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Abstract. We investigate the construction of chaotic probability measures on the Boltzmann’s sphere, which is the state space of
the stochastic process of a many-particle system undergoing a dynamics preserving energy and momentum.

Firstly, based on a version of the local Central Limit Theorem (or Berry–Esseen theorem), we construct a sequence of probabil-
ities that is Kac chaotic and we prove a quantitative rate of convergence. Then, we investigate a stronger notion of chaos, namely
entropic chaos introduced in (Kinet. Relat. Models 3 (2010) 85–122), and we prove, with quantitative rate, that this same sequence
is also entropically chaotic.

Furthermore, we investigate more general class of probability measures on the Boltzmann’s sphere. Using the HWI inequality
we prove that a Kac chaotic probability with bounded Fisher’s information is entropically chaotic and we give a quantitative rate.
We also link different notions of chaos, proving that Fisher’s information chaos, introduced in (On Kac’s chaos and related problems
(2012) Preprint), is stronger than entropic chaos, which is stronger than Kac’s chaos. We give a possible answer to (Kinet. Relat.
Models 3 (2010) 85–122), Open Problem 11, in the Boltzmann’s sphere’s framework.

Finally, applying our previous results to the recent results on propagation of chaos for the Boltzmann equation (Invent. Math.
193 (2013) 1–147), we prove a quantitative rate for the propagation of entropic chaos for the Boltzmann equation with Maxwellian
molecules.

Résumé. Nous étudions la construction de mesures de probabilité chaotiques sur la sphère de Boltzmann, qui est l’espace d’état du
processus stochastique d’un système de particules subissant une dynamique en préservant l’énergie et la quantité de mouvement.

Premièrement, basé sur une version du Théorème Central Limite (ou théorème de Berry–Esseen) locale, nous construisons une
suite de probabilités qui est chaotique au sens de Kac et nous prouvons un taux quantitatif de convergence. Ensuite, nous étudions
une notion plus forte de chaos, le chaos entropique introduit dans (Kinet. Relat. Models 3 (2010) 85–122), et nous prouvons, avec
un taux quantitatif, que cette même suite est également entropie chaotique.

Par ailleurs, nous nous intéressons à des classes plus générale de mesures de probabilité sur la sphère de Boltzmann. En utilisant
l’inégalité HWI nous montrons qu’une probabilité chaotique au sens de Kac qui possède l’information de Fisher bornée est entropie
chaotique et nous donnons un taux quantitatif. Nous relions également les différentes notions de chaos, en montrant que le Fisher
chaos, introduit dans (On Kac’s chaos and related problems (2012) Preprint), est plus fort que le chaos entropique, qui est plus fort
que le chaos au sens de Kac. Nous donnons une réponse possible à (Kinet. Relat. Models 3 (2010) 85–122), Open Problem 11,
dans le cadre de la sphère de Boltzmann.

Finalement, en appliquant nos résultats précédents aux résultats récents sur la propagation du chaos pour l’équation de Boltz-
mann (Invent. Math. 193 (2013) 1–147), nous démontrons un taux quantitatif pour la propagation du chaos entropique pour
l’équation de Boltzmann avec des molécules maxwelliennes.
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1. Introduction

1.1. Motivation

In his celebrated paper [9], Kac introduced the notion of propagation of chaos in order to connect a stochastic process
of a system of N identical particles undergoing binary collisions to its mean field equation.

Our interest in this paper is to investigate chaotic distributions supported by the phase space of the stochastic
process of the N -particle system as we shall explain. We refer to [3] for a detailed introduction on this topic and on
Kac’s paper [9].

Consider a system of N identical particles of mass ρ > 0 such that its evolution is described by a jump process with
binary collisions that preserves energy and momentum. Let us denote by i, j the particles undergoing the collision,
with pre-collisional velocities vi, vj ∈ Rd and post-collisional velocities v∗

i , v∗
j ∈ Rd . We have then the conservation

of momentum

ρv∗
i + ρv∗

j = ρvi + ρvj ,

and the conservation of energy

ρ

2

∣∣v∗
i

∣∣2 + ρ

2

∣∣v∗
j

∣∣2 = ρ

2
|vi |2 + ρ

2
|vj |2.

If the system has initial energy E = 1
2

∑N
i=1 ρ|vi |2 ∈ R+ and initial momentum M = ρm = ∑N

i=1 ρvi ∈ Rd , then
both energy and momentum will be unchanged under the dynamics. The phase space of this process is then the
manifold SN(

√
E,m) ⊂RdN defined by

SN(
√
E,m) :=

{
V = (v1, . . . , vN) ∈RdN

∣∣∣1
2

N∑
i=1

ρ|vi |2 = E,

N∑
i=1

ρvi = ρm

}
,

which is the intersection of a sphere of radius
√

2E/ρ and a hyperplane. This space SN(
√
E,m) is in fact a sphere in

RdN of dimension d(N − 1) − 1 with radius
√

2E/ρ − |m|2/N and center (m, . . . ,m)/
√

N . We remark that we need
|m|2 ≤ 2NE/ρ in order to SN(

√
E,m) be non empty.

Now choosing units such that the mass ρ of each particle is equal to 2, the total value of kinetic energy is dN and,
without loss of generality, choosing m = 0, the state space of this dynamics is

SN
B := SN(

√
dN,0) =

{
V = (v1, . . . , vN) ∈ RdN

∣∣∣ N∑
i=1

|vi |2 = dN,

N∑
i=1

vi = 0

}
(1)

and we shall call the manifold SN
B the Boltzmann’s sphere.

An example of this kind of dynamics is the space homogeneous Boltzmann model that we shall explain. Given
a pre-collisional system of velocities V = (v1, . . . , vN) ∈ RdN and a collision kernel (for more information on the
collision kernel we refer to [13,17])

B(z, cos θ) = Γ
(|z|)b(cos θ), (2)

for some nonnegative functions Γ and b, the process is:

• for any i′ �= j ′, pick a random time T (Γ (|vi′ − vj ′ |)) of collision accordingly to an exponential law of parameter
Γ (|vi′ − vj ′ |) and choose the minimum time T1 and the colliding pair (vi, vj ) such that

T1 = T
(
Γ
(|vi − vj |

))= min
i′,j ′ T

(
Γ
(|vi′ − vj ′ |)),

• draw σ ∈ Sd−1 ⊂Rd according to the law b(cos θij ), with

cos θij = σ · (vi − vj )

|vi − vj | ,
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• after collision the new velocities become

V ∗
ij = (

v1, . . . , v
∗
i , . . . , v∗

j , . . . , vN

)
,

where the post-collisional velocities v∗
i and v∗

j are given by

v∗
i = vi + vj

2
+ |vi − vj |

2
σ, v∗

j = vi + vj

2
− |vi − vj |

2
σ. (3)

Iterating this construction we built then the associated Markov process (Vt )t≥0 on RdN . The equation of the asso-
ciated law is given by, after a rescaling of time (see [13]),

∂tG
N
t = LNGN

t = 1

N

∑
i<j

∫
Sd−1

[
GN

t

(
V ∗

ij

)− GN
t (V )

]
B
(|vi − vj |, cos θ

)
dσ (4)

with initial data GN
0 and where V ∗

ij = (v1, . . . , v
∗
i , . . . , v∗

j , . . . , vN). This equation is known as the master equation.
Associated to this process, we have the (limit) spatially homogeneous Boltzmann equation [13,14,17]

∂tf (t, v) =
∫
Rd×Sd−1

B
(|v − w|, cos θ

)(
f
(
w∗)f (v∗)− f (w)f (v)

)
dw dσ (5)

with initial data f (0, ·) = f0 and where the post-collisional velocities v∗ and w∗ are obtained by (3).
We shall highlight here the models we consider in the last part of this work (see Theorem 8 below), and we refer to

[17] for more details concerning the collision kernel. Assuming a collision kernel B derived from inverse-power law
interaction potentials

φ(r) = r−(s−1), s > 2,

we have that the collision kernel has the form

B(z, cos θ) = |z|γ b(cos θ), γ = s − (2d − 1)

s − 1
, (6)

where the function b is locally smooth and has a nonintegrable singularity

sind−2 θb(cos θ) ∼θ∼0 Cbθ
−1−ν, ν ∈ (0,2),Cb > 0. (7)

In the particular case of three dimensions d = 3, we have γ = (s − 5)/(s − 1) and ν = 2/(s − 1). If we replace the
angular collision kernel b by a locally integrable one, we speak of cutoff collision kernels (or Grad’s cutoff).

We shall consider in this work the case of Maxwellian molecules, in which the collision kernel does not depend on
the relative velocity, i.e. γ = 0 in (6). We consider the general assumption{

B(|v − w|, cos θ) = b(cos θ),

∀α > 0,
∫ π

0 b(cos θ)(1 − cos θ)α+1/4 sind−2 θ dθ < +∞.
(8)

This is the same assumption made in [13], since in Theorem 8 we use their results. Remark that (8) includes the true
Maxwellian molecules (or Maxwellian molecules without cutoff) in dimension d = 3, when γ = 0, ν = 1/2 and

B(z, cos θ) = b(cos θ), b(cos θ) ∼θ∼0 Cbθ
−5/2 (d = 3). (9)

Also, it includes the Grad’s cutoff Maxwellian molecules, when the singularity is removed,

B(z, cos θ) = b(cos θ),

∫ π

0
b(cos θ) sind−2 θ dθ < +∞. (10)

Some results in Theorem 8 will consider the general assumption (8) and others the cutoff Maxwellian molecules (10).
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The program set by Kac in [9] was to investigate the behavior of solutions of the mean field equation (5) in terms
of the behaviour of the solutions of the master equation (4). Moreover, the notion of propagation of chaos introduced
by Kac means that if the initial distribution GN

0 is f0-chaotic (Definition 1 below) then, for all t > 0, the solution GN
t

of (4) is ft -chaotic, where ft is the solution of (5). For more information on this topic we refer to the recent results of
Mischler, Mouhot and Wennberg [13,14].

This paper is inspired by the works of Carlen, Carvalho, Le Roux, Loss and Villani [3] and also of Hauray and
Mischler [8], which investigate chaotic probabilities on the usual sphere in RN with radius

√
N (also called Kac’s

sphere). This sphere is the phase space of Kac’s model, which is a one-dimensional simplification, introduced in [9],
of the model presented above, with energy conservation only.

The novelty here is that we investigate chaotic probability sequences in the Boltzmann’s sphere SN
B ⊂ RdN and,

furthermore, we prove quantitative rates of chaos convergence. Moreover, we apply our results to the Boltzmann
equation with true Maxwellian molecules to prove quantitative propagation of entropic chaos.

1.2. Definitions and main results

Let E be a Polish space, then we shall denote by P(E) the space of Borel probability measures on E. Furthermore,
through this paper, on the space EN we will only consider symmetric measures, more precisely, we say that GN ∈
P(EN) is symmetric if for all ϕ ∈ Cb(E

N) we have∫
EN

ϕ dGN =
∫

EN

ϕσ dGN,

for any permutation σ of {1, . . . ,N}, and where

ϕσ := ϕ(Vσ ) = ϕ(vσ(1), . . . , vσ(N)),

for V = (v1, . . . , vN) ∈ EN .
For GN ∈ P(EN) and a integer � ∈ [1,N ] we denote by GN

� (or Π�(G
N)) the �-marginal of GN , defined by

∀ϕ ∈ Cb

(
E�

)
,

∫
E�

ϕ dGN
� =

∫
EN

ϕ ⊗ 1⊗(N−�) dGN.

We shall use through the paper the same notation to represent a probability measure and its density with respect to
the Lebesgue measure.

We can now give the notion of chaos formalized by Kac in [9], we also refer to [16] for an introduction on this
topic with a probabilistic approach and to [12] for a short survey.

Definition 1 (Kac’s chaos). Consider f ∈ P(E). We say that GN ∈ P(EN) is f -chaotic (or f -Kac chaotic), if for
each fixed positive integer �, GN

� converges to f ⊗� in the sense of measures in P(E�) when N goes to infinity, i.e. if
for all ϕ ∈ Cb(E

�),

lim
N→∞

∫
E�

ϕ dGN
� =

∫
E�

ϕ df ⊗�. (11)

In fact, it is well known that we need condition (11) to hold for only one � ≥ 2 (see for instance [16]).
We also introduce the Monge–Kantorovich–Wasserstein (MKW) distance and for more information about it we

refer to [18]. Consider an integer � and p ∈ [1,∞), we define then the space

Pp

(
E�

) :=
{
F� ∈ P

(
E�

);Mp

(
F�

) :=
∫

E�

|X|p dF�(X) < ∞
}
.

Then, for F�,G� ∈ Pp(E�) we define the MKW distance between F� and G� by

Wp

(
F�,G�

) := inf
π∈Π(F�,G�)

(∫
E�×E�

dE�(X,Y )p dπ(X,Y )

)1/p

, (12)
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where Π(F�,G�) is the set of transfer plan between F� and G�, which is the set of probabilty measures on E� × E�

with marginals F� and G� respectively, and where we define the distace dE� as

∀X = (x1, . . . , x�), Y = (y1, . . . , y�) ∈ E�, dE�(X,Y ) :=
�∑

i=1

dE(xi, yi).

In the paper we will use the Euclidean distance in E = Rd , i.e. dE(xi, yi) = |xi −yi | for all xi, yi ∈ E. More precisely,
we shall use

∀f,g ∈ P1
(
Rd

)
, W1(f, g) = inf

π∈Π(f,g)

∫
Rd×Rd

|x − y|dπ(x, y)

and

∀f,g ∈ P2
(
Rd

)
, W2(f, g) = inf

π∈Π(f,g)

(∫
Rd×Rd

|x − y|2 dπ(x, y)

)1/2

.

Moreover, for FN,GN ∈ P(SN
B ) we shall use in the definition of Wp(FN,GN) the Euclidean distance inherited from

RdN , which means that for X,Y ∈ SN
B we shall use dSN

B
(X,Y ) = |X − Y |.

Let γ be the Gaussian probability measure on Rd , γ (v) = (2π)−d/2e−|v|2/2, and μ ∈ P(Rd). We define the relative
entropy of μ with respect to γ by

H(μ|γ ) :=
∫
Rd

log
dμ

dγ
dμ, (13)

if μ is absolutely continuous with respect to γ , otherwise H(μ|γ ) := +∞.
Moreover, for GN ∈ P(SN

B ) we define the relative entropy with respect to γ N , the uniform probability measure
on SN

B , by

H
(
GN |γ N

) :=
∫
SN
B

(
log

dGN

dγ N

)
dGN (14)

shall now define a stronger notion of chaos, namely the entropic chaos introduced in [3].

Definition 2 (Entropic chaos). We say that the sequence GN ∈ P(SN
B ) is entropically f -chaotic, for some f ∈ P(Rd),

if GN is f -chaotic in Kac’s sense (Definition 1) and

lim
N→∞

1

N
H
(
GN |γ N

)= H(f |γ ) (15)

with H(f |γ ) < ∞.

Finally, with these definitions at hand we can state the main results of the paper.

Theorem 3. For any f ∈ P6(R
d) ∩ Lp(Rd) with 1 < p ≤ ∞, there exists a sequence of probability measures FN :=

[f ⊗N ]SN
B

∈ P(SN
B ), contructed by conditioning the N -fold tensorization of f to the Boltzmann’s sphere, such that

(i) FN is f -chaotic. More precisely, for any � ≥ 1 fixed there exists a constant C = C(�) > 0 such that for N ≥ �+ 1
we have

W1
(
FN

� ,f ⊗�
)≤ C√

N
;
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(ii) FN is entropically f -chaotic. More precisely, there exists a constant C > 0 such that∣∣∣∣ 1

N
H
(
FN |γ N

)− H(f |γ )

∣∣∣∣≤ C√
N

.

Let us now define the relative Fisher’s information of a probability measure μ ∈ P(Rd) with respect to γ by

I (μ|γ ) :=
∫
Rd

∣∣∣∣∇ log
dμ

dγ

∣∣∣∣2 dμ, (16)

and, as we did for entropy, we also define for GN ∈ P(SN
B ) the relative Fisher’s information with respect to γ N by

I
(
GN |γ N

) :=
∫
SN
B

∣∣∣∣∇S log
dGN

dγ N

∣∣∣∣2 dGN, (17)

where ∇S stands for the gradient on the Boltzmann’s sphere, i.e. the component of the usual gradient in RdN that is
tangent to the sphere SN

B .
We define then another stronger notion of chaos, the Fisher’s information chaos, in an analogous way of Defini-

tion 2.

Definition 4 (Fisher’s information chaos). We say that the sequence GN ∈ P(SN
B ) is Fisher’s information f -chaotic,

for some f ∈ P(Rd), if GN is f -chaotic in Kac’s sense (Definition 1) and

lim
N→∞

1

N
I
(
GN |γ N

)= I (f |γ )

with I (f |γ ) < ∞.

Remark 5. The Fisher’s information chaos is introduced in [8] in a weaker way, which is in fact equivalent to Defini-
tion 4 thanks to Theorem 6.

Next, we may compare as follows the several notions of chaos:

Theorem 6. Consider GN ∈ P(SN
B ), with kth order moment Mk(G

N
1 ) bounded, for some k ≥ 6, and suppose that

GN
1 ⇀ f in P(Rd).
Then, each assertion listed below implies the further one:

(i) N−1I (GN |γ N) → I (f |γ ), with I (f |γ ) < ∞.
(ii) N−1I (GN |γ N) is bounded and GN is f -chaotic in Kac’s sense.

(iii) N−1H(GN |γ N) → H(f |γ ), with H(f |γ ) < ∞.
(iv) GN is f -chaotic in Kac’s sense.

As a consequence, in Definition 2 of the entropic chaos and in Definition 4 of Fisher’s information chaos, we only
need the convergence of the first marginal, i.e. GN

1 ⇀ f , instead of the convergence of all marginals. Hence, this
theorem asserts that Fisher’s information chaos implies entropic chaos, which in turns implies chaos (or Kac’s chaos).
Furthermore, we prove a quantitative rate for the implication (ii) ⇒ (iii).

Another main result of the paper is a possible answer to [3], Open Problem 11, in the setting of Boltzmann’s sphere
given in Theorem 7. First of all, let us state the problem. For GN ∈ P(SN

B ) and f ∈ P6(R
d) ∩ Lp(Rd) with p > 1,

consider the following two conditions:

lim
N→∞

1

N
H
(
GN |[f ⊗N

]
SN
B

)= 0, (18)
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and

∀� ∈N, lim
N→∞H

(
GN

� |f ⊗�
)= 0, (19)

where [f ⊗N ]SN
B

is the probability measure constructed in Theorem 3. In the Kac’s sphere setting (i.e. SN−1(
√

N)

instead of SN
B ), [3] proved that condition (19) holds when GN is the conditioned tensor product GN = [f ⊗N ]SN

B
. As

discussed in [3], conditions (15), (18) and (19) really mean that GN is “strongly” close to f ⊗N , not only in the weak
measure sense for marginals as in Kac’s chaos. In view of this, they formulated the following problem.

Problem 1 ([3], Open Problem 11). Does condition (18) imply condition (19)? More generally, does condition (19)
hold for a larger and easily recognized class of chaotic sequences, larger than those contructed by means of condi-
tioning tensor products?

We give a partial answer to Problem 1 in the following theorem.

Theorem 7. Consider GN ∈ P(SN
B ) such that GN is f -chaotic, for some f ∈ P(Rd), and suppose that

Mk

(
GN

1

)≤ C, k > 2,
1

N
I
(
GN |γ N

)≤ C.

Suppose further that f ∈ L∞(Rd) and f (v1) ≥ exp(−a|v1|2) for some constant a > 0. Then for any fixed �, there
exists a constant C = C(d, �,‖f ‖L∞,Mk(G

N
1 , f )) > 0 such that for all N ≥ � + 1 we have

H
(
GN

� |f ⊗�
)≤ CW1

(
GN

� ,f ⊗�
)θ(�,d,k)

,

where θ(�, d, k) is constructive and depends on �, d and k. As a consequence, H(GN
� |f ⊗�) → 0 as N → ∞ and

condition (19) holds.

This theorem exhibes a class of chaotic sequences in the Boltzmann’s sphere that satisfy condition (19). At a first
sight, the hypotheses needed on GN and f to (19) be true may seen stronger than the conditioned tensor product, in
which case [3] proved that (19) holds (as said above). However, as remarked in [3,8], the conditioned tensor product
assumption is not propagated along time by the Boltzmann equation but the assumptions needed in Theorem 7 may be.
It is indeed true for the Boltzmann equation with Maxwellian molecules (see point (iv) of Theorem 8 below for a
precise statement), hence, in this setting, the assumptions in Theorem 7 are natural, which gives a satisfying answer
to the second question on Problem 1 in the Maxwellian case.

The interest here is that, as already remarked in [3,8,13], a natural step on Kac’s program would be to study the
propagation of conditions (15) or (18) or (19) (which are stronger than Kac’s chaos) under the master equation (4).
As explained above, as a consequence of Theorem 7, the propagation of (19) holds true for Maxwellian molecules.
We continue the investigation of these issues in Theorem 8 below, proving also the propagation of entropic chaos (15)
and (18).

We can apply our previous results to the Boltzmann equation for Maxwellian molecules. Some of the results
concern assumption (8), i.e. Maxwellian molecules with and without cutoff, others concern only the Grad’s cutoff
Maxwellian molecules (10). Thanks to the work on propagation of chaos of [13], we can establish the following
theorem.

Theorem 8. Let f0 ∈ P(Rd) and GN
0 ∈ P(SN

B ). Consider then, for all t > 0, the solution GN
t of the Boltzmann master

equation (4) with Maxellian molecules ((8) or (10)) associated to the initial condition GN
0 , and the solution ft of the

limiting Boltzmann equation (5) with Maxellian molecules ((8) or (10)) associated to the initial data f0.
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Then we have

(i) Let (10) be in force. Consider f0 ∈ P6 ∩ Lp(Rd) for p > 1. If GN
0 is entropically f0-chaotic, then for all t > 0,

GN
t is entropically ft -chaotic, more precisely

lim
N→∞

1

N
H
(
GN

t |γ N
)= H(ft |γ ).

(ii) Let (8) be in force. Consider f0 ∈ P6(R
d) with I (f0|γ ) < ∞. If GN

0 = [f ⊗N
0 ]SN

B
∈ P(SN

B ) as in Theorem 3, then,

for all t > 0, GN
t is entropically ft -chaotic. More precisely, for any

ε <
48

(7d + 6)2(5d + 24)

there exists a constant C := C(ε) > 0 such that

sup
t≥0

∣∣∣∣ 1

N
H
(
GN

t |γ N
)− H(ft |γ )

∣∣∣∣≤ CN−ε .

(iii) Let (10) be in force. Consider f0 ∈ P6 ∩ L∞(Rd) and f0(v1) ≥ exp(−α|v1|2 + β) for α > 0 and β ∈ R. If GN
0

satisfies condition (18)

lim
N→∞

1

N
H
(
GN

0 |[f ⊗N
0

]
SN
B

)= 0,

then, for all t > 0, GN
t also satisfies condition (18)

lim
N→∞

1

N
H
(
GN

t |[f ⊗N
t

]
SN
B

)= 0.

(iv) Let (10) be in force. Consider f0 ∈ P6 ∩ L∞(Rd) and f0(v1) ≥ exp(−α|v1|2 + β) for α > 0, β ∈ R. Consider
also GN

0 that is f0-chaotic and has Mk(Π1(G
N
0 )) and N−1I (GN

0 |γ N) finite, for some k > 2.
Then, for all t ≥ 0, GN

t satisfies condition (19)

∀� ∈N, lim
N→∞H

(
Π�

(
GN

t

)|f ⊗�
t

)= 0.

Theorem 8 improves the results of [13] where Kac’s chaos is established with a rate but entropic chaos is proved
without any rate. Indeed, point (i) here is proved in [13] and point (ii) gives a quantitative propagation of entropic
chaos. Moreover, point (iii) answers a question of [13], Remark 7.11, and point (iv) is a consequence of Theorem 7 as
said above.

It is worth mentioning that point (i) was proved in [13] for both the Maxwellian molecules with cutoff (10) and
the hard spheres case (which corresponds to the collision kernel B(z, cos θ) = |z|). The proof of point (iii) also shows
that (iii) is valid for hard spheres, indeed the proof is based on the fact that (15) and (18) are equivalent under some
hypotheses on f (see Theorem 25) and these properties are also propagated along time in the hard spheres case
(propagation of L∞, moments and lower Maxwellian bounds, see e.g. [17] and the references therein). However, the
results (ii) and (iv) are valid only for the Maxwellian case, the reason behind this is that a key ingredient of the proof is
the propagation of the Fisher’s information bound, and such property is only know to hold for Maxwellian molecules.

1.3. Strategy

We construct a probability on SN
B based on tensorization and conditioning of some probabilty measure on Rd . To

this purpose, we use an explicit formula for the marginals of the uniform probablity on SN
B and a version of the local

Central Limit Theorem (also known as Berry–Esseen), which is the cornerstone of the proof.
In order to study more general probabilities on the Boltzmann’s sphere, we use an interpolation-type inequality,

relating entropy, Fisher’s information and the 2-MKW distance, called HWI inequality from [10,15,18], to show that
Kac chaotic probabilities with finite Fisher’s information are entropically chaotic.
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Finally, the application of our results to the Boltzmann equation is based on recent results of propagation of chaos
from [13] and on the relations of different notions of measuring chaos from the work [8].

1.4. Previous works

In [9] it is proved that the N -fold tensorization of a smooth probability on R conditioned to the Kac’s sphere, i.e. the
usual sphere SN−1(

√
N), is Kac chaotic. Then, the work [3] extends this result to a more general class of probabilities

on R, introduces the notion of entropic chaos and also proves that the N -fold tensorization conditioned to the Kac’s
sphere is entropically chaotic. Furthermore, the recent work [8] gives quantitative rates of the results before, introduces
the notion of Fisher’s information chaos and links these three notions of chaos.

1.5. Organization of the paper

In Section 2 we shall study the uniform probability measure on SN
B . In Section 3 we construct a chaotic distribution on

Boltzmann’s sphere based on a probability measure on Rd . Furthermore we prove a quantitative chaos convergence
rate and we prove point (i) of Theorem 3. Then, in Section 4 we investigate the entropic and Fisher’s information chaos.
First, we study the entropic chaos for the probability distribution built before in Section 3 and we prove point (ii) of
Theorem 3. Then, we link these three notions of chaos and investigate a more general class of probability measures
on SN

B , proving Theorem 6 and Theorem 7. Finally, in Section 5 we use our previous results to prove Theorem 8.

2. Uniform probability measure

Consider V = (v1, . . . , vN) ∈ RdN , r ∈R+ and z ∈Rd . We define the sphere

SN(r, z) :=
{

V = (v1, . . . , vN) ∈ RdN
∣∣∣ N∑

i=1

v2
i = r2,

N∑
i=1

vi = z

}
.

We denote by γ N
r,z the uniform probability measure on SN(r, z). We recall that SN

B := SN(
√

dN,0) is the
Boltzmann sphere and we denote by γ N := γ N√

dN,0
its uniform probability measure. Moreover, we also denote by

Sn−1(r) ⊂ Rn the usual sphere of dimension n − 1 and radius r , Sn−1 := Sn−1(1) and by |Sn−1| its measure. We can
easily compute the measure of SN(r, z) by

∣∣SN(r, z)
∣∣= ∣∣Sd(N−1)−1

∣∣(r2 − |z|2
N

)(d(N−1)−1)/2

+
. (20)

For V = (v1, . . . , vN) ∈ RdN , we shall use through the paper the notation V� = (v1, . . . , v�) ∈ Rd�, V�,N =
(v�+1, . . . , vN) ∈Rd(N−�) and V̄� =∑�

i=1 vi ∈Rd .
We begin with the following result of a change of variables, proved in Appendix A.1.

Lemma 9. Consider V ∈ SN(r, z). We can make a change of coordinates (v1, . . . , vN) → (u1, . . . , uN) in the follow-
ing way

uN = 1√
N

(v1 + · · · + vN),

(21)

uk = 1√
k(k + 1)

(v1 + · · · + vk − kvk+1), 1 ≤ k ≤ N − 1,

such that the Jacobian is equal to one, |u1|2 + · · · + |uN |2 = |v1|2 + · · · + |vN |2 and{ |v1|2 + · · · + |vN |2 = r2,

v1,α + · · · + vN,α = zα
→

{
|u1|2 + · · · + |uN−1|2 = r2 − |z|2

N
,

uN,α = zα√
N

, 1 ≤ α ≤ d.
(22)
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With these definitions and notations at hand we can study some properties of the uniform probability measure γ N

on SN
B . We remark that these estimates can also be obtained using correlation operators on the Boltzmann’s sphere as

in Carlen, Carvalho and Loss [4].

Lemma 10. We have the following properties

(i) for any � ≤ N − 1 the �-marginal of γ N is given by γ N
� (dV�) = γ N

� (V�)dV� with

γ N
� (V�) = |Sd(N−�−1)−1|

|Sd(N−1)−1|
Nd/2

(N − �)d/2

(dN − |V�|2 − |V̄�|2/(N − �))
(d(N−�−1)−2)/2
+

(dN)(d(N−1)−2)/2
, (23)

where dV� = dv1 · · · dv� is the Lebesgue measure on Rd�.
(ii) the moments of γ N

� are uniformly bounded in N , more precisely, for k ≥ 1 we have Mk(γ
N
� ) ≤ Cd,k,�, where

Cd,k,� depends on d, k and �.

Before the proof, we refer to [7] where a Fubini-like theorem on SN(r, z) is proved, which yields a generalization
of (23) for the �-marginal of γ N

r,z.

Proof of Lemma 10. Let us split the proof.
(i) We can define γ N

r,z by

γ N
r,z := 1

ZN
r,z

lim
h→0

1

h
(1BN

z (r+h) − 1BN
z (r)), BN

z (r) :=
{

V ∈ RdN ; |V | ≤ r,

N∑
i=1

vi = z

}
,

where ZN
r,z is the normalization constant so that the integral of γ N

r,z is one.
Consider ϕ ∈ C(Rd�), for � ≤ N − 1, then〈

1BN
z (r), ϕ ⊗ 1N−�

〉
=
∫
RdN

1|V�|2+|V�,N |2≤r21V̄�+v�+1+···+vN=zϕ(V�)dV� dV�,N

=
∫
Rd�

ϕ(V�)

(∫
Rd(N−�)

1|V�,N |2≤r2−|V�|2 1v�+1+···+vN=z−V̄�
dV�,N

)
dV�

=
∫
Rd�

ϕ(V�)
∣∣Bd(N−�−1)

∣∣(r2 − |V�|2 − |z − V̄�|2
N − �

)d(N−�−1)/2

+
dV�,

where |Bd(N−�−1)| is the measure of the unit ball in dimension d(N − � − 1). We deduce then that the �-marginal of
γ N
r,z, denoted by Π�(γ

N
r,z), is given by

Π�

(
γ N
r,z

) = 1

ZN
r,z

d

dr

[∣∣Bd(N−�−1)
∣∣(r2 − |V�|2 − |z − V̄�|2

N − �

)d(N−�−1)/2

+

]

= |Bd(N−�−1)|
ZN

r,z

d(N − � − 1)r

(
r2 − |V�|2 − |z − V̄�|2

N − �

)(d(N−�−1)−2)/2

+

= |Sd(N−�−1)−1|
ZN

r,z

r

(
r2 − |V�|2 − |z − V̄�|2

N − �

)(d(N−�−1)−2)/2

+

and in the particular case r2 = dN , z = 0

Π�

(
γ N

)= γ N
� = |Sd(N−�−1)−1|

ZN√
dN,0

(dN)1/2
(

dN − |V�|2 − |V̄�|2
N − �

)(d(N−�−1)−2)/2

+
. (24)



Kac’s chaos on the Boltzmann’s sphere 1003

Now we shall compute ZN := ZN√
dN,0

, with

ZN = ∣∣Sd(N−�−1)−1
∣∣(dN)1/2

∫
Rd�

(
dN − |V�|2 − |V̄�|2

N − �

)(d(N−�−1)−2)/2

+
dV�. (25)

We start by the integral

A =
∫
Rd�

(
dN − |V�|2 − |V̄�|2

N − �

)(d(N−�−1)−2)/2

+
dV�,

with the changement of variable (21)–(22) (replacing N by �), with the notation U = U�−1 = (u1, . . . , u�−1) and
x = u� to simplify, we obtain

A =
∫
Rd�

(
dN − |U |2 − N

N − �
|x|2

)(d(N−�−1)−2)/2

+
dU dx.

Changing U to spherical coordinates in dimension d(� − 1), we have

A =
∫
Rd

∫ ∞

0

∣∣Sd(�−1)−1
∣∣(dN − ρ2 − N

N − �
|x|2

)(d(N−�−1)−2)/2

+
ρd(�−1)−1 dρ dx

= ∣∣Sd(�−1)−1
∣∣ ∫ ∞

0

(∫
Rd

(
dN − ρ2 − N

N − �
|x|2

)(d(N−�−1)−2)/2

+
dx

)
ρd(�−1)−1 dρ. (26)

Looking first to the integral over Rd we obtain, changing x to spherical coordinates in dimension d ,

B =
∫
Rd

(
dN − ρ2 − N

N − �
|x|2

)(d(N−�−1)−2)/2

+
dx

= ∣∣Sd−1
∣∣ ∫ ∞

0

(
dN − ρ2 − N

N − �
y2
)(d(N−�−1)−2)/2

+
yd−1 dy,

and after some computations we get

B = |Sd−1|
2

(
N − �

N

)d/2(
dN − ρ2)(d(N−�)−2)/2

+
∫ 1

0
(1 − y)(d(N−�−1)−2)/2y(d−2)/2 dy

= |Sd−1|
2

(
N − �

N

)d/2(
dN − ρ2)(d(N−�)−2)/2

+
Γ ((d(N − � − 1) − 2)/2 + 1)Γ ((d − 2)/2 + 1)

Γ ((d(N − � − 1) − 2)/2 + (d − 2)/2 + 2)
.

Plugging this expression in (26) we get

A = ∣∣Sd(�−1)−1
∣∣ |Sd−1|

2

(
N − �

N

)d/2
Γ ((d(N − � − 1) − 2)/2 + 1)Γ ((d − 2)/2 + 1)

Γ ((d(N − � − 1) − 2)/2 + (d − 2)/2 + 2)

×
∫ ∞

0

(
dN − ρ2)(d(N−�)−2)/2

+ ρd(�−1)−1 dρ,

and we can compute the last integral

C :=
∫ ∞

0

(
dN − ρ2)(d(N−�)−2)/2

+ ρd(�−1)−1 dρ

= 1

2
(dN)(d(N−1)−2)/2 Γ ((d(N − �) − 2)/2 + 1)Γ ((d(� − 1) − 2)/2 + 1)

Γ ((d(N − �) − 2)/2 + (d(� − 1) − 2)/2 + 2)
.
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Finally, plugging this in (25), we obtain

ZN = ∣∣Sd(N−�−1)−1
∣∣∣∣Sd(�−1)−1

∣∣ |Sd−1|
2

(
N − �

N

)d/2 1

2
(dN)(d(N−1)−1)/2

× Γ (d(N − � − 1)/2)Γ (d/2)

Γ (d(N − �)/2)

Γ (d(N − �)/2)Γ (d(� − 1)/2)

Γ (d(N − 1)/2)

and using the fact that

∣∣Sn−1
∣∣= 2πn/2

Γ (n/2)
(27)

we have

ZN = ∣∣Sd(N−1)−1
∣∣(dN)(d(N−1)−1)/2

(
N − �

N

)d/2

, (28)

then we conclude by plugging (28) in (24).
(ii) Let k ≥ 1 be a even integer. We have then to compute Mk(γ

N
� )∫

Rd�

|V�|kγ N
� (V�)dV� = |Sd(N−�−1)−1|

|Sd(N−1)−1|
(N/(N − �))d/2

(dN)(d(N−1)−2)/2

×
∫
Rd�

|V�|k
(

dN − |V�|2 − |V̄�|2
N − �

)(d(N−�−1)−2)/2

+
dV�. (29)

As in the proof of (i), we use the change of coordinates (21)–(22), then to simplify we denote U = U�−1 =
(u1, . . . , u�−1) and x = u�. Hence we can compute the integral

Ak =
∫
Rd�

|V�|k
(

dN − |V�|2 − |V̄�|2
N − �

)(d(N−�−1)−2)/2

+
dV�

=
∫
Rd�

(|U |2 + |x|2)k/2
(

dN − |U |2 − N

N − �
|x|2

)(d(N−�−1)−2)/2

+
dU dx.

With another change of coordinates, U to spherical coordinates in dimension d(�− 1), x also to spherical coordinates
in dimension d we have

Ak = ∣∣Sd(�−1)−1
∣∣∣∣Sd−1

∣∣ ∫ ∞

0

∫ ∞

0

(
ρ2 + y2)k/2

(
dN − ρ2 − N

N − �
y2
)(d(N−�−1)−2)/2

+
ρd(�−1)−1yd−1 dρ dy

≤ C
∣∣Sd(�−1)−1

∣∣∣∣Sd−1
∣∣ ∫ ∞

0
ρk

{∫ ∞

0

(
dN − ρ2 − N

N − �
y2
)(d(N−�−1)−2)/2

+
yd−1 dy

}
ρd(�−1)−1 dρ

+ C
∣∣Sd(�−1)−1

∣∣∣∣Sd−1
∣∣ ∫ ∞

0

{∫ ∞

0
yk

(
dN − ρ2 − N

N − �
y2
)(d(N−�−1)−2)/2

+
yd−1 dy

}
ρd(�−1)−1 dρ

=: I1 + I2.

For the first term we have (already computed in (i))

I1 = 1

2

∣∣Sd(�−1)−1
∣∣∣∣Sd−1

∣∣(N − �

N

)d/2
Γ (d(N − � − 1)/2)Γ (d/2)

Γ (d(N − �)/2)

×
∫ ∞

0

(
dN − ρ2)(d(N−�)−2)/2

ρd(�−1)−1+k dρ
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= 1

2

∣∣Sd(�−1)−1
∣∣∣∣Sd−1

∣∣(N − �

N

)d/2
Γ (d(N − � − 1)/2)Γ (d/2)

Γ (d(N − �)/2)

× 1

2
(dN)(d(N−1)−2+k)/2 Γ (d(N − �)/2)Γ ((d(� − 1) + k)/2)

Γ ((d(N − 1) + k)/2)
.

In the same way, we can compute the second term to get

I2 = 1

2

∣∣Sd(�−1)−1
∣∣∣∣Sd−1

∣∣(N − �

N

)(d+k)/2
Γ (d(N − � − 1)/2)Γ ((d + k)/2)

Γ ((d(N − �) + k)/2)

×
∫ ∞

0

(
dN − ρ2)(d(N−�)−2+k)/2

ρd(�−1)−1 dρ

= 1

2

∣∣Sd(�−1)−1
∣∣∣∣Sd−1

∣∣(N − �

N

)(d+k)/2
Γ (d(N − � − 1)/2)Γ ((d + k)/2)

Γ ((d(N − �) + k)/2)

× 1

2
(dN)(d(N−1)−2+k)/2 Γ ((d(N − �) + k)/2)Γ ((d(� − 1))/2)

Γ ((d(N − 1) + k)/2)
.

Plugging these two estimates in (29) we obtain after some simplifications

Mk

(
γ N
�

) ≤ |Sd(N−�−1)−1|
|Sd(N−1)−1|

(N/(N − �))d/2

(dN)(d(N−1)−2)/2
(I1 + I2)

≤ (dN)k/2 Γ (d(N − 1)/2)

Γ ((d(N − 1) + k)/2)

Γ ((d(� − 1) + k)/2)

Γ (d(� − 1)/2)

+ (dN)k/2 Γ (d(N − 1)/2)

Γ ((d(N − 1) + k)/2)

Γ ((d + k)/2)

Γ (d/2)
.

Using the fact that for k even we have

Γ

(
n

2
+ k

2

)
= (n + k − 2)

2

(n + k − 4)

2
· · · n

2
Γ

(
n

2

)
= 1

2k/2
(n + k − 2)(n + k − 4) · · ·n︸ ︷︷ ︸

k/2 terms

Γ

(
n

2

)
,

we conclude that

Mk

(
γ N
�

) ≤ (dN)k/2

[d(N − 1) + k − 2][d(N − 1) + k − 4] · · · [d(N − 1)]
× ([

d(� − 1) + k − 2
][

d(� − 1) + k − 4
] · · · [d(� − 1)

]
+ (d + k − 2)(d + k − 4) · · ·d)

≤ (dN)k/2

[d(N − 1)]k/2

([
d(� − 1) + k − 2

][
d(� − 1) + k − 4

] · · · [d(� − 1)
]

+ (d + k − 2)(d + k − 4) · · ·d)
≤ 2k/2([d(� − 1) + k − 2

][
d(� − 1) + k − 4

] · · · [d(� − 1)
]

+ (d + k − 2)(d + k − 4) · · ·d)
≤ Cd,k,�, (30)

where Cd,k,� depends only on d , k and �.



1006 K. Carrapatoso

We proved then a uniform bound in N for k even. If k is odd we use |v|k ≤ |v|k−1 + |v|k+1 with the last estimate
to conclude. �

Now, using this explicit formula for γ N
� computed above, we prove that γ N is γ -chaotic, where γ is the Gaussian

probability measure in Rd , i.e. γ (v) = (2π)−d/2e−|v|2/2, for v ∈ Rd . The proof presented here is an adaptation of [6],
where it is proved that the uniform probability measure on the sphere Sn−1(

√
n) ⊂ Rn is γ1-chaotic, with γ1(x) =

(2π)−1/2e−x2/2 the one-dimensional Gaussian measure.

Lemma 11. The sequence of probability measures γ N ∈ P(SN
B ) is γ -chaotic, more precisely, for any integer � such

that d� ≤ d(N − 2) − 3 we have∥∥γ N
� − γ ⊗�

∥∥
L1 ≤ 2

d(� + 2) + 2

dN − d(� + 2) − 2
.

Proof. Let � be an even integer. Then we have

|Sd(N−�−1)−1|
|Sd(N−1)−1| = 1

πd�/2

Γ (d(N − 1)/2)

Γ (d(N − � − 1)/2)

= (dN)d�/2

(2π)d�/2

(
1 − d + 2

dN

)(
1 − d + 4

dN

)
· · ·

(
1 − d(� + 1)

dN

)
.

By the explicit formula of γ N
� in Lemma 10 we obtain

γ N
� = (N/(N − �))d/2

(2π)d�/2

(
1 − d + 2

dN

)
· · ·

(
1 − d(� + 1)

dN

)(
1 − |V�|2

dN
− |V̄�|2

dN(N − �)

)(d(N−�−1)−2)/2

+
.

Since γ N
� and γ ⊗� are probability densities, the L1 norm of their difference can be computed in the following way

∥∥γ N
� − γ ⊗�

∥∥
L1 = 2

∫
Rd�

(
γ N
�

γ ⊗�
− 1

)
+
γ ⊗� dV�, (31)

and we shall denote

γ N
�

γ ⊗�
=
(

N

N − �

)d/2

h(V�)A

with

h(V�) := e|V�|2/2
(

1 − |V�|2
dN

− |V̄�|2
dN(N − �)

)(d(N−�−1)−2)/2

+

and

A :=
(

1 − d + 2

dN

)
· · ·

(
1 − d(� + 1)

dN

)
.

We obtain that

logh(V�) = |V�|2
2

+ d(N − � − 1) − 2

2
log

(
1 − |V�|2

dN
− |V̄�|2

dN(N − �)

)
≤ |V�|2

2
+ d(N − � − 1) − 2

2
log

(
1 − |V�|2

dN

)
,
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and since the function α(z) = z/2 + [(d(N − � − 1) − 2)/2] log(1 − z/dN) has a maximum for z = d(� + 1) + 2, we
deduce

logh(V�) ≤ d(� + 1) + 2

2
+ d(N − � − 1) − 2

2
log

(
1 − d(� + 1) + 2

dN

)
, (32)

for d� ≤ d(N − 1) − 3.
On the other hand, for the quantity A, we have

log

[(
1 − d(� + 1) + 2

dN

)
A

]
=

(d(�+1)+2)/2∑
j=1

log

(
1 − 2j

dN

)

≤
∫ (d(�+1)+2)/2

0
log

(
1 − 2x

dN

)
dx

= −d(N − � − 1) − 2

2
log

(
1 − d(� + 1) + 2

dN

)
− d(� + 1) + 2

2
, (33)

again for d� ≤ d(N − 1) − 3.
Combining (32) and (33) we obtain

log

[
h(V�)

(
1 − d(� + 1) + 2

dN

)
A

]
≤ 0

and then(
1 − d(� + 1) + 2

dN

)
γ N
�

γ ⊗�
≤ (N − �)d/2

Nd/2
,

which implies

γ N
�

γ ⊗�
− 1 ≤ d(� + 1) + 2

dN − d(� + 1) − 2
.

Plugging this expression in (31) we deduce∥∥γ N
� − γ ⊗�

∥∥
L1 ≤ 2d(� + 1) + 4

dN − d(� + 1) − 2
,

which is valid if � is even.
Finally, if � is odd, then � + 1 is even and we shall write∥∥γ N

� − γ ⊗�
∥∥

L1 ≤ ∥∥γ N
�+1 − γ ⊗�+1

∥∥
L1 ≤ 2

d(� + 2) + 2

dN − d(� + 2) − 2

for d� ≤ d(N − 2) − 3, which concludes the proof. �

3. Chaotic sequences in Kac’s sense

In this section, inpired by the work [3], we shall construct a chaotic sequence of probability measures on the Boltz-
mann’s sphere based on the tensorization of some suitable probability f on Rd and conditioning to SN

B . We shall give
a quantitative rate of the chaos convergence, proving a precise version of point (i) in Theorem 3.

First of all, we define

ZN(f ; r, z) =
∫
SN(r,z)

f ⊗N dγ N
r,z, and Z′

N(f ; r, z) =
∫
SN (r,z)

f ⊗N

γ ⊗N
dγ N

r,z, (34)
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for r ∈ R+ and z ∈Rd , and we shall investigate their asymptotic behaviour. We remark that, since γ ⊗N is constant on
SN(r, z), we have

Z′
N(f ; r, z) = ZN(f ; r, z)

γ ⊗N

and we shall study in the sequel only the behaviour of Z′
N(f ; r, z).

Define the space Pk(R
d) := {f ∈ P(Rd);Mk(f ) := ∫ |v|kf dv < ∞}, for some k ≥ 1. Let us consider f ∈

P6(R
d) ∩ Lp(Rd), for some p > 1, a probability measure that verifies∫

Rd

vf (v)dv = 0,

∫
Rd

v ⊗ vf (v)dv = EId,

(35)∫
Rd

|v|2f (v)dv = dE = E,

∫
Rd

(|v|2 − E
)2

f (v)dv = Σ2,

where Id is the d-dimensional identity matrix.

3.1. Preliminary results

Before study the asymptotic behaviour of Z′
N , we shall state some preliminary results that will be useful in the sequel.

Consider (Vj )j∈N∗ a sequence of random variables i.i.d. in Rd with same law f , then the law of the couple (V1,V2
1 )

is

h(v,u) = f (v)δu=|v|2 ∈ P
(
Rd ×R+

)
. (36)

Moreover, we have the following lemma.

Lemma 12. The random variable SN :=∑N
j=1(Vj , |Vj |2) has law sN(z,u)dz du with

sN (z,u) := |SN(
√

u, z)|
2(u − |z|/N2)1/2Nd/2

ZN(f ;√u, z),

where z ∈ Rd and u ∈R+.

Proof. Let ϕ ∈ Cb(R
d ×R+), with the change of coordinates (21)–(22) v → u, we have

E

[
ϕ

(
N∑

j=1

Vj ,

N∑
j=1

|Vj |2
)]

=
∫
RdN

ϕ

(
N∑

j=1

vj ,

N∑
j=1

|vj |2
)

f ⊗N dV =
∫
RdN

ϕ

(√
NuN,

N∑
j=1

|uj |2
)

f ⊗N dU.

Denoting r2 =∑N−1
j=1 |uj |2 and splitting the integral, the last equation is equal to∫ ∞

0

∫
Rd

ϕ
(√

NuN, r2 + |uN |2){∣∣Sd(N−1)−1(r)
∣∣ ∫

Sd(N−1)−1(r)

f ⊗N dσd(N−1)−1
r

}
duN dr,

where σn−1
R is the uniform probability measure on Sn−1(R). Making the change of coordinates w = r2 + |uN |2 and

z = √
NuN , we obtain∫ ∞

0

∫
Rd

ϕ(z,w)

{ |Sd(N−1)−1(
√

w − |z|2/N)|
2(w − |z|/N2)1/2Nd/2

∫
Sd(N−1)−1(

√
w−|z|2/N)

f ⊗N dσ
d(N−1)−1√

w−|z|2/N

}
dz dw

=
∫ ∞

0

∫
Rd

ϕ(z,w)

{ |SN(
√

w,z)|
2(w − |z|/N2)1/2Nd/2

ZN(f ;√w,z)

}
dz dw,

from which we conclude. �
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Since SN is the summation of independent random variables, its law’s density is also given by

sN(z,u) = h∗N(z,u), (37)

and we deduce from the lemma above

ZN(f ;√u, z) = 2(u − |z|/N2)1/2Nd/2h(∗N)(z,u)

|SN(
√

u, z)| . (38)

Lemma 13. If f ∈ P2k(R
d) then h ∈ Pk(R

d+1).

Proof. Let y = (v,u) ∈Rd+1 with v ∈Rd and u ∈R. Then we have∫
Rd+1

|y|kh(y)dy =
∫
Rd+1

(|v|2 + |u|2)k/2
f (v)δu=|v|2 dv du ≤ Ck

(∫
Rd

|v|kf (v)dv +
∫
Rd

|v|2kf (v)dv

)
,

from which we conclude. �

Lemma 14. Suppose f ∈ Lp(Rd) for some p > 1. Then h∗2 ∈ Lq(Rd+1) if

(i) for d = 1: 1 < q < p and q <
2p

p+1
(ii) for d = 2: q ≤ p

(iii) for d ≥ 3: if f ∈ Ls(R
d) (s > 0), for q < p and

q = (d − 2)(p − 1) + sp

(d − 2)(p − 1) + s
> 1.

Proof. We compute first h∗2(v,u) with v, v′ ∈Rd and u,u′ ∈ R.

h∗2(v,u) =
∫
Rd

∫
R

h(v − v′, u − u′)h(v′, u′)du′ dv′

=
∫
Rd

f (v − v′)f (v′)
{∫

R

δu−u′=|v−v′|2δu′=|v′|2 du′
}

dv′

=
∫
Rd

f (v − v′)f (v′)δu=|v−v′|2−|v′|2 dv′.

Moreover, we have

δu=|v−v′|2−|v′|2 = δu=2|v/2−v′|2+|v|2/2.

Then we can compute the Lq norm of h∗2,∫
Rd

∫
R

∣∣h∗2(v,u)
∣∣q dv du

=
∫
Rd

∫
R

∣∣∣∣∫
Rd

f (v − v′)f (v′)δu=2|v/2−v′|2+|v|2/2 dv′
∣∣∣∣q dv du

≤
∫
Rd

∫
R

∣∣∣∣(∫
Rd

δ|v/2−v′|2=u/2−|v|2/4 dv′
)(q−1)/q

×
(∫

Rd

f (v − v′)qf (v′)qδ|v/2−v′|2=u/2−|v|2/4 dv′
)1/q ∣∣∣∣q dv du, (39)

where we used Hölder’s inequality.
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We look to the integral over δ, using w = v
2 − v′∫

Rd

δ|w|2=u/2−|v|2/4 dw = ∣∣Sd−1
∣∣ ∫

R

δr2=u/2−|v|2/4r
d−1 dr,

where we changed to polar coordinates and then, with z = r2

∫
Rd

δ|w|2=u/2−|v|2/4 dw = |Sd−1|
2

∫
R

δz=u/2−|v|2/4z
(d−2)/2 dz

= |Sd−1|
2

(
u

2
− |v|2

4

)(d−2)/2

. (40)

Therefore we obtain, plugging (40) in (39) and using Fubbini,∫
Rd

∫
R

∣∣h∗2(v,u)
∣∣q dv du

≤
∫
Rd

∫
Rd

f (v − v′)qf (v′)q
{∫

R

[ |Sd−1|
2

(
u

2
− |v|2

4

)(d−2)/2]q−1

δu=2|v/2−v′|2+|v|2/2 du

}
dv dv′

= |Sd−1|q−1

2q−1

∫
Rd

∫
Rd

∣∣∣∣v2 − v′
∣∣∣∣(d−2)(q−1)

f (v − v′)qf (v′)q dv dv′ =: A.

Now we have the cases d = 1, d = 2 and d ≥ 3:
(i) d = 1. Splitting the expression, we have

A ≤
∫

|v/2−v′|≤1

f (v − v′)qf (v′)q

|v/2 − v′|q−1
dv dv′ +

∫
Rd

∫
Rd

f (v − v′)qf (v′)q dv dv′

=: T1 + T2.

For the last estimate we have T2 ≤ ‖f ‖2q
Lq ≤ ‖f ‖2q

Lp (because q < p and f is a probability measure), and for the first
term we use Hölder’s inequality

T1 ≤
(∫

|v/2−v′|≤1

1

|v/2 − v′|(q−1)p/(p−q)
dv dv′

)(p−q)/p(∫
|v/2−v′|≤1

f (v − v′)pf (v′)p dv dv′
)q/p

.

Then, the first integral converges if (q − 1)p/(p − q) < 1, which give us T1 ≤ C‖f ‖2q
Lp if

q <
2p

p + 1
.

(ii) d = 2. In this case we have

A ≤ |S1|q−1

2q−1

∫
Rd

∫
Rd

f (v − v′)qf (v′)q dv dv′ = |S1|q−1

2q−1
‖f ‖2q

Lq ≤ |S1|q−1

2q−1
‖f ‖2q

Lp .

(iii) d ≥ 3. We have, using w = v − v′ and u = v′

A = |Sd−1|q−1

2q−1

∫
Rd

∫
Rd

∣∣∣∣v2 − v′
∣∣∣∣(d−2)(q−1)

f (v − v′)qf (v′)q dv dv′

= |Sd−1|q−1

2q−1

1

2(d−2)(q−1)

∫
Rd

∫
Rd

|w − u|(d−2)(q−1)f (w)qf (u)q dw du
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≤ |Sd−1|q−1

2(d−1)(q−1)

{
2C

(∫
Rd

|w|(d−2)(q−1)f (w)q dw

)(∫
Rd

f (u)q du

)}
≤ C‖f ‖q

Lq ‖f ‖q

L
q
m
,

where we have used |w − u|(d−2)(q−1) ≤ C(|w|(d−2)(q−1) + |u|(d−2)(q−1)) and m = (d − 2)(q − 1).
Finally, we have ‖f ‖q

Lq ≤ ‖f ‖q
Lp and with the hypothesis f ∈ Lp ∩ Ls , we have ‖f ‖L

q
m

< ∞ for m = s(p −
q)/(p − 1) and q < p (see Lemma 34 in Appendix A.2), more precisely for

q = (d − 2)(p − 1) + sp

(d − 2)(p − 1) + s
> 1. �

3.2. Asymptotic behaviour of Z′
N

In this section we shall study the behaviour of Z′
N when N goes to infinity. First of all, let us state a version of the

Central Limit Theorem, also known as Berry–Esseen type theorem, which is the main ingredient of the proof of the
asymptotic of Z′

N in Theorem 17. The proof of the CLT presented here is a slightly adaptation of [8], Theorem 4.6
(see also [3], Theorem 27).

Theorem 15 (Central Limit Theorem). Let g ∈ P3(R
D) such that, for some integer k ≥ 1, we have g∗k ∈ Lp(RD)

for some p > 1. Moreover, assume that∫
RD

xg(x)dx = 0,

∫
RD

(x ⊗ x)g(x)dx = ID,

∫
RD

|x|3g(x)dx ≤ C3. (41)

Then there exists a constant C = C(D,p,‖g∗k‖Lp) > 0 and N(k,p) such that for all N > N(k,p) we have

‖gN − γ ‖L∞ = sup
x∈RD

∣∣gN(x) − γ (x)
∣∣≤ C√

N
,

where gN(x) = ND/2g∗N(
√

Nx) is the normalized N -convolution power of g.

In the sequel we will need the following lemma, and we refer again to [3], Proposition 26, and [8], Lemma 4.8, for
its proof.

Lemma 16. (i) Consider g ∈ P3(R
D) satisfying (41). Then, there exists δ ∈ (0,1) such that

∀ξ ∈ B(0, δ)
∣∣̂g(ξ)

∣∣≤ e−|ξ |2/4.

(ii) Consider g ∈ P(RD) ∩ Lp(RD) for 1 < p ≤ ∞. For any δ > 0 there exists κ(δ) = κ(M3(g),‖g‖Lp , δ) ∈ (0,1)

such that

sup
|ξ |≥δ

∣∣̂g(ξ)
∣∣≤ κ(δ).

Proof of Theorem 15. We remark that

ĝN (ξ) = ĝ

(
ξ√
N

)N

, γ̂N(ξ) = γ̂

(
ξ√
N

)N

.

We have g∗k ∈ L1 ∩ Lp , for p ∈ (1,∞], and then by the Hausdorff–Young inequality we deduce that (̂g∗k) = (ĝ)k

lies in Lp′ ∩ L∞ with p′ ∈ (1,∞]. Furthermore, ĝN (ξ) ∈ L1 for any N ≥ kp′. Hence we shall use the inverse Fourier
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transform to write

∣∣gN(x) − γ (x)
∣∣ = (2π)D

∣∣∣∣∫
RD

eiξ ·x(ĝN (ξ) − γ̂ (ξ)
)

dξ

∣∣∣∣
≤ (2π)D

∫
RD

∣∣̂gN(ξ) − γ̂ (ξ)
∣∣dξ. (42)

Spliting the last integral in low and high frequencies, we obtain∫
RD

∣∣̂gN(ξ) − γ̂ (ξ)
∣∣dξ ≤

∫
|ξ |≥√

Nδ

∣∣̂gN(ξ)
∣∣dξ +

∫
|ξ |≥√

Nδ

∣∣γ̂ (ξ)
∣∣dξ

+
∫

|ξ |<√
Nδ

∣∣̂gN(ξ) − γ̂ (ξ)
∣∣dξ

=: T1 + T2 + T3,

for some δ ∈ (0,1).
For the first term, we write

T1 ≤
∫

|ξ |≥√
Nδ

∣∣∣∣̂g( ξ√
N

)∣∣∣∣N dξ = ND/2
∫

|η|≥δ

∣∣̂g(η)
∣∣dη

≤ ND/2
(

sup
η≥δ

∣∣̂g(η)k
∣∣)N/k−p′ ∫

|η|≥δ

∣∣̂g(η)k
∣∣p′

dη

≤ ND/2κ(δ)N/k−p′
CD,p

∥∥g∗k
∥∥p′

Lp ,

where δ ∈ (0,1) is given by Lemma 16(i) and κ(δ) is given by Lemma 16(ii) applied to g∗k (because we have
supposed only g∗k ∈ Lp). We get the same estimate for the second term, then we obtain that there exists a constant
C = C(D,p,‖g∗k‖Lp) such that

T1 + T2 ≤ C√
N

.

Finally, for the third term we have

T3 =
∫

|ξ |<√
Nδ

|̂gN(ξ) − γ̂ (ξ)|
|ξ |3 |ξ |3 dξ

and we can estimate

|̂gN(ξ) − γ̂ (ξ)|
|ξ |3 = 1

N3/2

|̂g(ξ/
√

N)N − γ̂ (ξ/
√

N)N |
|ξ/

√
N |3

= 1

N3/2

|̂g(ξ/
√

N) − γ̂ (ξ/
√

N)|
|ξ/

√
N |3 ×

∣∣∣∣∣
N−1∑
k=0

ĝ(ξ/
√

N)kγ̂ (ξ/
√

N)(N−k−1)

∣∣∣∣∣.
Moreover, point (i) in Lemma 16 implies∣∣∣∣∣

N−1∑
k=0

ĝ(ξ/
√

N)kγ̂ (ξ/
√

N)(N−k−1)

∣∣∣∣∣≤
N−1∑
k=0

e−k|ξ |2/(4N)e−(N−k−1)|ξ |2/(4N) ≤ Ne−|ξ |2/8.
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Hence, we obtain

T3 ≤ 1

N3/2

(
sup
η

|̂g(η) − γ̂ (η)|
|η|3

)∫
RD

Ne−|ξ |2/8|ξ |3 dξ

≤ 1√
N

(
M3(g) + M3(γ )

)
CD,

and we finish the proof gathering the estimates of T1, T2 and T3 togheter with (42). �

With these results we are able to state the following theorem about the asymptotic behaviour of Z′
N .

Theorem 17. Consider f ∈ P6(R
d) ∩ Lp(Rd), with p > 1, satisfying (35). Then we have

Z′
N(f ; r, z) =

√
2d

ΣEd/2

(dN)(d(N−1)−2)/2

(r2 − |z|2/N)(d(N−1)−2)/2

e−dN/2

e−r2/2

×
[

exp

(
− |z|2

2EN
− (r2 − NE)2

2Σ2N

)
+ O(1/

√
N)

]
and in the particular case r2 = dN and z = 0, we have

Z′
N(f ;√dN,0) =

√
2d

ΣEd/2

[
exp

(
−N(d − E)2

2Σ2

)
+ O(1/

√
N)

]
.

Proof. Let us introduce

g(v,u) = ΣEd/2h
(
E1/2v,E + Σu

) ∈ P
(
Rd+1),

with v ∈ Rd and u ∈ R. Since h lies in P3(R
d+1) by Lemma 13 and h∗2 ∈ Lq(Rd+1) for some q ∈ (1,p) thanks to

Lemma 14, we have g ∈ P3(R
d+1) and g∗2 ∈ Lq(Rd+1).

Moreover g verifies (by construction)∫
Rd+1

yg(y)dy = 0,

∫
Rd+1

(y ⊗ y)g(y)dy = Id+1,

where Id+1 is the identity matrix in dimension d + 1.
We can now apply Theorem 15 to g, which implies that there exists C > 0 and N0 such that for all N > N0,

sup
(v,u)∈Rd×R

∣∣gN(v,u) − γ (v,u)
∣∣≤ C√

N
,

where gN(v,u) = N(d+1)/2g∗N(
√

Nv,
√

Nu) is the normalized N -convolution power of g, with

g∗N(
√

Nv,
√

Nu) = ΣEd/2h∗N
(
E1/2

√
Nv,NE + Σ

√
Nu

)
,

and

γ (v,u) = e−|v|2/2

(2π)d/2

e−u2/2

(2π)1/2

is the Gaussian measure in dimension d + 1 (recall that we have v ∈ Rd and u ∈ R). It follows that

sup
(v,u)∈Rd×R

∣∣∣∣h∗N(v,u) − Σ−1E−d/2

N(d+1)/2
γ

(
E−1/2N−1/2v,

u − NE

Σ
√

N

)∣∣∣∣≤ C√
N

Σ−1E−d/2

N(d+1)/2
. (43)
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Gathering (43) and (38) we obtain

ZN(f ; r, z)

= 2Nd/2(r2 − |z|/N2)1/2

|SN(r, z)|
Σ−1E−d/2

N(d+1)/2

1

(2π)(d+1)/2

[
exp

(
− |z|2

2EN
− (r2 − NE)2

2Σ2N

)
+ O(1/

√
N)

]
.

Using (20) we have

ZN(f ; r, z) = 2Nd/2(r2 − |z|/N2)1/2

|Sd(N−1)−1|
(

r2 − |z|2
N

)−(d(N−1)−1)/2

+
Σ−1E−d/2

N(d+1)/2

1

(2π)(d+1)/2

×
[

exp

(
− |z|2

2EN
− (r2 − NE)2

2Σ2N

)
+ O(1/

√
N)

]
.

Thanks to the formula∣∣Sn−1
∣∣= 2πn/2

Γ (n/2)

and to Stirling’s formula,

Γ (an + b) = √
2π(an)(an+b−1)/2e−an

(
1 + O(1/n)

)
,

we have

Γ

(
d(N − 1)

2

)
= √

2π(dN)(d(N−1)−1)/22−(d(N−1)−1)/2e−dN/2(1 + O(1/N)
)

and then

ZN(f ; r, z) =
√

2d

ΣEd/2

(
e−r2/2

(2π)dN/2

)
(dN)(d(N−1)−2)/2

(r2 − |z|2/N)(d(N−1)−2)/2

e−dN/2

e−r2/2

×
[

exp

(
− |z|2

2EN
− (r2 − NE)2

2Σ2N

)
+ O(1/

√
N)

]
,

which implies for the case r2 = dN and z = 0

Z′
N(f ;√dN,0) =

√
2d

ΣEd/2

[
exp

(
−N(d − E)2

2Σ2

)
+ O(1/

√
N)

]
. �

3.3. Conditioned tensor product

Consider now

FN = [
f ⊗N

]
SN

B
= f ⊗N

ZN(f ;√dN,0)
γ N

the restriction of the N -fold tensor of f to the Boltzmann’s sphere SN
B , where f verifies (35) with E = d , more

precisely with

E =
∫

|v|2f = d,

i.e. f has the same second order moment that γ .
We have then the following theorem, which is a precise version of point (i) in Theorem 3.
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Theorem 18. Consider f ∈ P6(R
d) ∩ Lp(Rd), with p > 1. Then, the sequence of probability measure FN ∈ P(SN

B )

defined by FN = [f ⊗N ]SN
B

is f -chaotic.
More precisely, for any fixed � there exists a constant C := C(�) > 0 such that for N ≥ � + 1 we have

W1
(
FN

� ,f ⊗�
)≤ ∥∥FN

� − f ⊗�
∥∥

L1
1
≤ C√

N
.

Proof. With the notation V = (v1, . . . , vN) ∈ RdN , V� = (vi)1≤i≤�, V�,N = (vi)�+1≤i≤N and V̄� =∑�
i=1 vi , we have

from the definition of FN

FN(dV ) = f ⊗N(V )γ N(dV )

ZN(f ;√dN,0)

= f ⊗�

γ ⊗�
(V�)

1

Z′
N(f ;√dN,0)

f ⊗(N−�)

γ ⊗(N−�)
(V�,N )γ N(dV ).

We recall that γ N = γ N√
dN,0

and we have

γ N√
dN,0

(dV ) = γ N
� (dV�)γ

N−�√
dN−|V�|2,z

(dV�,N ),

where z = −∑�
i=1 vi = −V̄�. We fix � ≥ 1 and N ≥ � + 1, then we have

FN
� (V�) =

∫
Rd(N−�)

FN(V )dV�,N

= f ⊗�

γ ⊗�
(V�)

γ N
� (V�)

Z′
N(f ;√dN,0)

∫
SN−�(

√
dN−|V�|2,z)

f ⊗(N−�)

γ ⊗(N−�)
(V�,N )γ N−�√

dN−|V�|2,z
(dV�,N )

= f ⊗�

γ ⊗�
(V�)

Z′
N−�(f ;√dN − |V�|2,−V̄�)

Z′
N(f ;√dN,0)

γ N
� (V�).

Let us first compute the ratio betwenn Z′
N−� and Z′

N , by Theorem 17 we have

Z′
N−�(f ;√dN − |V�|2,−V̄�)

Z′
N(f ;√dN,0)

= (d(N − �))(d(N−�−1)−2)/2

(dN − |V�|2 − |V̄�|2/(N − �))(d(N−�−1)−2)/2

e−d(N−�)/2

e−(dN−|V�|2)/2

×
[

exp

(
− |V̄�|2

2E(N − �)
− (d� − |V�|2)2

2Σ2(N − �)

)
+ O

(
N−1/2)].

Using the later expression with Lemma 10 one obtains

FN
� (V�) = f ⊗�

γ ⊗�
(V�)

(d(N − �))(d(N−�−1)−2)/2

(dN − |V�|2 − |V̄�|2/(N − �))(d(N−�−1)−2)/2

ed�/2

e|V�|2/2

×
[

exp

(
− |V̄�|2

2E(N − �)
− (d� − |V�|2)2

2Σ2(N − �)

)
+ O

(
N−1/2)]

× |Sd(N−�−1)−1|
|Sd(N−1)−1|

(dN − |V�|2 − |V̄�|2/(N − �))
(d(N−�−1)−2)/2
+

(dN)(d(N−1)−2)/2((N − �)/N)d/2

= f ⊗�

[
exp

(
− |V̄�|2

2E(N − �)
− (d� − |V�|2)2

2Σ2(N − �)

)
+ O

(
N−1/2)]1dN−|V�|2−|V̄�|2/(N−�)>0

× |Sd(N−�−1)−1|
|Sd(N−1)−1|

(d(N − �))(d(N−�−1)−2)/2

(dN)(d(N−1)−2)/2

(
N

N − �

)d/2

(2πe)d�/2.
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Since(
N

N − �

)d/2

= O(1),

we have

FN
� (V�) = f ⊗�(V�)θ

N
1 (V�)θ

N
2 (V�) (44)

with

θN
1 =

[
exp

(
− |V̄�|2

2E(N − �)
− (d� − |V�|2)2

2Σ2(N − �)

)
+ O

(
N−1/2)]1dN−|V�|2−|V̄�|2/(N−�)>0,

(45)

θN
2 = |Sd(N−�−1)−1|

|Sd(N−1)−1|
(d(N − �))(d(N−�−1)−2)/2

(dN)(d(N−1)−2)/2
(2πe)d�/2.

Thanks to Stirling’s formula again, we obtain

|Sd(N−�−1)−1|
|Sd(N−1)−1| =

(
dN

2π

)dl/2(
1 + O

(
N−1)), θN

2 = 1 + O
(
N−1).

Moreover we can easily see by (45) that ‖θN
1 ‖

L∞ ≤ C uniformly in N , and∣∣θN
1 (V�) − 1

∣∣ = ∣∣θN
1 (V�) − 1

∣∣1|V�|≤R + ∣∣θN
1 (V�) − 1

∣∣1|V�|≥R

≤
∣∣∣∣( |V̄�|2

2E(N − �)
+ (d� − |V�|2)2

2Σ2(N − �)

)
+ O(1/

√
N)

∣∣∣∣1|V�|≤R + C
|V�|b
Rb

1|V�|≥R

≤ C

(
R2

N
+ R4

N
+ O(1/

√
N)

)
1|V�|≤R + C

|V�|b
Rb

1|V�|≥R, (46)

for some R > 0 and b ≥ 0.
Finally, choosing R = N1/8 and b = 4 one has∥∥FN

� − f ⊗�
∥∥

L1
1
= ∥∥(θN

1 θN
2 − 1

)
f ⊗�

∥∥
L1

1

≤ (
θN

2 − 1
)∥∥θN

1 f ⊗�
∥∥

L1
1
+ ∥∥(θN

1 − 1
)
f ⊗�

∥∥
L1

1

≤ C

N

∥∥f ⊗�
∥∥

L1
1
+ C√

N

∥∥f ⊗�
∥∥

L1
1
+ C√

N

∥∥f ⊗�
∥∥

L1
5

≤ C�

N
‖f ‖L1

1
+ C�√

N
‖f ‖L1

1
+ C�√

N
‖f ‖L1

5
. �

4. Entropic and Fisher’s information chaos

We recall that in the Section 1.2 we defined the relative entropy and relative Fisher’s information of a probability
measure. Moreover, we defined stronger notions of chaos, namely the entropic chaos in Definition 2 and the Fisher’s
information chaos in Definition 4. We prove in this section precise versions of point (ii) in Theorem 3, Theorem 6 and
Theorem 7.

4.1. Entropic chaos for the conditioned tensor product

We shall study now the entropic chaoticity of the probability measure FN = [f ⊗N ]SN
B

with quantitative rate in the
following theorem, which is a precise version of point (ii) of Theorem 3.
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Theorem 19. Let f ∈ P6(R
d) ∩ Lp(Rd) for some p > 1 verifies

∫
vf = 0 and

∫ |v|2f = d . Then, the sequence of
probabilities FN := [f ⊗N ]SN

B
∈ P(SN

B ) is entropically f -chaotic. More precisely, there exists C > 0 such that we
have ∣∣∣∣ 1

N
H
(
FN |γ N

)− H(f |γ )

∣∣∣∣≤ C√
N

.

Proof. We write

1

N
H
(
FN |γ N

) = 1

N

∫
SN
B

(
log

dFN

dγ N

)
dFN

= 1

N

∫
SN
B

(
log

f ⊗N

Z′
N(f ;√dN,0)γ ⊗N

)
dFN

=
∫
Rd

(
log

f

γ

)
dFN

1 − 1

N
logZ′

N(f ;√dN,0).

Thanks to the assumptions on f , we can use Theorem 17 to obtain

1

N
H
(
FN |γ N

)=
∫
Rd

(
log

f

γ

)
dFN

1 + O(1/N).

Using (44)–(45) we have FN
1 (v) = θN

1 (v)θN
2 (v)f (v) or more precisely

FN
1 (v) = f (v)

(
e−|v|2/(2N)−|v|4/(2N) + O(1/

√
N)

)(
1 + O(1/N)

)=: θN(v)f (v),

and then

1

N
H
(
FN |γ N

)− H(f |γ ) =
∫
Rd

(
θN − 1

)
f

(
log

f

γ

)
+ O(1/N). (47)

We estime now the first term of the right-hand side, denoted by T ,

|T | ≤
∫
Rd

∣∣θN − 1
∣∣f | logγ |dv +

∫
Rd

∣∣θN − 1
∣∣f | logf |dv

≤
∫
Rd

∣∣θN − 1
∣∣f C

(
1 + |v|2)dv +

∫
Rd

∣∣θN − 1
∣∣f | logf |dv

=: T1 + T2.

We recall that (already computed in equation (46))

∣∣θN − 1
∣∣≤ C

(
R2

N
+ R4

N
+ 1√

N

)
1|v|≤R + C

|v|k
Rk

1|V�|≥R

for some k ≥ 0 and R > 0. Then, for the first term we have

|T1| ≤
∫

BR

∣∣θN − 1
∣∣f (1 + |v|2)+

∫
BC

R

∣∣θN − 1
∣∣f (1 + |v|2)

≤
(

R2

N
+ R4

N
+ 1√

N

)
‖f ‖L1

2
+ 1

Rk

(
Mk(f ) + Mk+2(f )

)
≤ Cf√

N
,

where we have chosen R = N1/8 and k = 4.
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For the last term T2, define A > 1 and BR = {v ∈ Rd; |v| ≤ R}, then we have

|T2| ≤
∫

BR

∣∣θN − 1
∣∣f | logf | +

∫
BC

R

∣∣θN − 1
∣∣f | logf |1f ≥A

+
∫

BC
R

∣∣θN − 1
∣∣f | logf |11≤f ≤A +

∫
BC

R

∣∣θN − 1
∣∣f | logf |1

e−|v|2≤f ≤1

+
∫

BC
R

∣∣θN − 1
∣∣f | logf |1

0≤f ≤e−|v|2 .

Now we compute each one of this five terms. First, we deduce that

|T2,1| ≤
(

R2

N
+ R4

N
+ 1√

N

)∫
BR

f | logf | =
(

R2

N
+ R4

N
+ 1√

N

)
Cf .

For the second term, we use that f | logf | ≤ f (1+p)/2 ≤ f p/A(p−1)/2 over {f ≥ A, |v| ≥ R}, and then

|T2,2| ≤ ‖f ‖p
Lp

A(p−1)/2
.

Using f | logf | ≤ f | logA| over {1 ≤ f ≤ A, |v| ≥ R} for the third one, we obtain

|T2,3| ≤ logA

Rk
Mk(f ).

Thanks to f | logf | ≤ f |v|2 ≤ f |v|m+2/Rm over {e−|v|2 ≤ f ≤ 1, |v| ≥ R}, we get

|T2,4| ≤ 1

Rm
Mm+2(f ).

Finally, by f | logf | ≤ 4
√

f ≤ 4e−|v|2/2 over {0 ≤ f ≤ e−|v|2, |v| ≥ R}
|T2,4| ≤ Ce−R.

Putting togheter all this terms, we have

|T2| ≤
(

R2

N
+ R4

N
+ 1√

N

)
Cf + ‖f ‖p

Lp

A(p−1)/2
+ logA

Rk
Mk(f ) + Mm+2(f )

Rm
+ Ce−R

≤ Cf√
N

choosing A(p−1)/2 = Rk , R = N1/8, k = 6 and m = 4.
We have then |T | ≤ CN−1/2 and we conclude plugging it in (47). �

4.2. Relations between the different notions of chaos

First of all, we start with the following lemma and we refer to [3,8,11] and the references therein for a proof.

Lemma 20. For all probabilities μ,ν ∈ P(Z) on a locally compact metric space, we have

H(μ|ν) = sup
ϕ∈Cb(Z)

{∫
Z

ϕ dμ − log

(∫
Z

eϕ dν

)}
= sup

ϕ∈Cb(Z),
∫
Z eϕ dν=1

∫
Z

ϕ dμ.

The following theorem is an adaptation of [3], Theorem 17, where the same result is proved for probability mea-
sures on the usual sphere SN−1(

√
N) in RN .
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Theorem 21. Consider g ∈ P6(R
d) ∩ Lp(Rd), for some p ∈ (1,∞], where g satisfies

∫
vg = 0 and

∫ |v|2g = d .
Consider GN a probability measure on SN

B such that for some positive integer �, we have GN
� ⇀ π� in P(Rd�) when

N goes to infinity.
Then, we have

1

�
H
(
π�|g⊗�

)≤ lim inf
N→∞

1

N
H
(
GN |[g⊗N

]
SN
B

)
.

Proof. Let fix a function ϕ := ϕ(v1, . . . , v�) ∈ Cb(R
d�) such that∫

Rd�

eϕg⊗� = 1, H
(
π�|g⊗�

)≤
∫
Rd�

ϕ dπ� + ε (48)

for some ε > 0, which is possible thanks to Lemma 20. We introduce the function

Φ(v1, . . . , vN) := ϕ(v1, . . . , v�) + · · · + ϕ(v(m−1)�+1, . . . , vm�),

where m is the integer part of N/�, i.e. N = m� + r with 0 ≤ r ≤ � − 1. Thanks again to Lemma 20 we have

1

N
H
(
GN |[g⊗N

]
SN
B

)≥ 1

N

∫
SN
B

ΦGN(dV ) − 1

N
log

(∫
SN
B

eΦ d
[
g⊗N

]
SN
B

)
.

For the first term of the right-hand side, using the symmetry of GN and the convergence of its �-marginal, we have

1

N

∫
SN
B

ΦGN(dV ) = m

N

∫
Rd�

ϕ dGN
� N→∞−→ 1

�

∫
Rd�

ϕ dπ�.

We note that the second term of the right-hand side can be written in the following way∫
SN
B

eΦ d
[
g⊗N

]
SN
B

= 1

Z′
N(g;√dN,0)

∫
SN
B

eΦ

(
g

γ

)⊗N

dγ N

since [
g⊗N

]
SN
B

= g⊗N

ZN(g;√dN,0)
γ N .

Applying Theorem 17 and thanks to
∫ |v|2g = d we get

Z′
N(g;√dN,0) =

√
2d

Σ(g)

(
1 + O(1/

√
N)

)
,

where Σ(g) is given by (35) applied to g, and then

lim
N→∞

(
1

N
logZ′

N(g;√dN,0)

)
= 0. (49)

For the other term, denoting u = (v1, . . . , vm�), w = (vm�+1, . . . , vN) and w̄ = vm�+1 + · · · + vN , we write∫
SN(

√
dN,0)

eΦ

(
g

γ

)⊗N

dγ N

=
∫
Rdr

|Sd(N−r−1)−1|
|Sd(N−1)|

(dN − |w|2 − |w̄|2/(N − r))(d(N−r−1)−2)/2

(dN)(d(N−1)−2)/2

(
N

N − r

)d/2(
g

γ

)⊗r

×
{∫

S�m(
√

dN−|w|2,−w̄)

(
eϕg⊗�

γ ⊗�

)⊗m

dγ N√
dN−|w|2,−w̄

}
dw,
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where the integral in dw have to be taken over the region{
w ∈Rdr |dN − |w|2 − |w̄|2/(�m) > 0

}
.

We recognize that the last integral is equal to Z′
m(eϕg⊗�;√dN − |w|2,−w̄) (where Z′

m is a multi-dimensional
version of Z′

N , obtained replacing N by m�) and by Theorem 17 we have

Z′
m

(
eϕg⊗�;

√
dN − |w|2,−w̄

)
= O(1) × (d�m)(d(�m−1)−2)/2

(dN − |w|2 − |w̄|2/�m)(d(�m−1)−2)/2

e−d�m/2

e−(dN−|w|2)/2

and using (27), we get∫
SN(

√
dN,0)

eΦ

(
g

γ

)⊗N

dγ N = C

∫
Rdr

e−|w|2/2
(

g

γ

)⊗r

dw

= O(1) × (2π)dr/2
∫
Rdr

g⊗r dw = O(1).

With these estimates at hand, we can deduce

lim inf
N→∞

(
− 1

N
log

∫
SN (

√
dN,0)

eΦ

(
g

γ

)⊗N

dγ N

)
≥ 0

and together with (49) we obtain

lim inf
N→∞

1

N
H
(
GN |[g⊗N

]
SN
B

)≥ 1

�

∫
Rd�

ϕ dπ� ≥ 1

�
H
(
π�|g⊗�

)− ε.

Since ε is arbitrary, we can conclude letting ε → 0. �

Our aim now is to give an analogous result of Theorem 21 for the Fisher’s information. However the strategy here
is different, it is not based on the asymptotic behaviour of Z′

N like before, but on a geometric approach following [8],
where this analogous result is proved in the Kac’s sphere setting. To this purpose, firstly we shall present some results
to conclude with the Theorem 23.

Consider W = (w1, . . . ,wN) ∈ RdN and V = (v1, . . . , vN) ∈ SN
B , where we recall that vi = (vi,α)1≤α≤d , wi =

(wi,α)1≤α≤d ∈Rd for all 1 ≤ i ≤ N .
Let Ph be the projection on the hyperplane {X ∈RdN ;∑N

i=1 xi = 0}, then it can be computed in the following way

PhW = W −
d∑

α=1

(
W · eN

α

|eN
α |

)
eN
α

|eN
α | ,

where eN
α = (eα, . . . , eα) ∈ RdN with eα = (δαβ)1≤β≤d ∈Rd . Since |eN

α | = √
N we obtain

PhW = W − 1

N

d∑
α=1

(
W · eN

α

)
eN
α . (50)

Moreover, the projection Ps on the sphere {X ∈RdN ;∑N
i=1 |xi |2 = dN} is given by

PsW = √
dN

W

|W | . (51)
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Hence the projection PS on the Boltzmann’s sphere SN
B can be computed as the composition of the others, i.e.

PS = Ps ◦ Ph, more precisely

PSW = (Ps ◦ Ph)W

= √
dN

PhW

|PhW |

= √
dN

W − (1/N)
∑d

α=1(W · eN
α )eN

α

|W − (1/N)
∑d

α=1(W · eN
α )eN

α | , (52)

or in coordinates, for 1 ≤ j ≤ N and 1 ≤ β ≤ d ,

(PSW)j,β =
√

dN

|W − (1/N)
∑d

α=1(W · eN
α )eN

α |

(
wj,β − (1/N)

N∑
k=1

wk,β

)
. (53)

Consider V ∈ SN
B and a smooth function F defined on SN

B . Then the gradient ∇h on {X ∈ RdN ;∑N
i=1 xi = 0} is

(recall that ∇ stands for the usual gradient on RdN )

∇hF (V ) = ∇F(V ) − 1

N

N∑
i=1

d∑
α=1

∂vi,α
F (V )eN

α .

Moreover, the gradient ∇s on the sphere {X ∈RdN ;∑N
i=1 |xi |2 = dN} is given by

∇sF (V ) = ∇F(V ) −
(

V

|V | · ∇F(V )

)
V

|V | .

Combining them we can compute the gradient on SN
B , which is given by

∇SF(V ) = ∇hF (V ) −
(

V

|V | · ∇hF (V )

)
V

|V |

= ∇F(V ) − 1

N

N∑
i=1

d∑
α=1

∂vi,α
F (V )eN

α

−
[
V · ∇F(V ) − 1

N

N∑
i=1

d∑
α=1

∂vi,α
F (V )

(
eN
α · V )] V

|V |2

= ∇F(V ) − 1

N

N∑
i=1

d∑
α=1

∂vi,α
F (V )eN

α − [
V · ∇F(V )

] V

|V |2 , (54)

since eN
α · V =∑N

i=1 vi,α = 0 because V ∈ SN
B .

Let Φ be a smooth vector field on RdN , which written in composants is Φ(V ) = (Φ1(V ), . . . ,ΦN(V )) with
Φi(V ) = (Φi,1(V ), . . . ,Φi,d(V )) for 1 ≤ i ≤ N . We denote by divS the divergence on SN

B , then it can be computed
in the following way

divS Φ(V ) =
N∑

j=1

d∑
β=1

∇SΦj,β(V ) · ej,β,
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where ej,β = (δjkδβγ )(1≤k≤N)(1≤γ≤d) ∈RdN . Using (54) and after some simplifications we obtain

divS Φ(V ) = divΦ(V ) − 1

N

N∑
j=1

d∑
β=1

N∑
i=1

∂vi,β
Φj,β(V ) −

N∑
j=1

d∑
β=1

V · ∇Φj,β(V )
vj,β

|V |2 . (55)

Lemma 22. Consider a function F and a vector field Φ , smooth enough, defined on SN
B . Then the following integra-

tion by parts formula on SN
B holds

∫
SN
B

{
∇SF(V ) · Φ(V ) + F(V )divS Φ(V ) − d(N − 1) − 1

dN
F(V )Φ(V ) · V

}
dγ N(V ) = 0.

Proof. The proof presented here is an adaptation of [8], Lemma 4.16. Let χ be a smooth function with compact
support on R+ and define for V ∈RdN

φ(V ) := χ
(|PhV |)(F ◦ PS)(V )(Φ ◦ PS)(V ).

We can compute divφ(V ) and after some simplifications using the formulæ for the projections (50) and (52), the
gradient (54) and the divergence (55) on SN

B we get

divφ(V ) = χ ′(|PhV |)√
dN

F(PSV )PSV · Φ(PSV )

+ χ
(|PhV |)∇SF(PSV ) · Φ(PSV )

√
dN

|PhV |

+ χ
(|PhV |)F(PSV )divS Φ(PSV )

√
dN

|PhV | . (56)

Integrating (56) we get∫
RdN

F (PSV )PSV · Φ(PSV )
χ ′(|PhV |)√

dN
dV

+
∫
RdN

[∇SF(PSV ) · Φ(PSV ) + F(PSV )divS Φ(PSV )
]
χ
(|PhV |)√

dN

|PhV | dV = 0.

Using the change of coordinates V = (v1, . . . , vN) → U = (u1, . . . , uN) given by Lemma 9 and then the variables
w =∑N

i=1 |ui |2 and z = √
NuN , we obtain that the last expression is equal to

∫ ∞

0

∫
Rd

{ |Sd(N−1)−1|
2Nd/2

(
w − |z|2

N

)(d(N−1)−2)/2 ∫
SN(w,z)

F (V )V · Φ(V )dγ N
w,z

}
χ ′(

√
w − |z|2/N)√

dN
dz dw

+
∫ ∞

0

∫
Rd

{ |Sd(N−1)−1|
2Nd/2

(
w − |z|2

N

)(d(N−1)−2)/2

×
∫
SN (w,z)

[∇SF(PSV ) · Φ(PSV ) + F(PSV )divS Φ(PSV )
]

dγ N
w,z

}

× χ

(√
w − |z|2

N

) √
dN√

w − |z|2/N dz dw,
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and then we get∫ ∞

0

∫
Rd

(
w − |z|2

N

)(d(N−1)−2)/2
χ ′(

√
w − |z|2/N)

dN
dz dw

(∫
SN
B

F(V )V · Φ(V )dγ N

)

+
∫ ∞

0

∫
Rd

(
w − |z|2

N

)(d(N−1)−3)/2

χ

(√
w − |z|2

N

)
dz dw

×
(∫

SN
B

[∇SF(V ) · Φ(V ) + F(V )divS Φ(V )
]

dγ N

)
= 0.

Since we have∫ ∞

0

∫
Rd

(
w − |z|2

N

)(d(N−1)−2)/2

χ ′
(√

w − |z|2
N

)
dz dw

= −[
d(N − 1) − 1

]∫ ∞

0

∫
Rd

(
w − |z|2

N

)(d(N−1)−3)/2

χ

(√
w − |z|2

N

)
dz dw,

we obtain the result∫
SN
B

{
∇SF(V ) · Φ(V ) + F(V )divS Φ(V ) − d(N − 1) − 1

dN
F(V )Φ(V ) · V

}
dγ N(V ) = 0.

�

With these results at hand we are able to state the following theorem, which is the Fisher’s information version of
Theorem 21 and the proof is an adaptation of [8], Theorem 4.15.

Theorem 23. Consider GN a probability measure on SN
B such that for some positive integer �, we have GN

� ⇀ π� in
P(Rd�) when N goes to infinity.

Then, we have

1

�
I
(
π�|γ ⊗�

)≤ lim inf
N→∞

1

N
I
(
GN |γ N

)
.

Proof. Let us denote GN =: gNγ N . Using [8] we have the following representation formula

I
(
GN |γ N

) =
∫
SN
B

∣∣∇S loggN
∣∣2gN dγ N

= sup
Φ∈C1

b (RdN ;RdN )

∫
SN
B

(
∇S loggN · Φ − |Φ|2

4

)
gN dγ N

and we obtain by Lemma 22

I
(
GN |γ N

)= sup
Φ∈C1

b (RdN ;RdN )

∫
SN
B

(
d(N − 1) − 1

dN
Φ(V ) · V − divS Φ(V ) − |Φ(V )|2

4

)
gN dγ N . (57)

Furthermore for π� we have, also from [8],

I
(
π�|γ ⊗�

)= sup
ϕ∈C1

b (Rd�;Rd�)

∫
Rd�

(
ϕ · V� − divϕ − |ϕ|2

4

)
π�.
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Let us fix ε > 0 and choose ϕ such that

1

�
I
(
π�|γ ⊗�

)− ε ≤ 1

�

∫
Rd�

(
ϕ · V� − divϕ − |ϕ|2

4

)
π�.

Denote N = q�+ r , 0 ≤ r < �, and define VN = (V�,1, . . . , V�,q,Vr). Choosing Φ(VN) := (ϕ(V�,1), . . . , ϕ(V�,q),0) ∈
C1

b(RdN ;RdN) we obtain from (57) and the symmetry of GN

1

N
I
(
GN |γ N

) ≥ 1

N

∫
SN
B

(
d(N − 1) − 1

dN
Φ(VN) · VN − divS Φ(VN) − |Φ(VN)|2

4

)
GN(dVN)

≥ q

N

∫
Rd�

(
d(N − 1) − 1

dN
ϕ(V�) · V� − divϕ(V�) − |ϕ(V�)|2

4

)
GN

� (dV�) + R(N)

N
,

with

R(N) =
∫
Rd�

�∑
k=1

�∑
i=1

d∑
β=1

(
1

N
∂vi,β

ϕk,β + 1

dN
(∂vi,β

ϕk,β)vi,βvk,β

)
GN

� (dV�).

The last expression is bounded if ∇ϕ decreases rapidly enough at infinity. Hence, passing to the limit we obtain

lim inf
N→∞

1

N
I
(
GN |γ N

) ≥ 1

�

∫
Rd�

(
ϕ · V� − divϕ − |ϕ|2

4

)
π�

≥ 1

�
I
(
π�|γ ⊗�

)− ε,

and we conclude letting ε → 0. �

We can prove now precise versions of implications (i) ⇒ (ii) and (iii) ⇒ (iv) of Theorem 6 as follows.

Theorem 24. Consider GN ∈ P(SN
B ) such that GN

1 ⇀ f in P(Rd). We have the following properties:

(i) If H(f |γ ) < ∞ and limN→∞ 1
N

H(GN |γ N) = H(f |γ ), then GN is f -Kac’s chaotic.
(ii) If I (f |γ ) < ∞ and limN→∞ 1

N
I (GN |γ N) = I (f |γ ), then GN is f -Kac’s chaotic.

Proof. Let us fix � ∈ N∗. Since GN
1 ⇀ f in P(Rd) we know by [16], Proposition 2.2, that GN is tight. Then there

exists a subsequence GN ′
and π� ∈ P(Rd�) such that GN ′

� ⇀ π� in P(Rd�), when N ′ goes to infinity (and in particular
π1 = f ).
(i) By Theorem 21 we have

1

�
H
(
π�|γ ⊗�

)≤ lim inf
N ′→∞

1

N ′ H
(
GN ′ |γ N ′)= H(f |γ ).

Since we also have the reverse inequality by superadditivity of the entropy functional, we obtain

H
(
π�|γ ⊗�

)− �H(f |γ ) =
∫

π� log
π�

γ ⊗�
− �

∫
f log

f

γ

=
∫

π� log
π�

γ ⊗�
−
∫

π� log
f ⊗�

γ ⊗�

=
∫

f ⊗�

(
π�

f ⊗�
log

π�

f ⊗�
− π�

f ⊗�
+ 1

)
= 0,
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which implies π� = f ⊗� a.e. on {f ⊗� > 0}, since the function z �→ z log z − z + 1 is equal to 0 in z = 1. Thanks to
π�,f

⊗� ∈ P(Rd�), we obtain∫
{f ⊗�>0}

π� =
∫

{f ⊗�>0}
f ⊗� = 1.

It follows that π� = f ⊗� a.e. on Rd�, so the whole sequence GN
� converges to f ⊗� and thus GN is f -chaotic.

(ii) The proof of point (ii) being similar, thanks to Theorem 23 and the superadditivity of the Fisher’s information [2],
we skip it. �

Recall another notion of entropic chaos stated in (18), as proposed in [3], Theorem 9 and Open Problem 11, and
[13], Remark 7.11, for GN ∈ P(SN

B ) and f ∈ P6 ∩ Lp(Rd) with p > 1, we consider the following property

lim
N→∞

1

N
H
(
GN |[f ⊗N

]
SN
B

)= 0. (58)

Let us now investigate the relation between condition (58) and the entropic chaos (Definition 2) in the following result,
which shows that, under some assumptions on f , they are equivalent.

Theorem 25. Let f ∈ P6(R
d) ∩ L∞(Rd) and GN ∈ P(SN

B ) such that GN
1 ⇀ f . Suppose further that f (v1) ≥

exp(−α|v1|2 + β) for some α > 0 and β ∈R. Then the following asserstions are equivalent:

(i) limN→∞ 1
N

H(GN |[f ⊗N ]SN
B

) = 0;

(ii) limN→∞ 1
N

H(GN |γ N) = H(f |γ ).

Remark 26. We remark that both conditions (i) and (ii) imply that GN is f -chaotic. Indeed, in [3], Theorem 19 is
proved that (i) implies the f -chaoticity of GN in the Kac’s sphere framework, the generalization to the Boltzmann’s
sphere case is straightforward. Finally, the fact that condition (ii) implies that GN is f -chaotic follows from Theo-
rem 24.

Proof. Denote GN =: gNγ N and FN = [f ⊗N ]SN
B

=: f Nγ N . Then we write

H
(
GN |γ N

) =
∫
SN
B

(
log

gN

f N

)
gN dγ N +

∫
SN
B

(
logf N

)
gN dγ N

= H
(
GN |[f ⊗N

]
SN
B

)+
∫

logf ⊗N dGN −
∫

logγ ⊗N dGN − logZ′
N(f ;√dN,0)

= H
(
GN |[f ⊗N

]
SN
B

)+ N

∫
Rd

logf dGN
1 + dN

2
(log 2π + 1) − logZ′

N(f ;√dN,0) (59)

using the symmetry of GN , the explicit formula for γ ⊗N and the fact that M2(G
N) = dN . Since M2(f ) = d , we

obtain

1

N
H
(
GN |γ N

)− H(f |γ ) = 1

N
H
(
GN |[f ⊗N

]
SN
B

)+
∫
Rd

(
GN

1 − f
)

logf − 1

N
logZ′

N(f ;√dN,0).

The third term of the right-hand side goes to 0 as N → ∞ thanks to Theorem 17. Hence we only need to prove that
the second term of the right-hand side vanishes as N → ∞, which implies that (i) is equivalent to (ii).

With the assumptions on f we obtain | logf | ≤ log‖f ‖L∞ + α|v|2 + β ≤ C1(1 + |v|2). Consider R > 1 and we
have ∫

|v|>R

(
1 + |v|2)f <

1

R4

∫
|v|>R

|v|4f + 1

R4

∫
|v|>R

|v|6f ≤ C2R
−4.
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Let χR be a smooth function such that 0 ≤ χR ≤ 1, χR(v) = 1 for |v| ≤ R and χR(v) = 0 for |v| ≥ R + 1. We can
split the integral to be estimated in the following way∫

Rd

(
GN

1 − f
)

logf =
∫
Rd

χR

(
GN

1 − f
)

logf +
∫
Rd

(1 − χR)
(
GN

1 − f
)

logf. (60)

Let us show first that H(GN
1 ) = ∫

GN
1 logGN

1 is bounded. If we assume condition (ii) then N−1H(GN |γ N) is
bounded. On the other hand, if we assume (i), from (59) we have

1

N
H
(
GN |γ N

)≤ 1

N
H
(
GN |[f ⊗N

]
SN
B

)+ log‖f ‖L∞ + dN

2
(log 2π + 1) − 1

N
logZ′

N(f ;√dN,0),

and again N−1H(GN |γ N) is bounded. Moreover, we obtain thanks to [1] that

H
(
GN

1 |γ N
1

)≤ C
H(GN |γ N)

N

for some C > 0 and we can write

H
(
GN

1 |γ )= H
(
GN

1 |γ N
1

)+
∫

log
γ N

1

γ
GN

1 ,

which is bounded thanks to the explicit computation of γ N
1 in Lemma 10 and to Lemma 11. We deduce, since

H(GN
1 |γ ) = H(GN) + d(log 2π + 1)/2, that H(GN

1 ) is bounded either if we assume (i) or (ii).
Then, for the first term of (60), since χR logf is a bounded function, GN

1 converges weakly to f in P(Rd) and
H(GN

1 ) is bounded, we obtain that
∫

χR(GN
1 −f ) logf → 0 as N → ∞. For the second term of (60) we write (recall

that
∫
(1 + |v|2)GN

1 = 1 + d = ∫
(1 + |v|2)f )∣∣∣∣∫

Rd

(1 − χR)
(
GN

1 − f
)

logf

∣∣∣∣ ≤ C1

∫
Rd

(1 − χR)
(
1 + |v|2)(GN

1 + f
)

≤ C1C2R
−4 + C1(1 + d) − C1

∫
Rd

χR

(
1 + |v|2)GN

1 .

The function χR(1 + |v|2) being bounded and continuous, we know that
∫

χR(1 + |v|2)(GN
1 − f ) → 0 as N → ∞.

Thus passing to the limit in the last expression we obtain

lim sup
N→∞

∣∣∣∣∫
Rd

(1 − χR)
(
GN

1 − f
)

logf

∣∣∣∣ ≤ C1C2R
−4 + C1(1 + d) − C1

∫
Rd

(χR)
(
1 + |v|2)f

≤ 2C1C2R
−4

which concludes the proof letting R → ∞. �

Remark 27. In the setting of the Kac’s sphere (usual sphere SN−1(
√

N)), we find in [3], Theorem 21, a proof of (i)
implies (ii) without the assumption f (v1) ≥ exp(−α|v1|2 + β). We can adapt it to our case in the following way.

Proof of (i) ⇒ (ii). We write from (59) and for δ > 0

1

N
H
(
GN |γ N

)≤ 1

N
H
(
GN |[f ⊗N

]
SN
B

)+
∫

log(f + δ)GN
1 + d

2
(log 2π + 1) − 1

N
logZ′

N(f ;√dN,0).

Since log(f + δ) is a bounded function thanks to f ∈ L∞, H(GN
1 ) is bounded and GN

1 ⇀ f in P(Rd) we have∫
log(f + δ)GN

1 → ∫
log(f + δ)f as N → ∞. We can pass to the limit N → ∞ to obtain

lim sup
N→∞

1

N
H
(
GN |γ N

)≤
∫

log(f + δ)f + d

2
(log 2π + 1).
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Now letting δ → 0, by dominated convergence we obtain

lim sup
N→∞

1

N
H
(
GN |γ N

)≤
∫

f logf + d

2
(log 2π + 1) = H(f |γ ),

and we conclude with this estimate togheter with

H(f |γ ) ≤ lim inf
N→∞

1

N
H
(
GN |γ N

)
from Theorem 21. �

4.3. On a more general class of chaotic probabilities

In the Section 4.1 we have constructed a particular probability measure on SN
B that is entropically chaotic. Hence, a

natural question is whether it is true for a more general class of probabilities on the Boltzmann’s sphere. Theorem 31,
which is a precise version of (ii) ⇒ (iii) in Theorem 6, gives an answer with a quantitative rate.

First of all, let us present some results concerning different forms of measuring chaos that will be useful in the
sequel.

Lemma 28. Consider f,g ∈ P(Rd) and FN,GN ∈ P(RdN). Let us define Mk(F,G) := Mk(F) + Mk(G).
For any k ≥ 2 we have

W2(f, g) ≤ 23/2Mk(f,g)1/(2(k−1))W1(f, g)(k−2)/(2(k−1)) (61)

and

W2(F
N,GN)√
N

≤ 23/2
(

Mk(F
N,GN)

N

)1/(2(k−1))(
W1(F

N,GN)

N

)(k−2)/(2(k−1))

. (62)

The proof of Lemma 28 come from [13], Lemma 4.1, for (61) and (62) is a simple generalization of (61) to the
case of N variables.

We denote by W 1 the MKW distance (12) defined with a bounded distance in Rd , more precisely, for all f,g ∈
P1(R

d),

W 1(f, g) = inf
π∈Π(f,g)

∫
Rd×Rd

min
{|x − y|,1

}
π(dx,dy).

Consider GN ∈ P(RdN) and f ∈ P(Rd). We define then ĜN , δf ∈ P(P(Rd)) by, for all Φ ∈ Cb(P(Rd)),∫
P(Rd )

Φ(ρ)ĜN(dρ) =
∫
RdN

Φ
(
μN

V

)
GN(dV ), μN

V = 1

N

N∑
i=1

δvi
∈ P

(
Rd

)
,

(63)∫
P(Rd )

Φ(ρ)δf (dρ) = Φ(f ).

Furthermore, W stands for the Wasserstein distance on P(P(Rd)). More precisely, for some distance D on P(Rd) we
define

∀μ,ν ∈ P
(
P
(
Rd

))
, WD(μ,ν) := inf

π∈Π(μ,ν)

∫
P(Rd )×P(Rd )

D(f,g)dπ(f,g).

In the particular case of ĜN and δf we have Π(ĜN, δf ) = {ĜN ⊗ δf } and then

WD

(
ĜN , δf

)=
∫
RdN

D
(
μN

V ,f
)
GN(dV ). (64)

We have the following result from [8].
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Lemma 29. Consider f,g ∈ P(Rd) and FN,GN ∈ P(SN
B ). Let us define Mk(F,G) := Mk(F) + Mk(G).

(i) For any k > 2 we have

W2(f, g) ≤ 23/2Mk(f,g)1/kW 1(f, g)1/2−1/k (65)

and

W2(F
N,GN)√
N

≤ 23/2
(

Mk(F
N,GN)

N

)1/k(
W 1(F

N,GN)

N

)1/2−1/k

. (66)

(ii) For any 0 < α1 < 1/(d + 1) and k > d(α−1
1 − d − 1)−1 there exists a constant C := C(d,α1, k) > 0 such that

WW 1

(
ĜN , δf

)≤ CMk

(
GN

1 , f
)1/k

(
W 1

(
GN

2 , f ⊗2)+ 1

N

)α1

. (67)

(iii) For any 0 < α2 < 1/d ′ and k > d ′(α−1
2 − d ′)−1, with d ′ := max(d,2), there exists a constant C := C(d,α2, k) >

0 such that

∣∣W 1
(
GN,f ⊗N

)−WW 1

(
ĜN , δf

)∣∣≤ C
Mk(f )1/k

Nα2
. (68)

The equations (65) and (66) come from [8], Lemmas 2.1 and 2.2, and (67)–(68) are proved in [8], Theorem 1.2.
As a consequence of Lemma 29 we have the following result.

Lemma 30. Consider GN ∈ P(SN
B ) and f ∈ P(Rd) such that Mk(G

N
1 ) and Mk(f ) are finite, for k > 2. Let us denote

Mk := Mk(G
N
1 ) + Mk(f ).

Then for any 0 < α1 < 1/(d + 1) and α1 < k(dk + d + k)−1, 0 < α2 < 1/d ′ and α2 < k(d ′k + d ′)−1, with d ′ :=
max(d,2), there exists a constant C := C(d, k,α1, α2) such that

W2(G
N,f ⊗N)√
N

≤ CM1/k
k

(
W 1

(
GN

2 , f ⊗2)α1 + N−α1 + N−α2
)1/2−1/k

.

Proof. First of all, we remark that N−1Mk(G
N) is equivalent to Mk(G

N
1 ) since GN is symmetric. Then, using

Lemma 29 we have

W2(G
N,f ⊗N)√
N

≤ 22/3M1/k
k

(
W 1(G

N,f ⊗N)

N

)1/2−1/k

≤ 22/3M1/k
k

(
C

Mk(f )1/k

Nα2
+WW 1

(
ĜN , δf

))1/2−1/k

≤ 22/3CM1/k
k

(
N−α2 + (

W 1
(
GN

2 , f ⊗2)+ N−1)α1
)1/2−1/k

,

where we have used successively (66), (68) and (67), with α1 and α2 defined as above. �

We can now state a precise version of (ii) ⇒ (iii) in Theorem 6.

Theorem 31. Consider GN ∈ P(SN
B ). Moreover we suppose that GN is f -chaotic, for some f ∈ P(Rd), and also

that

Mk

(
GN

1

)≤ C1, k ≥ 6,
1

N
H
(
GN |γ N

)≤ C2,
1

N
I
(
GN |γ N

)≤ C3.
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Then GN is entropically f -chaotic. More precisely, there exists C = C(C1,C2,C3) > 0 and for any β < (k −
2)[4(dk + d + k)]−1 a constant C′ := C′(β) such that∣∣∣∣ 1

N
H
(
GN |γ N

)− H(f |γ )

∣∣∣∣≤ C

(
W2(G

N,f ⊗N)√
N

+ C′N−β

)
.

Proof. First of all, thanks to Theorem 21 (with g = γ and � = 1) we have

H(f |γ ) ≤ lim inf
N→∞

1

N
H
(
GN |γ N

)≤ C2

and thanks to Theorem 23

I (f |γ ) ≤ lim inf
N→∞

1

N
I
(
GN |γ N

)≤ C3,

which implies that I (f ) < ∞. Indeed, I (f |γ ) = I (f ) + M2(f ) − 2d , from which we conclude.
Furthermore, since I (f ) ≤ C, f lies in Lp(Rd) for some p > 1 by Sobolev embeddings. Moreover Mk(f ) < ∞

for some k ≥ 6 since Mk(G
N
1 ) is bounded and GN

1 ⇀ f weakly in P(Rd). We have then all the conditions on f to
construct FN = [f ⊗N ]SN

B
satisfying Theorems 18 and 19.

Let us denote

FN = f ⊗N

ZN(f ;√dN,0)
γ N =: f Nγ N

and we compute the relative Fisher’s information with respect to γ N

1

N
I
(
FN |γ N

)= 1

N

∫
SN
B

|∇Sf N |2
f N

dγ N,

where we recall that ∇S is the tangent component to the sphere SN
B of the usual gradient ∇ in RdN . Since |∇Sf N |2 ≤

|∇f N |2, let us compute the usual gradient of f N

|∇f N |2
f N

=
N∑

i=1

|∇Rd f N |2
f N

= 1

ZN(f ;√dN,0)

N∑
i=1

|∇ifi |2
fi

f1 · · ·fi−1fi+1 · · ·fN,

where fi = f (vi).
We can return to the Fisher’s information to obtain

1

N
I
(
FN |γ N

) ≤ 1

N

∫
SN
B

|∇f N |2
f N

dγ N

= 1

N

∫
SN
B

1

ZN(f ;√dN,0)

N∑
i=1

|∇ifi |2
fi

f1 · · ·fi−1fi+1 · · ·fN dγ N

=
∫
Rd

|∇v1f1|2
f1

ZN−1(f ;√dN − |v1|2,−v1)

ZN(f ;√dN,0)
dγ N

1 .

In the proof of Theorem 18 we computed the quantity

Z′
N−1(f ;√dN − |v1|2,−v1)

Z′
N(f ;√dN,0)

γ N
1 (v1) = θN

1 (v1)γ (v1)
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with |θN
1 (v1)| ≤ C′. Now, we use the fact that

ZN−1(f ;√dN − |v1|2,−v1)

ZN(f ;√dN,0)
= 1

γ (v1)

Z′
N−1(f ;√dN − |v1|2,−v1)

Z′
N(f ;√dN,0)

to obtain

1

N
I
(
FN |γ N

)≤
∫
Rd

|∇v1f1|2
f1

θN
1 (v1)dv1 ≤ C. (69)

Since SN
B has positive Ricci curvature (because it has positive curvature), by [18], Theorem 30.22, and [10] the

following HWI inequalities hold

H
(
FN |γ N

)− H
(
GN |γ N

)≤ π

2

√
I
(
FN |γ N

)
W2

(
FN,GN

)
,

(70)
H
(
GN |γ N

)− H
(
FN |γ N

)≤ π

2

√
I
(
GN |γ N

)
W2

(
FN,GN

)
.

Remark 32. In the original HWI inequality, the 2-MKW distance is defined with the geodesic distance on SN
B , however

here we use on SN
B the Euclidean distance inherited from RdN . Fortunately, these distance are equivalent, hence the

HWI inequality holds in our case adding a factor π/2 on the right-hand side.

Multiplying both sides by 1/N we obtain

1

N
H
(
FN |γ N

)− 1

N
H
(
GN |γ N

)≤ π

2

√
I (FN |γ N)

N

W2(F
N,GN)√
N

,

1

N
H
(
GN |γ N

)− 1

N
H
(
FN |γ N

)≤ π

2

√
I (GN |γ N)

N

W2(F
N,GN)√
N

.

Since N−1I (FN |γ N) and N−1I (GN |γ N) are bounded, we deduce∣∣∣∣ 1

N
H
(
FN |γ N

)− H
(
GN |γ N

)∣∣∣∣≤ C
W2(F

N,GN)√
N

. (71)

Finally, we write∣∣∣∣ 1

N
H
(
GN |γ N

)− H(f |γ )

∣∣∣∣ ≤
∣∣∣∣ 1

N
H
(
GN |γ N

)− 1

N
H
(
FN |γ N

)∣∣∣∣
+
∣∣∣∣ 1

N
H
(
FN |γ N

)− H(f |γ )

∣∣∣∣
and thanks to the later estimate (71) with the triangle inequality for the first term of the right-hand side and Theorem 19
for the second one, we obtain∣∣∣∣ 1

N
H
(
GN |γ N

)− H(f |γ )

∣∣∣∣≤ C

(
W2(G

N,f ⊗N)√
N

+ W2(F
N,f ⊗N)√
N

+ 1√
N

)
. (72)

Now we have to estimate the second term of the right-hand side. Hence, thanks to Lemma 30 we have

W2(F
N,f ⊗N)√
N

≤ C′M1/k
k

(
W 1

(
FN

2 , f ⊗2)α1 + N−α1 + N−α2
)1/2−1/k

,
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and from Theorem 18 we have W 1(F
N
2 , f ⊗2) ≤ W1(F

N
2 , f ⊗2) ≤ CN−1/2, which yields

W2(F
N,f ⊗N)√
N

≤ C′M1/k
k

(
N−α1/2 + N−α2

)1/2−1/k

≤ C′N−(α1/2)(1/2−1/k),

with α1 < k(dk + d + k)−1. We conclude putting this last estimate in (72). �

We give a possible answer to [3], Open problem 11, in the Boltzmann’s sphere framework, which is a precise
version of Theorem 7.

Theorem 33. Consider GN ∈ P(SN
B ) such that GN is f -chaotic, for some f ∈ P(Rd), and suppose that

Mk

(
GN

1

)≤ C, k > 2,
1

N
I
(
GN |γ N

)≤ C. (73)

Suppose further that

f ∈ L∞(
Rd

)
and f (v1) ≥ exp

(−a|v1|2
)

(74)

for some constant a > 0.
Then for any fixed �, there exists a constant C = C(d, �,‖f ‖L∞,Mk(G

N
1 ),N−1I (GN |γ N)) > 0 such that for all

N ≥ � + 1 we have

H
(
GN

� |f ⊗�
)≤ CW1

(
GN

� ,f ⊗�
)θ(�,d,k)

,

where θ(�, d, k) = k[d�(k + 3) + 2k + 4]−1. As a consequence, H(GN
� |f ⊗�) → 0 when N → ∞ and condition (19)

holds.

As discussed in the introduction just after Theorem 7, assumptions (73)–(74) of Theorem 33 are natural in the
case of Maxwellian molecules since they are propagated in time. However, the conditioned tensor product assumption
can be made at initial time for the Boltzmann model but it is not propagated. As a consequence of this theorem, we
shall obtain that condition (19) is propagated under the master equation for Maxwellian molecules (see point (iv) of
Theorem 8 below).

Proof of Theorem 33. We write

H
(
GN

� |f ⊗�
) = [

H
(
GN

� |γ ⊗�
)− H

(
f ⊗�|γ ⊗�

)]+
∫ (

GN
� − f ⊗�

)
logγ ⊗�

+
∫ (

f ⊗� − GN
�

)
logf ⊗�

=: T1 + T2 + T3.

Let us split the proof in several steps.
Step 1. For the first term we use the HWI inequality on Rd� [15],

T1 = H
(
GN

� |γ ⊗�
)− H

(
f ⊗�|γ ⊗�

)≤
√

I
(
GN

� |γ ⊗�
)
W2

(
GN

� ,f ⊗�
)
.

Let us first show that the Fisher’s information I (GN
� |γ ⊗�) is bounded thanks to N−1I (GN |γ N) ≤ C. Thanks to [1],

Example 2 (see also [5] for related inequalities) there exists some constant C′ > 0 such that

I (GN
� |γ N

� )

�
≤ C′ I (GN |γ N)

N
.
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We write then

I
(
GN

� |γ N
�

) =
∫ ∣∣∇ logGN

� − ∇ logγ N
�

∣∣2GN
�

= I
(
GN

�

)+
∫ [

2� logγ N
� + ∣∣∇ logγ N

�

∣∣2]GN
� , (75)

and then we deduce that

I
(
GN

�

)≤ I
(
GN

� |γ N
�

)+
∫ [

2� logγ N
� + ∣∣∇ logγ N

�

∣∣2]−GN
� (76)

is bounded thanks to explicit computation of γ N
� in Lemma 10. We conclude that I (GN

� |γ ⊗�) is bounded since
M2(G

N
� ) = d� and writing

I
(
GN

� |γ ⊗�
) = I

(
GN

�

)+
∫ [

2� logγ ⊗� + ∣∣∇ logγ ⊗�
∣∣2]GN

�

= I
(
GN

�

)+ M2
(
GN

�

)− 2d� = I
(
GN

�

)− d�. (77)

Moreover, we have thanks to Lemma 28 applied for GN
� ,f ⊗� ∈ P(Rd�)

W2
(
GN

� ,f ⊗�
)≤ CMk

(
GN

� ,f ⊗�
)1/(2(k−1))

W1
(
GN

� ,f ⊗�
)(k−2)/(2(k−1))

,

where Mk(G
N
� ,f ⊗�) := Mk(G

N
� ) + Mk(f

⊗�). We conclude then

T1 ≤ CMk

(
GN

� ,f ⊗�
)1/(2(k−1))

W1
(
GN

� ,f ⊗�
)(k−2)/(2(k−1))

. (78)

Step 2. Let us denote by BR the ball centered at origin with radius R > 0 on Rd�, by Bc
R its complementary and let

v = (v1, . . . , v�) ∈ Rd�. Since logγ ⊗� = −(d/2) log 2π − |v|2/2, we can write

T2 = 1

2

∫
BR

(
f ⊗� − GN

�

)|v|2 + 1

2

∫
Bc

R

(
f ⊗� − GN

�

)|v|2.

The function φ(v) = |v|2 lies in Lip(BR) with ‖∇φ‖L∞(BR) = 2R. We obtain then∫
BR

(
f ⊗� − GN

�

)|v|2 ≤ 2R sup
‖φ‖Lip(BR)≤1

{∫
φ
(
f ⊗� − GN

�

)}

≤ 2R sup
‖φ‖Lip(Rd�)

≤1

{∫
φ
(
f ⊗� − GN

�

)}
= 2RW1

(
GN

� ,f ⊗�
)
, (79)

where the last equality comes from the duality form for the W1 distance (see for instance [18]). Next we write∫
Bc

R

(
f ⊗� − GN

�

)|v|2 ≤ 1

Rk−2

∫
Bc

R

(
f ⊗� + GN

�

)|v|k = Mk(G
N
� ,f ⊗�)

Rk−2
. (80)

Choosing R such that (79) is equal to (80) we get

T2 ≤ 2(k−2)/(k−1)Mk

(
GN

� ,f ⊗�
)1/(k−1)

W1
(
GN

� ,f ⊗�
)(k−2)/(k−1)

. (81)
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Step 3. Finally, let us investigate the third term T3. We write

T3 =
∫

BR

(
f ⊗� − GN

�

)
logf ⊗� +

∫
Bc

R

(
f ⊗� − GN

�

)
logf ⊗�. (82)

For the first integral in (82) we have, since f ∈ L∞ and f ⊗�(v) ≥ e−a|v|2 ,∫
BR

(
f ⊗� − GN

�

)
logf ⊗� ≤ (

� log‖f ‖L∞(BR) + aR2)∥∥f ⊗� − GN
�

∥∥
L1(BR)

.

Let g = f ⊗� − GN
� and consider a mollifier ρε , i.e. ρε(v) = ε−d�ρ(ε−1v), ρ ∈ C∞

c (Rd�) with ρ ≥ 0,
∫

ρ = 1 and
suppρ ⊂ B1. Then we have

‖g‖L1(BR) ≤ ‖g ∗ ρε‖L1(BR) + ‖g ∗ ρε − g‖L1(BR).

For the first term we obtain

‖g ∗ ρε‖L1(BR) =
∫

BR

{∫ ∣∣ρε(w − v)
∣∣∣∣f ⊗�(v) − GN

� (v)
∣∣dv

}
dw

≤ ‖∇ρε‖L∞(BR)W1
(
GN

� ,f ⊗�
)∫

BR

dw

≤ C

εd�+1
Rd�W1

(
GN

� ,f ⊗�
)
.

Moreover, for the second one we have

‖g ∗ ρε − g‖L1(BR) ≤ ε‖∇g‖L1 ≤ ε
(∥∥∇f ⊗�

∥∥
L1 + ∥∥∇GN

�

∥∥
L1

)
.

By Theorem 23, we have I (f ⊗�|γ ⊗�) ≤ C and then we deduce that ‖∇f ⊗�‖L1 is finite. Moreover, the boundness of
I (GN

� ) (see (76)) implies that ‖∇GN
� ‖L1 is also finite. We have then∥∥f ⊗� − GN

�

∥∥
L1(BR)

≤ C

εd�+1
Rd�W1

(
GN

� ,f ⊗�
)+ Cε

≤ CRd�/(d�+2)W1
(
GN

� ,f ⊗�
)1/(d�+2)

,

where we have optimized ε.
For the second integral in (82) we have∫

Bc
R

(
f ⊗� − GN

�

)
logf ⊗� ≤ � log‖f ‖L∞

Mk(G
N
� ,f ⊗�)

Rk
.

We conclude then, optimizing in R,

T3 ≤ C
(
� log‖f ‖L∞(BR) + aR2)Rd�/(d�+2)W1

(
GN

� ,f ⊗�
)1/(d�+2) + � log‖f ‖L∞

Mk(G
N
� ,f ⊗�)

Rk

≤ CW1
(
GN

� ,f ⊗�
)k/(d�(k+3)+2k+4)

. (83)

Finally, gathering (78), (81) and (83), we obtain

H
(
GN

� |f ⊗�
) ≤ C

(
W1

(
GN

� ,f ⊗�
)(k−2)/(2(k−1)) + W1

(
GN

� ,f ⊗�
)(k−2)/(k−1) + W1

(
GN

� ,f ⊗�
)k/(d�(k+3)+2k+4))

≤ CW1
(
GN

� ,f ⊗�
)k/(d�(k+3)+2k+4)

,

where C = C(d, �,‖f ‖L∞,Mk(G
N
1 ),N−1I (GN |γ N)). �
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5. Application to the Boltzmann equation

We can apply our results to the spatially homogeneous Boltzmann equation (equations (5) and (4) in Section 1) with
true Maxwellian molecules (8).

We prove now Theorem 8.

Proof of Theorem 8(i). We found the proof in [13], Theorem 7.10. �

Proof of Theorem 8(ii). First of all, from [13], Theorem 5.1, for all t ≥ 0, GN
t is ft -chaotic. Now, we split the proof

in several steps.
Step 1. Let GN

0 be built as in Theorem 18, i.e. GN
0 = [f ⊗N

0 ]SN
B

, which is possible since f0 ∈ P6(R
d) and I (f0|γ )

is finite. We know from [13], Lemma 7.4, that for all t ≥ 0 the normalized Fisher’s information N−1I (GN
t |γ N) is

bounded since N−1I (GN
t |γ N) ≤ N−1I (GN

0 |γ N) and the later one is bounded by construction (see equation (69)).
Moreover, M6(Π1(G

N
0 )) is bounded by construction, thus for all t ≥ 0, M6(Π1(G

N
t )) is also bounded thanks to [13],

Lemma 5.3.
We can then apply Theorem 31 to GN

t (taking GN = GN
t and f = ft in the notation of that theorem) and we obtain

that for any β < (k − 2)[4(dk + d + k)]−1 there exists C′ = C′(β) such that∣∣∣∣ 1

N
H
(
GN

t |γ N
)− H(ft |γ )

∣∣∣∣≤ CC′
(

W2(G
N
t , f ⊗N

t )√
N

+ N−β

)
. (84)

We have then to estimate the first term of the right-hand side and we shall use the result of propagation of chaos
proved in [13].
Step 2. Thanks to the result of propagation of chaos in [13], Theorems 5.1 and 5.2, we have, for s > 2 + d/4,

sup
t≥0

∥∥Π2
(
GN

t

)− f ⊗2
t

∥∥
H−s ≤ CWW2

(
ĜN

0 , δf0

)
, (85)

where we recall that ĜN
0 , δf0 ∈ P(P(Rd)) are defined in (63) and WW2(Ĝ

N
0 , δf0) in (64), more precisely

WW2

(
ĜN

0 , δf0

)=
∫
RdN

W2
(
μN

V ,f0
)
GN

0 (dV ).

We recall that we want to estimate the first term of the right-hand side of (84) and we shall explain how we can
obtain it from (85). On the one hand, for the right-hand side of (85) we shall obtain a estimate of the type

WW2

(
ĜN

0 , δf0

)≤ C
[
W1

(
Π2

(
GN

0

)
, f ⊗2

0

)+ N−θ2
]θ1

since we can estimate W1(Π2(G
N
0 ), f ⊗2

0 ) from Theorem 18. On the other hand, for the left-hand side of (85), we shall
deduce an estimate like

1√
N

W2
(
GN

t ,f ⊗N
t

)≤ C
∥∥Π2

(
GN

t

)− f ⊗2
t

∥∥θ3
H−s

to be able to conclude.
Step 3. First of all, we deduce from (65) in Lemma 29,

WW2

(
ĜN

0 , δf0

)≤ 22/3M1/k
k WW 1

(
ĜN

0 , δf0

)1/2−1/k
.

Then, thanks to (67) in Lemma 29 we obtain

WW2

(
ĜN

0 , δf0

)≤ 22/3M1/k
k

(
Cα1M

1/k
k

(
W 1

(
Π2

(
GN

0

)
, f ⊗2

0

)+ N−1)α1
)1/2−1/k

,
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and using Theorem 18, which tell us W 1(Π2(G
N
0 ), f ⊗2

0 ) ≤ CN−1/2, we deduce

WW2

(
ĜN

0 , δf0

)≤ Cα1N
−(α1/2)(1/2−1/k), (86)

where we recall that α1 < k(dk + d + k)−1.
Step 4. Thanks to [8], Lemma 2.1, applied to Π2(G

N
t ) and f ⊗2

t ∈ P(R2d), for any s > d/2 (with d ≥ 2) there exists
C := C(d, s) such that

W 1
(
Π2

(
GN

t

)
, f ⊗2

t

)≤ CMk

(
Π2

(
GN

t

)
, f ⊗2

t

)2d/(2d+2ks)∥∥Π2
(
GN

t

)− f ⊗2
t

∥∥2k/(2d+2ks)

H−s .

Furthermore, from Lemma 30 we obtain that there exists a constant C := C(d, k,α1, α2) such that

W2(G
N
t , f ⊗N

t )√
N

≤ CM1/k
k

(
W 1

(
Π2

(
GN

t

)
, f ⊗2

t

)α1 + N−α1 + N−α2
)1/2−1/k

.

Finally, gathering these two estimates with (85) and (86) we obtain that there exists C := C(d, s,α1, α2,Mk(f0),

Mk(Π1(G
N
0 ))) such that

W2(G
N
t , f ⊗N

t )√
N

≤ C
(
N−α2

1(k/(d+ks))(1/2−1/k) + N−α1 + N−α2
)1/2−1/k

≤ CN−ε, (87)

where

ε = α2
1

(
k

d + ks

)(
1

2
− 1

k

)2

<

(
k − 2

2(dk + d + k)

)2
k

d + ks

<

(
k − 2

2(dk + d + k)

)2 4k

dk + 4d + 8k

using α1 < k(dk + d + k)−1 and s > 2 + d/4 from (85). We conclude taking k = 6 and gathering (87) with (84). �

Proof of Theorem 8(iii). The proof is a consequence of points (i) and Theorem 25. Since we have f0 ∈ P6 ∩L∞(Rd),
f0(v1) ≥ exp(−α|v1|2 + β) and

lim
N→∞

1

N
H
(
GN

0 |[f ⊗N
0

]
SN
B

)= 0,

Theorem 25 implies that GN
0 is entropically f0-chaotic. Moreover, for all t > 0 the solution ft is bounded by below

by a Maxwellian, i.e. ft (v1) ≥ exp(−ᾱ|v1|2 + β̄) for ᾱ > 0 and β̄ ∈R, and also lies in P6 ∩L∞(Rd) (see for example
[17] and the references therein). By point (i), for all t > 0 the solution GN

t is entropically ft -chaotic, then applying
once more Theorem 25 we deduce that

lim
N→∞

1

N
H
(
GN

t |[f ⊗N
t

]
SN
B

)= 0. �

Proof of Theorem 8(iv). The proof is a consequence of Theorem 33. From the assumptions on f0 and GN
0 , we

conclude by Theorem 33 that GN
0 satisfies condition (19)

∀� ∈N, lim
N→∞H

(
Π�

(
GN

0

)|f ⊗�
0

)= 0.
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As already said in Step 1 of the proof of point (ii) of Theorem 8, for all t ≥ 0, the normalized Fisher’ information
N−1I (GN

t |γ N) is bounded, as well as Mk(Π1(G
N
t )). Furthermore, for all t ≥ 0, we have ft ∈ L∞(Rd) and ft (v1) ≥

exp(−ᾱ|v1|2 + β̄) for some ᾱ > 0 and β̄ ∈R (see point (iii) above). Hence, using once more Theorem 33, we conclude
that for all t ≥ 0, GN

t satisfies condition (19)

∀� ∈N, lim
N→∞H

(
Π�

(
GN

t

)|f ⊗�
t

)= 0. �

Appendix: Auxiliary results

We prove here some auxiliary results used in Section 2 and Section 3.

A.1. Change of variables

We present the proof of Lemma 9 in Section 2.

Proof of Lemma 9. Thanks to (21) we have

|uN |2 = 1

N

(
N∑

i=1

|vi |2 + 2
N−1∑
i=1

N∑
j>i

vi · vj

)

and, for 1 ≤ k ≤ N − 1,

|uk|2 = 1

k(k + 1)

(
k∑

i=1

|vi |2 + 2
k−1∑
i=1

k∑
j>i

vi · vj + k2|vk+1|2 − 2k

k∑
i=1

vi · vk+1

)
.

We deduce from these estimates that |u1|2 + · · · + |uN |2 =: I1 + I2 with

I1 =
N−1∑
k=1

(
1

k(k + 1)

k∑
i=1

|vk|2 + k

k + 1
|vk+1|2

)
+ 1

N

N∑
i=1

|vi |2

=:
N−1∑
k=1

Ak + AN

and

I2 = 2

[
N−1∑
k=1

(
1

k(k + 1)

k−1∑
i=1

k∑
j=i+1

vi · vj − 1

k + 1

k∑
i=1

vi · vk+1

)
− 1

N

N−1∑
i=1

N∑
j=i+1

vi · vj

]

=: 2

[
N−1∑
k=1

Bk + BN

]
.

First of all, looking to I1 we easily see that |vN |2 appears only in AN−1 and AN , so its coefficient is (N − 1)/N +
1/N = 1. For m such that 2 ≤ m ≤ N − 1, |vm|2 appears in Am−1,Am, . . . ,AN−1 and AN , hence its coefficient is
given by

m − 1

m
+

N−1∑
j=m

1

j (j + 1)
+ 1

N
= 1.
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The coefficient of |v1|2 is the same of |v2|2 since there is no A0. We conclude then

I1 = |v1|2 + · · · + |vN |2.
We can compute I2 in the same way. For 1 ≤ m ≤ N − 1, vm · vN appears only in BN−1 and BN , so its coefficient

is −1/N + 1/N = 0. Moreover, for 1 ≤ m < p ≤ N − 1, vm · vp appears in Bp−1,Bp, . . . ,BN−1 and BN , hence its
coefficient is given by

− 1

p
+

N−1∑
j=p

1

p(p + 1)
+ 1

N
= 0.

Finally, we conclude that |u1|2 + · · ·+ |uN |2 = |v1|2 + · · ·+ |vN |2 = r2 and uN = z/
√

N follows easily from (21).
The last point to prove is that the Jacobian is equal to one. To simplify we consider d = 1, the general case being the

same. Consider the matrix MN that represents the linear application in (21), i.e. MNu = v, where u = (u1, . . . , uN) ∈
RN and v = (v1, . . . , vN) ∈RN .

We claim that det(MN) = 1. Indeed we have

MN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

− 1√
2

0 · · · 0

1√
6

1√
6

− 2√
6

. . .
...

...
. . .

. . . 0
1√

(N−1)N
· · · · · · 1√

(N−1)N
− (N−1)√

(N−1)N
1√
N

· · · · · · · · · 1√
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and it can be written in the form MN = DNAN with a diagonal matrix DN ,

MN =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
6

. . .
1√

(N−1)N
1√
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 · · · 0

1 1 −2
. . .

...
...

. . .
. . . 0

1 · · · · · · 1 −(N − 1)

1 · · · · · · · · · 1

⎞⎟⎟⎟⎟⎟⎠ .

Let us prove the claim by recurrence. For N = 2 is clear that det(D2) = 1/2 and det(A2) = 2, which implies
det(M2) = 1. Then, supposing that det(MN−1) = 1 we have

det(MN−1) =
(

N−2∏
k=1

1√
k(k + 1)

× 1√
(N − 1)

)
det(AN−1) = 1 (A.1)

since det(DN−1) is easily computed. Moreover, we have the following relation det(AN) = N det(AN−1). Hence we
deduce that

det(MN) =
(

N−1∏
k=1

1√
k(k + 1)

× 1√
N

)
det(AN)

=
(

N−2∏
k=1

1√
k(k + 1)

× 1√
(N − 1)N

× 1√
N

)
N det(AN−1)

= 1

thanks to (A.1), which concludes the proof of the claim. �
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A.2. Regularity lemma

Lemma 34. Let f ∈ P(Rd). Suppose f ∈ Lp ∩ Ls(R
d) for p > 1 and s > 0. Then f ∈ L

q
m(Rd) with q < p and

m = s(p − q)(p − 1).

Proof. Let us compute the L
q
m norm of f ,

‖f ‖q

L
q
m

=
∫ (

1 + |v|2)m/2
f (v)q dv

≤ C

(∫
f (v)q dv +

∫
|v|mf (v)q dv

)
.

For the first term we have ‖f ‖q
Lq ≤ ‖f ‖q

Lp and for the second one we obtain∫
|v|mf (v)q dv ≤

(∫
|v|mr/(r−1)f (v)(q−α)r/(r−1)

)(r−1)/r(∫
f (v)αr

)1/r

by Hölder’s inequality for some r > 1 and 0 < α < q . Now choosing r = p/α and choosing α such that (q −α)r/(r −
1) = 1, i.e. α = p(q − 1)/(p − 1) we obtain∫

|v|mf (v)q dv ≤
(∫

|v|m(p−1)/(p−q)f (v)

)(p−q)/(p−1)(∫
f (v)p

)(q−1)/(p−1)

.

Finally, choosing m = s(p − q)/(p − 1) we conclude with

‖f ‖q

L
q
m

≤ C
(‖f ‖q

Lp + ‖f ‖(p−q)/(p−1)
Ls

‖f ‖p(q−1)/(p−1)
Lp

)
. �

Acknowledgements

The author would like to thank S. Mischler and C. Mouhot for their constant encouragement, fruitful discussions
and careful reading of this paper. The author also thanks M. Hauray for discussions on the representation of Fisher’s
information on the Boltzmann’s sphere and A. Einav for discussions on integration over Boltzmann’s spheres. Finally,
the author thanks the referees for helpful suggestions.

References

[1] F. Barthe, D. Cordero-Erausquin and B. Maurey. Entropy of spherical marginals and related inequalities. J. Math. Pures Appl. (9) 86 (2)
(2006) 89–99. MR2247452

[2] E. A. Carlen. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101 (1) (1991) 194–
211. MR1132315

[3] E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani. Entropy and chaos in the Kac model. Kinet. Relat. Models 3 (1) (2010)
85–122. MR2580955

[4] E. A. Carlen, M. C. Carvalho and M. Loss. Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta
Math. 191 (1) (2003) 1–54. MR2020418

[5] E. A. Carlen, E. H. Lieb and M. Loss. A sharp analog of Young’s inequality on SN and related entropy inequalities. J. Geom. Anal. 14 (3)
(2004) 487–520. MR2077162

[6] P. Diaconis and D. Freedman. A dozen de Finetti-style results in search of a theory. Ann. Inst. Henri Poincaré Probab. Stat. 23 (2, suppl.)
(1987) 397–423. MR0898502

[7] A. Einav. A counter-example to Cercignani’s conjecture for the d-dimensional Kac model. J. Stat. Phys. 148 (6) (2012) 1076–
1103. MR2975524

[8] M. Hauray and S. Mischler. On Kac’s chaos and related problems. Preprint, 2012, hal-00682782.
[9] M. Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–

1955, Vol. III 171–197. Univ. California Press, Berkeley and Los Angeles, 1956. MR0084985
[10] J. Lott and C. Villani. Ricci curvature for metric measure spaces via optimal transport. Ann. of Math. (2) 169 (3) (2009) 903–991. MR2480619

http://www.ams.org/mathscinet-getitem?mr=2247452
http://www.ams.org/mathscinet-getitem?mr=1132315
http://www.ams.org/mathscinet-getitem?mr=2580955
http://www.ams.org/mathscinet-getitem?mr=2020418
http://www.ams.org/mathscinet-getitem?mr=2077162
http://www.ams.org/mathscinet-getitem?mr=0898502
http://www.ams.org/mathscinet-getitem?mr=2975524
http://www.ams.org/mathscinet-getitem?mr=0084985
http://www.ams.org/mathscinet-getitem?mr=2480619


Kac’s chaos on the Boltzmann’s sphere 1039

[11] S. Mischler. Introduction aux limites de champ moyen pour des systèmes de particules. Cours en ligne C.E.L. http://cel.archives-ouvertes.fr/
cel-00576329/fr/.

[12] S. Mischler. Sur le programme de Kac (concernant les limites de champ moyen). Séminaire EDP-X, Décembre 2010.
[13] S. Mischler and C. Mouhot. Kac’s program in kinetic theory. Invent. Math. 193 (1) (2013) 1–147. MR3069113
[14] S. Mischler, C. Mouhot and B. Wennberg. A new approach to quantitative chaos propagation for drift, diffusion and jump processes. Preprint,

available at arXiv:1101.4727.
[15] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2)

(2000) 361–400. MR1760620
[16] A.-S. Sznitman. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX – 1989 165–251. Lecture Notes in Math.

1464. Springer, Berlin, 1991. MR1108185
[17] C. Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of Mathematical Fluid Dynamics Vol. I 71–305.

North-Holland, Amsterdam, 2002. MR1942465
[18] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences] 338. Springer, Berlin, 2009. MR2459454

http://cel.archives-ouvertes.fr/cel-00576329/fr/
http://www.ams.org/mathscinet-getitem?mr=3069113
http://arxiv.org/abs/arXiv:1101.4727
http://www.ams.org/mathscinet-getitem?mr=1760620
http://www.ams.org/mathscinet-getitem?mr=1108185
http://www.ams.org/mathscinet-getitem?mr=1942465
http://www.ams.org/mathscinet-getitem?mr=2459454
http://cel.archives-ouvertes.fr/cel-00576329/fr/

	Introduction
	Motivation
	Deﬁnitions and main results
	Strategy
	Previous works
	Organization of the paper

	Uniform probability measure
	Chaotic sequences in Kac's sense
	Preliminary results
	Asymptotic behaviour of Z'N
	Conditioned tensor product

	Entropic and Fisher's information chaos
	Entropic chaos for the conditioned tensor product
	Relations between the different notions of chaos
	On a more general class of chaotic probabilities

	Application to the Boltzmann equation
	Appendix: Auxiliary results
	Change of variables
	Regularity lemma

	Acknowledgements
	References

