefore

rank
(
H(t)

) ≥ rank
(
H̃(t)

)
≥ rank(G),

where the second line follows from the lower semicontinuity of the rank, since for all x, ‖Ri(t)(x)‖ converges to 0. �

To prove Lemma 7.5 we need to write down properly the fundamental relation (41) and see how “small” vector
fields are affected by pullbacks and Lie brackets.
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Lemma 7.6. For any k, there exists a constant Ck that only depends on the fields F i , such that the following holds.
For any vector field X, any i and any t ∈ [0,1],∥∥Φi,�

t X
∥∥

k
≤ Ck‖X‖k, (44)∥∥Φi,�

t X − X
∥∥

k
≤ Ckt‖X‖k+1, (45)∥∥Φi,�

t X − X − t
[
F i,X

]∥∥
k
≤ Ckt

2‖X‖k+2. (46)

In particular if X is smooth, the formal equation (41) is rigorous.
Moreover, if X(t) = o(1), then Φ

i,�
t X(t) = o(1) and [F i,X(t)] = o(1).

Proof. Let F be one of the F i , and (t, x) �→ Φt(x) be its flow. Recall that the pullback Φ�
t acts on vector fields by:(

Φ�
t X

)
(x) = (DΦt)

−1
x X

(
Φ(t, x)

)
.

Since the flow is smooth, this can be written in coordinates as

(
Φ�

t X
)
(x) =

∑
i,j

ai
j (x, t)Xj

(
Φ(t, x)

) ∂

∂xi

, (47)

where the ai
j are smooth functions of x and t that only depend on the vector field F . For any i and any multiindex α,

we may apply ∂α to the ith coordinate; the resulting expression only involves the derivatives of Xj up to order k. This
implies the control (44).

To prove (45), first apply Taylor’s formula in the t variable to each coordinate in (47), at order 1:

ai
j (x, t)Xj

(
Φ(t, x)

)− Xj(x)

=
∫ t

0
∂s
(
ai
j (x, s)Xj

(
Φ(s, x)

))
ds

=
∫ t

0

(
∂sa

i
j

)
(x, s)Xj

(
Φ(s, x)

)+ ai
j (x, s)

(∇Xj
(
Φ(s, x)

) · F (
Φ(s, x)

))
ds.

This expression involves the Xj and their first-order derivatives. Once more we may apply ∂α to both sides to deduce
(45). The proof of (46) is similar; the fact that the first order term is given by the Lie bracket is standard. This clearly
implies (41) if X is smooth.

Finally suppose X(t) satisfies X(t) = o(1). For any k, ‖Φi,�
t X(t)‖k ≤ Ck‖X(t)‖k by (44). When t goes to zero,

‖X(t)‖k converges to zero, and so does ‖Φi,�
t X(t)‖k : in other words, Φi,�

t X(t) = o(1). The fact that the same happens
for Lie brackets follows from their expression in coordinates. �

Proof of Lemma 7.5. Recalling the composite pullback notation Φ�
k from (32), let us define, for 0 ≤ j ≤ m, F̃j =

Φ�
jF

ij so that Fi,u(t) = (F̃0, F̃1, . . . , F̃m). All these quantities, as well as u, depend on t , but we drop this dependence
in the notation. The “Hanoï” construction yields:

Fĩ,ũ = (
F i0, Φ�

1F
i1, . . . , Φ�

mFm,

Φ�
mΦ

im,�
v F i,

Φ�
mΦ

im,�
v Φ

i,�
u F i0 , Φ�

mΦ
im,�
v Φ

i,�
u Φ�

1F
i1, . . . , Φ�

mΦ
im,�
v Φ

i,�
u Φ�

mF im
)

= (
F̃0, F̃1, . . . , F̃m,

Φ�
mΦ

im,�
v F i,

Φ�
mΦ

im,�
v Φ

i,�
u F̃0, Φ�

mΦ
im,�
v Φ

i,�
u F̃1, . . . , Φ�

mΦ
im,�
v Φ

i,�
u F̃m

)
.

Consider first the middle term. Since v = v(t) goes to zero, Φ
im,�
v F i = F i + o(1) by (45) from Lemma 7.6. Since

uj (t) goes to zero, the same argument and the fact that pullbacks of o(1) terms stay o(1), once more by Lemma 7.6,
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show that Φ
ij−1,�
uj

(F i + o(1)) = F i + o(1). Therefore:

Φ�
mΦim,�

v F i = F i + o(1)

so that Fĩ,ũ(t) generates F i .
Now consider G = (G1, . . . ,GL). Since Fi,u(t) generates G, and Fĩ,ũ(t) contains Fi,u(t), Fĩ,ũ(t) generates all Gl .

Let us now prove that Fĩ,ũ(t) generates [F i,Gl]. The first step is to write down a relation for Gl :

Gl =
∑
j

λlj (t)F̃j (t) + Rl(t),

where Rl(t) = o(1). Since this is an equality of vector fields, we can pull it back by Φ�
mΦ

im,�
v Φ

i,�
u :

Φ�
mΦim,�

v Φi,�
u Gl =

∑
j

λlj (t)Φ
�
mΦim,�

v Φi,�
u F̃j + Φ�

mΦim,�
v Φi,�

u Rl(t).

The difference between the last two equalities yields

Φ�
mΦim,�

v Φi,�
u Gl − Gl =

∑
j

λlj (t)
(
Φ�

mΦim,�
v Φi,�

u F̃j − F̃j (t)
)+ Φ�

mΦim,�
v Φi,�

u Rl(t) − Rl(t). (48)

Since the uj and v are negligible with respect to u, repeated applications of Lemma 7.6 show that the left-hand side
can be written as

Φ�
mΦim,�

v Φi,�
u Gl − Gl = u

[
F i,Gl

]+ o(u).

Similarly the last term on the right-hand side satisfies

Φ�
mΦim,�

v Φi,�
u Rl(t) − Rl(t) = u

[
F i,Rl(t)

]+ o(u).

Plugging this back in (48) and dividing by u we get

[Fi,Gl] =
∑
j

λlj (t)

u

(
Φ�

mΦim,�
v Φi,�

u F̃j − F̃j (t)
)+ o(1) + [

Fi,Rl(t)
]
.

Since Rl(t) = o(1), the last statement of Lemma 7.6 implies that [F i,Rl(t)] = o(1). Therefore [F i,Gl] can be written
as the sum of a linear combination of vector fields in Fĩ,ũ, and a remainder. This shows that G∪{F i}∪{[F i,G],G ∈ G}
is generated by Fĩ,ũ, and concludes the proof of Lemma 7.5. �

7.2. Regularity at a fixed time

Once more, we show that if the local criterion holds, then the global one holds for a good choice of indices and times.
The global criterion is expressed in terms of the family described by (39). It will be easier to work with a slightly
different family, namely:

Gi,u = (
F i0 − Φ�

1F
i1,Φ�

1F
i1 − Φ�

2F
i2, . . . ,Φ�

m−1F
im−1 − Φ�

mF im
)
. (49)

It is easy to see that Gi,u and the original family span the same space at each point (the kth vector in the original family
is the sum of the last m − k + 1 vectors of Gi,u). The analogue of Lemma 7.5 is the following:

Lemma 7.7 (More towers of Hanoï). Suppose that, for some i and some time functions u(t), Gi,u(t) asymptotically
generates G. Choose u(t), v(t) as in Lemma 7.5 and define ĩ, ũ(t) by concatenation as in (43).

Then Gĩ,ũ(t) asymptotically generates G ∪ {F i − F im,F i − F i0} ∪ {[F i,G],G ∈ G}.
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Proof. For 1 ≤ j ≤ m, call F̃j the j th vector field in Gi,u: F̃j = Φ�
j−1F

ij−1 − Φ�
jF

ij . The family Gĩ,ũ is then

Gĩ,ũ = (
F̃1, F̃2, . . . , F̃m,

Φ�
m(F im − Φ

im,�
v F i), Φ�

mΦ
im,�
v (F i − Φ

i,�
u F i0),

Φ�
mΦ

im,�
v Φ

i,�
u F̃1, Φ�

mΦ
im,�
v Φ

i,�
u F̃2, . . . , Φ�

mΦ
im,�
v Φ

i,�
u F̃m

)
.

The two vector fields in the middle give, at zero-th order as t goes to zero, F im − F i and F i − F i0 . For any element
Gl ∈ G, we may repeat the exact same argument as in Lemma 7.5 to generate the vectors Gl and [F i,Gl] from the
family Gĩ,ũ(t). �

With this lemma in hand, we know we can generate F 1 − F 2 (starting from i = (i0) = (1), an empty u = (), and
choosing i = 2). In all successive “enrichments” of i,u by the Hanoï procedure, the first and last components of i
will always be 1, therefore given enough enrichments, we generate all the F i − F 1. Consequently we also get all
differences: F i − Fj = F i − F 1 + F 1 − Fj . Finally, by taking the bracket by F i , we generate [F i,F j ], and then all
subsequent higher order brackets. This concludes the proof of Theorem 4.4.
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