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Abstract. In this article, we study the approximation of a probability measure μ on Rd by its empirical measure μ̂N interpreted
as a random quantization. As error criterion we consider an averaged pth moment Wasserstein metric. In the case where 2p < d,
we establish fine upper and lower bounds for the error, a high resolution formula. Moreover, we provide a universal estimate based
on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak
assumptions.

Résumé. Dans cet article, nous étudions l’approximation d’une mesure de probabilité μ sur Rd par sa mesure empirique μ̂N ,
interprétée comme quantification aléatoire. Comme critère d’erreur, nous considérons une moyenne de métrique de Wasserstein
d’ordre p. Dans le cas 2p < d, nous établissons des bornes supérieures et inférieures améliorées pour l’erreur, une formule haute ré-
solution. De plus, nous donnons une estimation universelle à base de moments, nomméee estimation du type Pierce. En particulier,
nous prouvons que, sous de faibles hypothèses, la quantification par des mesures empiriques est d’ordre optimal.

MSC: Primary 60F25; secondary 65D32
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1. Introduction

Constructive quantization is concerned with the efficient computation of discrete approximations to probability dis-
tributions. The need for such approximations mainly stems from two applications: firstly from information theory,
where the approximation is a discretized version of an original signal which is to be stored on a data storage medium
or transmitted via a channel (see e.g. [5,10,30]); secondly, from numerical integration, where integrals with respect to
the original measure are replaced by the integral with respect to the discrete approximation (see e.g. [19]).

In both applications the objective is to find an optimal discrete subset of a metric space (E,d) of cardinality N say,
a so-called codebook, depending on the given probability measure μ on E. In the first application one further needs fast
coding and decoding schemes that find for a signal a digital representation of a close element of the codebook or, resp.,
translate the digital representation back. Clearly, the best coding scheme would map a signal to a digital representation
of a closest neighbor in the codebook. The quantization number measures the smallest possible averaged distance of
a μ-distributed point to the codebook and hence the performance of the best possible approximate coding of μ using
N approximating points which corresponds to using log2 N bits.

During the last decade, quantization attracted much interest mainly due to the second application, see for instance
[22] for a recent review on financial applications. Here one aims at finding a codebook together with probability
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weights and the objective is to determine these in such a way that the distance between μ and the discrete probability
measure is minimal with respect to some metric (e.g. a Wasserstein metric). Typically, the optimal solution of both
problems are closely related. The optimal codebook of the first problem is also optimal for the second one and the
optimal probability weights are the μ-weights of the corresponding Voronoi cells. In particular, the optimal approxi-
mation errors are again the quantization numbers. A regularly updated list of articles dealing with quantization can be
found at http://www.quantize.maths-fi.com/.

From a constructive point of view, the two applications differ significantly and our research is mainly motivated
by the second application. For moderate codebook sizes and particular probability measures it is feasible to run
optimization algorithms and find approximations that are arbitrarily close to the optimum (see e.g. [18,20]). See also
[17] for a recent constructive approach toward discrete approximation of marginals of stochastic differential equations.
For large codebook sizes and probability measures that are defined implicitly, it is often not feasible to find close to
optimal quantizations in reasonable time. Large codebooks can be used for approximate sampling of the distribution
μ: if sampling of μ is costly (since it may be given only implicitly), one might prefer to sample from its quantization
instead. This approach is analyzed in work in progress [25], where μ is the distribution of multiple Itô integrals.

As an alternative approach we analyze the use of the empirical measure μ̂N generated by N independent random
variables distributed according to the original measure μ. As error criterion we consider an averaged Lp-Wasserstein
metric. We stress that in our case the codebook is generated by i.i.d. samples and that the weights all have equal mass
so that once the codebook is generated no further processing is needed. The advantage of using the empirical measure
as a discrete approximation of μ is that it is usually easy to generate efficiently even for large N . The disadvantage is,
of course, that for given N , the averaged Wasserstein distance between μ and μ̂N is larger than that between μ and
the optimal probability measure supported on N points.

The estimation of the approximation error of μ̂N in the Wasserstein metric is the concern of various articles.
Asymptotic results are derived for the uniform distribution in Ajtai et al. [1] for d = 2 and in Talagrand [27] for d ≥ 3.
In particular, these results indicate that the approach is not order optimal in dimensions one and two when compared
with optimal quantization and we will restrict attention to dimensions greater or equal to three in this article. An
upper bound for more general distributions can be found in [12]. Closely related problems are the bipartite matching
problem [9] and the traveling salesman problem [3]. Interestingly, there has been progress on this class of problems
in several aspects [2,4] parallel to our research.

We will show that in the case E = Rd equipped with some norm (which is the only case we consider in this article),
the loss of performance is essentially a constant times an explicit term depending on the absolutely continuous part
of μ.

A full treatment of quantization typically includes the derivation of asymptotic formulas in terms of the density
of the absolutely continuous part of μ, a high resolution formula. Such a formula has been established for optimal
quantization under norm-based distortions [6], for general Orlicz-norm distortions [8], and, very recently, also in the
dual quantization problem [21]. In this article, we prove a high resolution formula for the empirical measure under an
averaged Lp-Wasserstein metric. Further, a Pierce type result is derived. In particular, we obtain order optimality of
the new approach under weak assumptions.

The article is organized as follows. Section 1 introduces the basic notation and summarizes the main results.
Section 2 is devoted to the Pierce type result, see Theorem 1 below. Section 3 treats the particular case where μ is the
uniform distribution on [0,1)d . It includes a proof of part (i) of Theorem 2 below. Finally, the high resolution formula
provided by Theorem 2 is proved in Section 4.

1.1. Notation

We introduce the relevant notation along an example. Consider the following problem arising from logistics. There
is a demand for a certain economic good on Rd modeled by a finite measure μ. Typically one would expect to
have d = 2 in this example. The demand shall be accommodated by N service centers that are placed at positions
x1, . . . , xN ∈ Rd and that have nonnegative capacities p1, . . . , pN summing up to ‖μ‖ := μ(Rd). We associate a
given choice of supporting points x1, . . . , xN and weights p1, . . . , pN with a measure μ̂ = ∑N

i=1 piδxi
, where δx

denotes the Dirac measure in x. In order to cover the demand, goods have to be transported from the centers to the
customers and we describe a transport schedule by a measure ξ on Rd × Rd such that its first, respectively second,
marginal measure is equal to μ, respectively μ̂. The set of admissible transport schedules (transports) is denoted by
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M(μ, μ̂) and supposing that transporting a unit mass from y to x causes cost c(x, y), a transport ξ ∈ M(μ, μ̂) causes
overall cost∫

Rd×Rd

c(x, y)dξ(x, y).

In this article, we focus on norm based cost functions. In general, we assume that the demand is a finite measure
on Rd and that the cost is of the form

c(x, y) = ‖x − y‖p,

where p ≥ 1 and ‖ · ‖ is a fixed norm on Rd . Given μ and μ̂, the minimal cost is the pth Wasserstein metric. In
contrast to the above example, we will restrict attention to the case d ≥ 3.

Definition 1 (pth Wasserstein metric). The pth Wasserstein metric of two finite measures μ and ν on (Rd , B(Rd)),
which have equal mass, is given by

ρp(μ, ν) = inf
ξ∈M(μ,ν)

(∫
Rd×Rd

‖x − y‖pξ(dx,dy)

)1/p

,

where M(μ, ν) is the set of all finite measures ξ on Rd × Rd having marginal distributions μ in the first component
and ν in the second component.

The Wasserstein metric originates from the Monge–Kantorovich mass transportation problem, which was intro-
duced by G. Monge in 1781 [16]. Important results about the Wasserstein metric were achieved within the scope of
transportation theory, for instance by Kantorovich [14], Kantorovich and Rubinstein [15], Wasserstein [29], Rachev
and Rüschendorf [23,24], Villani [28] and others.

Note that the Wasserstein metric is homogeneous in (μ, ν) so that one can restrict attention to probability mea-
sures. In this article, we analyze for a given probability measure μ on Rd the quality of the empirical measure as
approximation. More explicitly, we denote by μ̂N the (random) empirical measure of N independent μ-distributed
random variables X1, . . . ,XN , that is

μ̂N = 1

N

N∑
j=1

δXj
,

and, for fixed p ≥ 1, we analyze the asymptotic behavior of the so-called random quantization error

V rand
N,p (μ) := E

[
ρ

p
p (μ, μ̂N)

]1/p

as N ∈ N tends to infinity.
This quantity should be compared with the optimal approximation in the Lp-Wasserstein metric supported by N

points, that is

V
opt
N,p(μ) := inf

ν
ρp(μ, ν), (1)

where the infimum is taken over all probability measures ν on Rd that are supported on N points. The quantity
V

opt
N,p(μ) is local in the sense that for a given set C ⊂ Rd of supporting points used in an approximation ν, the

optimal choice for ν is μ ◦ π−1
C , where πC denotes a projection from Rd to C . Hence, the minimization of the latter

quantity reduces to a minimization over all sets C ⊂ Rd of at most N elements. The minimal error is the so-called N th
quantization number

V
opt
N,p(μ) = inf

C

(∫
min
y∈C

‖x − y‖pμ(dx)

)1/p

.
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For a measure μ on Rd we denote by μ = μa + μs its Lebesgue decomposition with μa denoting the absolutely
continuous part with respect to Lebesgue measure λd and μs the singular part. Further, we denote the uniform distri-
bution on [0,1)d by U and define

V rand
N,p := E

[
inf

U ′∈Λ

ξ∈M(U ′,ÛN )

∫
Rd×Rd

‖x − y‖pξ(dx,dy)

]1/p

,

where Λ denotes the set of all probability measures U ′ on [0,1]d which satisfy U ′(A) ≤ U (A) for each Borel set
A ⊂ (0,1)d . Note that the latter quantity allows to have leakage in the boundaries of the support of the uniform
measure U . Therefore, V rand

N,p ≤ V rand
N,p (U ). It seems plausible that the ratio of V rand

N,p and V rand
N,p (U ) converges to one as

N → ∞. However, this has not been proved yet.

1.2. Main results

We will assume throughout the paper that d ≥ 3. The approximation by empirical measures satisfies a so-called Pierce
type estimate.

Theorem 1. Let p ∈ [1, d
2 ) and q >

dp
d−p

. There exists a constant κPierce
p,q such that for any probability measure μ

on Rd

V rand
N,p (μ) ≤ κPierce

p,q

[∫
Rd

‖x‖q dμ(x)

]1/q

N−1/d (2)

for all N ∈ N.

As we will see in the discussion below the assumptions on p and q cannot be relaxed. Theorem 1 improves the
asymptotic estimates of [12] that focused on the case p = 2 and were of nonoptimal order. Interestingly, it is also
possible to give estimates for E[ρp(μ, μ̂N)] for compactly supported measures μ in general metric spaces based on
covering numbers [4].

Remark 1.

• The constant in the statement of Theorem 1 is explicit, see Theorem 3. Its value depends on the chosen norm on Rd .
• For p > d

2 and discrete measures μ, the random approach typically induces errors V rand
N,p (μ) that are not of order

O(N−1/d): take, for instance, two different points a, b ∈ Rd and let μ = 1
2δa + 1

2δb . Then Nμ̂N({a}) is binomially
distributed with parameters N and 1

2 . Consequently,

V rand
N,p (μ) = E

[
ρ

p
p (μ, μ̂N)

]1/p = ‖a − b‖E

[∣∣∣∣μ̂N

({a}) − 1

2

∣∣∣∣
]1/p

is of order N−1/2p and, hence, converges to zero strictly slower than N−1/d .
• In [1], the case where d = 2, p = 1 and μ = U is treated. There it is found that the L1-Wasserstein distance

between two independent realizations of ÛN is typically of order N−1/2(logN)1/2 which shows the necessity of the
assumption d ≥ 3 for Theorem 1 to hold.

• For the uniform distribution U on [0,1)d , the results of Talagrand [27] imply that V rand
N,p (U ) is always of order

N−1/d as long as d ≥ 3.

The following theorem is a high resolution formula for quantization by empirical measures.



Constructive quantization 1187

Theorem 2. Let p ∈ [1, d
2 ).

(i) Let U denote the uniform distribution on [0,1)d . There exists a constant κunif
p ∈ (0,∞) such that

lim
N→∞N1/dV rand

N,p (U ) = κunif
p .

Further, there exist a constant κunif
p ∈ (0,∞) such that

lim
N→∞N1/dV rand

N,p = κunif
p .

(ii) Let μ be a probability measure on Rd that has a finite qth moment for some q >
dp

d−p
and suppose that dμa

dλd is
Riemann integrable or p = 1. Then

lim sup
N→∞

N1/dV rand
N,p (μ) ≤ κunif

p

(∫
Rd

(
dμa

dλd

)1−p/d

dλd

)1/p

(3)

and

lim inf
N→∞ N1/dV rand

N,p (μ) ≥ κunif
p

(∫
Rd

(
dμa

dλd

)1−p/d

dλd

)1/p

. (4)

Interestingly, very similar asymptotic formulas appear in the bipartite matching problem [9], the traveling salesman
problem [3] (both for p = 1) and in rather general combinatorial problems [2].

Remark 2. We conjecture that κunif
p = κunif

p in which case the inequality and lim sup in (3) are actually an equal-

ity and lim. Proving the equality κunif
p = κunif

p seems to be a general open problem in transport problems. Similar
problems arise in [13] for optimal transports from Poisson point processes with Lebesgue intensity to Lebesgue mea-
sure. Furthermore, we conjecture that the high resolution formula is still valid without the assumption of Riemann
integrability.

Remark 3. The Pierce type result is sharp with respect to the assumption on the moment q . We will provide an

example in which inequality (2) is not true for q = dp
d−p

: let d ≥ 3 and p ∈ [1, d
2 ) be arbitrary. Choose β ∈ (1, d

d−p
]

and consider the probability measure μ defined by

dμ

dλd
(x) =

{
1
Z

|x|−d2/(d−p)
(
log |x|)−β

, |x| ≥ e,

0, otherwise,

where | · | denotes the Euclidean norm on Rd and Z denotes the appropriate normalization. Using the equivalence of
norms on Rd and switching to polar coordinates we obtain∫

Rd

‖x‖q dμ(x) ≤ c1

∫ ∞

e
r−1 ln(r)−β dr

for an appropriate finite constant c1. The latter integral is finite since β > 1. Conversely, the integral in the high
resolution formula is∫

Rd

(
dμ

dλd

)1−p/d

dλd = c2

∫ ∞

e
r−1 ln(r)−(1−p/d)β dr,

where c2 is an appropriate positive constant. By our choice of β this integral is infinite so that by the lower bound of
the high resolution formula (Theorem 2(ii))

lim inf
N→∞ N1/dV rand

N,p (μ) = ∞

which contradicts the validity of the Pierce type result.
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Let us compare our results with the classical high resolution formulas, see [11], Theorem 6.2. The asymptotics of
V

opt
N,p defined in (1) satisfies

lim
N→∞N1/dV

opt
N,p(μ) = cp,d

(∫
Rd

(
dμa

dλd

)d/(d+p)

dλd

)1/d+1/p

, (5)

whenever μ has a finite moment of order q for some q > p. Here, the constant cp,d is the corresponding limit for the
uniform distribution on the unit cube in Rd . Its numerical value is known in a few special cases.

Note that the integral term on the right-hand side of (5) differs from the one in (3) and (4). This effect can be ex-
plained as follows: for a sequence of optimal codebooks (C(N))N≥1 of size N the empirical measures 1

N

∑
x∈C(N) δx

tend to a measure that differs from μ. In fact optimal codebooks allocate more points in the tails of the distribution.
Since our approach does not account for such a correction, it is natural to expect a loss of efficiency for heavy tailed
distributions. For arbitrary codebooks whose empirical distributions tend to the measure μ, one has lower bounds
which incorporate the same integral term as in our high resolution formula, see [7], Theorem 7.2.

Theorem 1 can be used to improve [11], Theorem 9.1(a): there the validity of an asymptotic formula for the random
quantization error is shown to be equivalent to the uniform integrability of (Np/d min1≤i≤N ‖X − Xi‖p)N≥1 where
X,X1, . . . are independent with law μ. Theorem 1 shows that uniform integrability holds provided that 1 ≤ p < d/2
and μ has a finite moment of order q for some q >

dp
d−p

. Hence a high resolution formula is also available for
quantization with random codebooks and optimally chosen weights. It incorporates the same integral as in formula
(3) and postprocessing the weights of a random codebook can in the limit improve the error by a constant factor,
irrespective the distribution μ.

1.3. Preliminaries

For a finite signed measure μ on the Borel sets of Rd , we write ‖μ‖ := |μ|(Rd) for its total variation norm (using the
same symbol as for the norm on Rd should not cause any confusion). For finite (nonnegative) measures μ and ν we
denote by μ ∧ ν the largest measure that is dominated by μ and ν. Furthermore, we set (μ − ν)+ := μ − μ ∧ ν.

Next, we introduce concatenation of transports. A transport ξ , i.e. a finite measure ξ on Rd ×Rd , will be associated
to a probability kernel K and a measure ν on Rd via

ξ(dx,dy) = ν(dx)K(x,dy), (6)

so ν is the first marginal of ξ . We call ξ the transport with source ν and kernel K . Let K denote the set of probability
kernels from (Rd , Bd) into itself and consider the semigroup (K,∗), where the operation ∗ is defined via

K1 ∗ K2(x,A) :=
∫

K1(x,dz)K2(z,A)
(
x ∈ Rd,A ∈ Bd

)
.

Now we can iterate transport schedules: Let ν0, . . . , νn be measures on Rd with identical total mass and let ξk ∈
M(νk−1, νk). Then the concatenation of the transports ξ1, . . . , ξn is formally the transport described by the source
ν0 and the probability kernel K = K1 ∗ · · · ∗ Kn, where K1, . . . ,Kn are the kernels associated to ξ1, . . . , ξn. Note
that the relation (6) defines the kernel uniquely up to ν-nullsets so that the concatenation of transport schedules is
a well-defined operation on the set of transports. In analogy to the operation ∗ on K, we write ξ1 ∗ · · · ∗ ξn for the
concatenation of the transport schedules.

We summarize some well-known properties of the Wasserstein metric in a lemma.

Lemma 1. Let ξ,μ,μ1, . . . and ν, ν1, . . . be finite measures on Rd such that ‖ξ‖ = ‖μ‖ = ‖ν‖ and ‖μk‖ = ‖νk‖ for
all k = 1, . . . . Further let p ≥ 1.

(i) Convexity: Suppose that μ = ∑
k∈N

μk and ν = ∑
k∈N

νk . Then

ρ
p
p (μ, ν) ≤

∞∑
k=1

ρ
p
p (μk, νk). (7)
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(ii) Triangle-inequality: One has

ρp(μ, ν) ≤ ρp(μ, ξ) + ρp(ξ, ν). (8)

(iii) Translation and scaling: Let T : Rd → Rd be a map, which consists of a translation and a scaling by the factor
a > 0. Then

ρp

(
μ ◦ T −1, ν ◦ T −1) = aρp(μ, ν). (9)

(iv) Homogeneity: For κ ≥ 0 one has

κρ
p
p (μ, ν) = ρ

p
p (κμ,κν).

Proof. To see (i), use the transportation plan ξ = ∑∞
k=1 ξk where ξk is an optimal transportation plan from μk to νk .

For (ii), see [28], p. 94. (iii) and (iv) follow directly from the definition of the Wasserstein metric. �

2. Proof of the Pierce type result

In order to prove Theorem 1, we first derive an estimate for general distributions on the unit cube [0,1)d .

Proposition 1. Let 1 ≤ p < d
2 . There exists a constant κcube

p ∈ (0,∞) such that for any probability measure μ on

[0,1)d and N ∈ N

V rand
N,p (μ) ≤ κcube

p N−1/d .

Remark 4. The constant κcube
p is explicit. Let d = supx,y∈[0,1)d ‖x − y‖ denote the diameter of [0,1)d . Then

κcube
p = d2(d−2)/(2p)

[
1

1 − 2p−d/2
+ 1

1 − 2−p

]1/p

.

For the proof of Proposition 1 we use a nested sequence of partitions of B = [0,1)d . Note that B can be parti-
tioned into 2d translates B1, . . . ,B2d of 2−1B . We iterate this procedure and partition each set Bk into 2d translates
Bk,1, . . . ,Bk,2d of 2−2B . We continue this scheme obeying the rule that each set Bk1,...,kl

is partitioned into 2d trans-
lates Bk1,...,kl ,1, . . . ,Bk1,...,kl ,2d of 2−(l+1)B . These translates of 2−lB form a partition of B and we denote this collec-
tion of sets by Pl , the lth level. We now endow the sets P := ⋃∞

l=0 Pl with a 2d -ary tree structure. B denotes the root
of the tree and the father of a set C ∈ Pl (l ∈ N) is the unique set F ∈ Pl−1 that contains C.

Lemma 2. Let μ and ν be two probability measures supported on B such that for all C ∈ P

ν(C) > 0 ⇒ μ(C) > 0.

Then

ρ
p
p (μ, ν) ≤ 1

2
dp

∞∑
l=0

2−pl
∑
F∈Pl

∑
C child of F

∣∣∣∣ν(C) − ν(F )
μ(C)

μ(F )

∣∣∣∣
with the convention that 0

0 = 0.

For the proof we use couplings defined via partitions. Let (Ak) be a (finite or countably infinite) Borel partition of
the Borel set A ⊂ Rd . For two finite measures μ1,μ2 on A with equal mass, we call the measure μ̄1 on Rd defined by

μ̄1|Ak
= μ2(Ak)

μ1(Ak)
μ1

∣∣∣∣
Ak

,
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the (Ak)-approximation of μ1 to μ2 provided that it is well defined (i.e. that μ1(Ak) = 0 implies μ2(Ak) = 0).
The (Ak)-approximation μ̄1 is associated with a transport ξ from μ1 to μ̄1: for each k, one has

(μ1 ∧ μ̄1)|Ak
= μ1(Ak) ∧ μ2(Ak)

μ1(Ak)
μ1

∣∣∣∣
Ak

and we define a transport ξ ∈ M(μ1, μ̄1) via

ξ = (μ1 ∧ μ̄1) ◦ ψ−1 + 1

δ
(μ1 − μ̄1)+ ⊗ (μ̄1 − μ1)+,

where δ := 1
2

∑
k |μ1(Ak) − μ2(Ak)| and ψ : Rd → Rd × Rd, x �→ (x, x). Then

ξ
({

(x, y) ∈ Rd × Rd : x �= y
}) = δ.

Proof of Lemma 2. For l ∈ N0 := {0,1,2, . . .}, we set

μl =
∑
A∈Pl

ν(A)

μ(A)
μ

∣∣∣∣
A

which is the Pl-approximation of μ to ν. By construction, one has for each set F ∈ Pl with l ∈ N0

μl(F ) = μl+1(F ).

Moreover, provided that μl(F ) > 0, one has for each child C of F

μl+1|C = ν(C)

μ(C)
μ

∣∣∣∣
C

= μ(F)ν(C)

μ(C)ν(F )
μl

∣∣∣∣
C

so that μl+1|F is the {C ∈ Pl+1: C ⊂ F }-approximation of μl |F to ν|F . Hence, there exists a transport ξF ∈
M(μl |F ,μl+1|F ) with

ξF

({
(x, y): x �= y

}) = 1

2

∑
C child of F

∣∣∣∣ν(C) − ν(F )
μ(C)

μ(F )

∣∣∣∣. (10)

Since each family Pl is a partition of the root B , we have

ξl+1 :=
∑
F∈Pl

ξF ∈ M(μl,μl+1).

Next, note that ρp(μl, ν) ≤ d2−l so that μl converges in the pth Wasserstein metric to ν which implies that

ρp(μ, ν) ≤ sup
l∈N

ρp(μ,μl). (11)

The concatenation of the transports (ξl)l∈N leads to new transports

ξ l = ξ1 ∗ · · · ∗ ξl ∈ M(μ,μl).

Each of the transports ξk is associated to a kernel Kk and, by Ionescu–Tulcea (see, e.g., [26]), there exists a sequence
(Zl)l∈N0 of [0,1)d -valued random variables with

P(Z0 ∈ A0, . . . ,Zl ∈ Al) =
∫

A0

∫
A1

· · ·
∫

Al−1

Kl(xl−1,Al) · · ·K1(x0,dx1)μ(dx0)
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for every l ∈ N and Borel sets A0, . . . ,Al ⊂ Rd . Then the joint distribution of (Z0,Zl) is ξ l . Let

L = inf{l ∈ N0: Zl+1 �= Zl}
and note that, almost surely, all entries (Zl)l∈N0 lie in one (random) set A ∈ PL, if {L < ∞} enters, and are identical
on {L = ∞}. Hence, for any k ∈ N

E
[‖Z0 − Zk‖p

] ≤ dpE
[
2−pL

] ≤ dp

∞∑
l=0

2−plP(Zl+1 �= Zl)

= dp

∞∑
l=0

2−plξl+1
({

(x, y): x �= y
})

= 1

2
dp

∞∑
l=0

2−pl
∑
F∈Pl

∑
C child of F

∣∣∣∣ν(C) − ν(F )
μ(C)

μ(F )

∣∣∣∣,
where we used (10) in the last step, so the assertion follows by (11). �

Proof of Proposition 1. It is straight-forward to verify that the above lemma can be applied to μ and ν = μ̂n(ω) for
almost all ω ∈ Ω and we get

ρ
p
p (μ, μ̂N) ≤ 1

2
dp

∞∑
l=0

2−pl
∑
F∈Pl

∑
C child of F

∣∣∣∣μ̂N (C) − μ̂N (F )
μ(C)

μ(F )

∣∣∣∣. (12)

Note that conditional on the event {Nμ̂N(F ) = k} (k ∈ N) the random vector (Nμ̂N(C))C child of F is multinomially
distributed with parameters k and success probabilities (μ(C)/μ(F ))C child of F . Letting ζ(t) := √

t ∧ t for t ≥ 0, we
obtain

E

[ ∑
C child of F

∣∣∣∣μ̂N (C) − μ̂N (F )
μ(C)

μ(F )

∣∣∣∣∣∣∣Nμ̂N(F ) = k

]

= 1

N
E

[ ∑
C child of F

∣∣∣∣Nμ̂N(C) − k
μ(C)

μ(F )

∣∣∣∣∣∣∣Nμ̂N(F ) = k

]

(a)≤ 1

N

∑
C child of F

var
(
Nμ̂N(C)|Nμ̂N(F ) = k

)1/2

(b)≤
√

k

N

∑
C child of F

√
μ(C)

μ(F )

(c)≤ 2d/2

√
k

N
= 2d/2

N
ζ(k).

Here, we estimate the first against the second moment in (a). In (b) we use that the conditional distribution of Nμ̂N(C)

is the binomial distribution with parameters k and μ(C)/μ(F ) and in (c) we apply the Cauchy–Schwarz inequality.
The function ζ is concave and Jensen’s inequality implies that

E

[ ∑
C child of F

∣∣∣∣μ̂N (C) − μ̂N (F )
μ(C)

μ(F )

∣∣∣∣
]

≤ 2d/2

N
ζ
(
Nμ(F)

)
.

Consequently, it follows from (12) and Jensen’s inequality that

E
[
ρ

p
p (μ, μ̂N)

] ≤ 1

2
dp

∞∑
l=0

2−pl
∑
F∈Pl

2d/2

N
ζ
(
Nμ(F)

) ≤ dp2d/2−1N−1
∞∑
l=0

2(d−p)lζ
(
2−dlN

)
.
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Let l∗ := �log2 N1/d�. Then,

E
[
ρ

p
p (μ, μ̂N)

] ≤ dp2d/2−1N−1

[
l∗∑

l=0

2((1/2)d−p)l
√

N +
∞∑

l=l∗+1

2−plN

]

≤ dp2d/2−1N−1

[ ∞∑
k=0

2(d/2−p)(l∗−k)
√

N + 2−p(l∗+1)
∞∑

j=0

2−pjN

]

≤ dp2d/2−1N−p/d

[
1

1 − 2p−d/2
+ 1

1 − 2−p

]
,

so the assertion follows. �

We are now in the position to prove Theorem 1. Since all norms on Rd are equivalent, it suffices to prove the result
for the maximum norm ‖ · ‖max.

Theorem 3. Let p ∈ [1, d
2 ) and q >

pd
d−p

. One has for any probability measure μ on Rd that

V rand
N,p (μ) ≤ κPierce

p,q

[∫
Rd

‖x‖q
max dμ(x)

]1/q

N−1/d , (13)

where

κPierce
p,q = κcube

p

[
2p−12q/2dp

1 − 2p−(1/2)q
+ 2p+q(1−p/d)(κcube

p )p

1 − 2−q(1−p/d)+p

]1/p

.

Proof. By the scaling invariance of inequality (13), we can and will assume without loss of generality that∫ ‖x‖q
max dμ(x) = 1. We partition Rd into a sequence of sets (Bn)n∈N0 defined as

B0 := B := [−1,1)d and Bn := (
2nB

)\(2n−1B
)

for n ∈ N.

We denote by ν the random (Bn)-approximation of μ to μ̂N , that is

ν|Bn = μ̂N (Bn)

μ(Bn)
μ

∣∣∣∣
Bn

for n ∈ N0.

Then ξ = (μ ∧ ν) ◦ ψ−1 + δ−1(μ − ν)+ ⊗ (ν − μ)+ with δ := |(μ − ν)+| = |(ν − μ)+| and ψ : Rd → Rd × Rd, x �→
(x, x) defines a transport in M(μ, ν). Using that ‖x − y‖p ≤ 2p−1(‖x‖p + ‖y‖p) for x, y ∈ Rd , we get∫

‖x − y‖pξ(dx,dy) = δ−1
∫

Rd

∫
Rd

‖x − y‖p(μ − ν)+(dx)(ν − μ)+(dy)

≤ 2p−1
∫

Rd

‖x‖p(μ − ν)+(dx) + 2p−1
∫

Rd

‖y‖p(ν − μ)+(dy)

≤ 2p−1
∞∑

n=0

∫
Bn

‖x‖p(μ − ν)+(dx) + 2p−1
∞∑

n=0

∫
Bn

‖y‖p(ν − μ)+(dy)

≤ 2p−1
∞∑

n=0

dp2np · |μ − ν|(Bn).

Note that Nμ̂N(Bn) is binomially distributed with parameters N and μ(Bn). By the Markov inequality it follows that

μ(Bn) ≤ 2−q(n−1)

∫
‖x‖q

max dμ(x) = 2−q(n−1). (14)
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The inequality remains true for n = 0. One has E[μ̂N (Bn)] = μ(Bn) and estimating the first against the second
moment yields

E
[
ρ

p
p (μ, ν)

] ≤
∞∑

n=0

2p−12npdpE
[∣∣μ(Bn) − μ̂N (Bn)

∣∣]

≤
∞∑

n=0

2p−12npdp var
(
μ̂N (Bn)

)1/2 ≤
∞∑

n=0

2p−12npdpN−1/2μ(Bn)
1/2

≤ 2p+q/2−1dpN−1/2
∞∑

n=0

2n(p−(1/2)q) = 2p+q/2−1

1 − 2p−(1/2)q
dpN−1/2. (15)

It remains to analyze E[ρp
p (ν, μ̂N )]. Given that {Nμ̂N(Bn) = k} the random measure N

k
μ̂N |Bn is the empirical

measure of k independent μ|Bn

μ(Bn)
-distributed random variables. By Lemma 1(iv) and Proposition 1, one has for n ∈ N0

E
[
ρ

p
p (ν|Bn, μ̂N |Bn)

]
=

∞∑
k=1

P
(
Nμ̂N(Bn) = k

) k

N
E

[
ρ

p
p

(
μ|Bn

μ(Bn)
,
N

k
μ̂N

∣∣∣∣
Bn

)∣∣∣Nμ̂N(Bn) = k

]

≤
∞∑

k=1

P
(
Nμ̂N(Bn) = k

)
2(n+1)p k

N

(
κcube
p

)p
k−p/d

= (
κcube
p

)p
N−p/d2(n+1)pE

[
μ̂N (Bn)

1−p/d
]
.

By Lemma 1(i) and the fact that E[μ̂N (Bn)] = μ(Bn), we conclude with Jensen’s inequality that

E
[
ρ

p
p (ν, μ̂N )

] ≤
∞∑

n=0

E
[
ρ

p
p (ν|Bn, μ̂N |Bn)

] ≤ (
κcube
p

)p
N−p/d

∞∑
n=0

2(n+1)pμ(Bn)
1−p/d .

We use again inequality (14) to derive

E
[
ρ

p
p (ν, μ̂N )

] ≤ (
κcube
p

)p
N−p/d

∞∑
n=0

2(n+1)p−q(n−1)(1−p/d)

= (
κcube
p

)p 2p+q(1−p/d)

1 − 2−q(1−p/d)+p
N−p/d .

Note that p
d

≤ 1
2 and altogether, we finish the proof by applying the triangle inequality (property (ii) of Lemma 1) and

inequality (15) to deduce that

E
[
ρ

p
p (μ, μ̂N)

]1/p ≤
[

2p−12q/2dp

1 − 2p−(1/2)q
+ 2p+q(1−p/d)(κcube

p )p

1 − 2−q(1−p/d)+p

]1/p

︸ ︷︷ ︸
=:κPierce

p,q

N−1/d .

�

3. Asymptotic analysis of the uniform measure

Next, we investigate the asymptotics of the random quantization of the uniform distribution U on the unit cube B =
[0,1)d . The aim of this subsection is to prove the existence of the limits

κunif
p := lim

N→∞N1/dV rand
N,p (U ), κunif

p := lim
N→∞N1/dV rand

N,p
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which is the first statement of Theorem 2.

Notation 1. Let A and S denote two sets with A ⊂ S and suppose that v = (vj )j=1,...,N is an S-valued vector. We call
the vector vA consisting of all entries of v in A the A-subvector of v, that is

vA := (vγ (j)),

where (γ (j)) is the enumeration of the entries of v in A in canonical order.

For a Borel set A ⊂ Rd with finite nonvanishing Lebesgue measure, we denote by U (A) the uniform distribution
on A. The proof of the existence of the limit makes use of the following lemma.

Lemma 3. Let K ∈ N and let A,A1, . . . ,AK ⊂ Rd be Borel sets such that λd(A) ∈ (0,∞) and that the sets

A1, . . . ,AK ⊂ Rd are pairwise disjoint and cover A. Fix N ∈ N and suppose that ξk := N · λd(Ak∩A)

λd(A)
∈ N0 for

k = 1, . . . ,K .
Assume that X = (X1, . . . ,XN) is a random vector consisting of independent U (A)-distributed entries. Then one

can couple X with a random vector Y = (Y1, . . . , YN) which has Ak-subvectors consisting of ξk independent U (Ak)-
distributed entries such that the individual subvectors are independent and such that

E

[
N∑

j=1

1{Xj �=Yj }

]
≤

√
K

√
N

2
. (16)

Proof. For k = 1, . . . ,K , denote by X(k) the Ak-subvector of X. For each k with ξk ≤ length(X(k)), we keep the
first ξk entries of X in Ak and erase the remaining ones. For any other k’s, we fill up ξk − length(X(k)) of the empty
places by independent U (Ak)-distributed elements. Denoting the new vector by Y , we see that Y has Ak-subvectors
of length ξk . Clearly, Y has independent subvectors that are uniformly distributed on the respective sets. The length

of the Ak-subvector of X is binomially distributed with parameters N and qk := λd(Ak∩A)

λd(A)
, so that, in particular,

E[length(X(k))] = Nqk = ξk . Bounding the first by the second moment we get

E

[
N∑

j=1

1{Xj �=Yj }

]
= 1

2
E

[
K∑

k=1

∣∣length
(
X(k)

) − ξk

∣∣] ≤ 1

2

K∑
i=1

var
(
length

(
X(k)

))1/2

≤ 1

2

√
N

K∑
k=1

√
qk ≤ 1

2

√
K

√
N,

where we used the Cauchy–Schwarz inequality in the last step. �

Proof of the first statement of (i) of Theorem 2. Let M ∈ N be arbitrary but fixed. Further, let N ∈ N, N > 2dM , and
denote by B0 = [0, a)d , ad = M

N
, the cube with volume λd(B0) = M

N
. We divide [0,1)d into two parts, the main one

Bmain := [0, �1/a�a)d and the remainder Brem := [0,1)d\Bmain. Note that λd(Brem) → 0 as N → ∞. We represent
Bmain as the union of n = �a−1�d pairwise disjoint translates B1, . . . ,Bn of B0:

Bmain =
n⋃

k=1

Bk.

Let X = (X1, . . . ,XN) denote a vector of N independent U [0,1)d -distributed entries. We shall now couple X

with a random vector Y = (Y1, . . . , YN) in such a way that most of the entries of X and Y coincide and such that
the Bk-subvectors are independent and consist of M independent U (Bk)-distributed entries. To achieve this goal we
successively apply Lemma 3 to construct random vectors X0, . . . ,XL and finally set XL = Y . First we apply the
coupling of Lemma 3 for X with the decomposition [0,1)d = Bmain ∪̇Brem and denote by X0 the resulting vector.
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In the next step a 2d -ary tree T whose leaves are the boxes B1, . . . ,Bn is used to define further couplings. We let L

denote the smallest integer with 2LB0 ⊃ Bmain, i.e. L = �− log2 a�, and set

Tl := {
γ + 2L−lB0: γ ∈ (

2L−laZd
) ∩ Bmain}

for l = 0, . . . ,L. Now T is defined as the rooted tree which has at level l the boxes (vertices) Tl and a box Achild ∈ Tl

is the child of a box Aparent ∈ Tl−1 if Achild ⊂ Aparent.
We associate the vector X0 with the 0th level of the tree. Now we define consecutively X1, . . . ,XL via the following

rule. Suppose that Xl has already been defined. For each A ∈ Tl we apply the above coupling independently to the
A-subvector of Xl with the representation

A =
⋃̇

B child of A

B.

By induction, for each A ∈ Tl , the A-subvector of Xl consists of Nλd(A) ∈ N independent U (A)-distributed random
variables. In particular, this is valid for the last level Y = XL.

We proceed with an error analysis. Fix ω ∈ Ω and j ∈ {1, . . . ,N} and suppose that X0
j (ω), . . . ,XL

j (ω) is altered in

the step l → l + 1 for the first time and that X0
j (ω) ∈ B ∈ Tl . Then it follows that XL

j (ω) ∈ B so that∥∥X0
j (ω) − XL

j (ω)
∥∥ ≤ diameter(B) ≤ ad2L−l ,

where d is the diameter of [0,1)d . Consequently,

E

[
N∑

j=1

∥∥X0
j − XL

j

∥∥p

]
≤ E

[
N∑

j=1

L−1∑
l=0

1{Xl
j �=Xl+1

j }
(
ad2L−l

)p

]
.

By Lemma 3 and the Cauchy–Schwarz inequality, one has, for l = 1, . . . ,L,

E

[
N∑

j=1

1{Xl
j �=Xl−1

j }

]
≤ 1

2

√
2d

√
N

∑
A∈Tl−1

√
λd(A)

≤ 1

2

√
2d

√
N

( ∑
A∈Tl−1

λd(A)

)1/2

2d(l−1)/2 ≤ 1

2
2dl/2

√
N,

since
∑

A∈Tl−1
λd(A) = λd(Bmain) ≤ 1 and Tl−1 has at most 2d(l−1) elements. Together with the former estimate we

get

E

[
N∑

j=1

∥∥X0
j − XL

j

∥∥p

]
≤ 1

2
(ad)p

√
N

L∑
l=1

2(L−l)p+dl/2 ≤ 1

2

(ad)p

1 − 2−d/2+p
2dL/2

√
N.

Next, we use that a = (M
N

)1/d and 2L ≤ 2
a

to conclude that

E

[
N∑

j=1

∥∥X0
j − XL

j

∥∥p

]
≤ 2d/2−1dp

1 − 2−d/2+p
Mp/d−1/2N1−p/d .

Hence, there exists a constant C that does not depend on N and M such that

E

[
1

N

N∑
j=1

‖Xj − Yj‖p

]1/p

≤ E

[
1

N

N∑
j=1

∥∥Xj − X0
j

∥∥p

]1/p

+ E

[
1

N

N∑
j=1

∥∥X0
j − XL

j

∥∥p

]1/p

≤ C
[
N−1/(2p) + M−(1/(2p)−1/d)N−1/d

]
. (17)
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By construction, Y has for each k = 1, . . . , n, a Bk-subvector of M independent U (Bk)-distributed random vari-
ables and we denote the corresponding empirical measure by μ̂

(k)
M . Moreover, its Brem-subvector contains N − nM

independent U (Brem)-distributed entries and we denote its empirical measure by μ̂rem
N−nM . Letting μ̂Y

N denote the
empirical measure of Y , we conclude with Lemma 1 and Proposition 1 that

NE
[
ρ

p
p

(
μ̂Y

N , U
)] ≤

n∑
k=1

ME
[
ρ

p
p

(
μ̂

(k)
M , U (Bk)

)] + (N − nM)E
[
ρ

p
p

(
μ̂rem

N−nM, U
(
Brem))]

≤ nMap
(
V rand

M,p(U )
)p + (

κcube
p

)p
(N − nM)1−p/d . (18)

Next, we let N tend to infinity and combine the above estimates. Note that N1/da = M1/d and nM
N

→ 1 so that

lim sup
N→∞

N1/dE
[
ρ

p
p

(
μ̂Y

N , U
)]1/p ≤ M1/dV rand

M,p(U ).

Moreover, (17) implies that

lim sup
N→∞

N1/dE
[
ρ

p
p

(
μ̂X

N, μ̂Y
N

)]1/p ≤ CM−(1/(2p)−1/d).

Now fix ε ∈ (0,1] arbitrarily and let M ≥ 1
ε

such that

M1/dV rand
M,p(U ) ≤ lim inf

N→∞ N1/dV rand
N,p (U ) + ε.

Then

lim sup
N→∞

N1/dV rand
N,p (U ) ≤ M1/dV rand

M,p(U ) + CM−(1/(2p)−1/d) ≤ lim inf
N→∞ N1/dV rand

N,p (U ) + ε + Cε1/(2p)−1/d

and letting ε ↓ 0 finishes the proof. �

Proof of the second statement of (i) of Theorem 2. The proof of the second statement is very similar to the proof
of the first statement. The crucial difference is that the arguments are now based on superadditivity compared to the
subadditivity of the Wasserstein metric (in the sense of part (i) of Lemma 1) that was used in the proof of the first
statement.

We now look at a nonsymmetric modified version of the Wasserstein distance that allows leakage at the boundaries.
For two probability measures ν1 and ν2 on [0,1]d , we define

ρ
p
(ν1, ν2) := inf

ν′
1∈Λ(ν1)

ρp

(
ν′

1, ν2
)
,

where Λ(ν1) denotes all probability measures ζ on [0,1]d which satisfy ζ(A) ≤ ν1(A) for all Borel sets A in (0,1)d .
We make use of thee same notation as in the proof of the first statement. First note that similar as in (18)

NE
[
ρp

p

(
U , μ̂Y

N

)] ≥ nMap
(
V rand

M,p

)p
.

Since, in general,

ρ
p

(
U , μ̂Y

N

) ≤ ρ
p

(
U , μ̂X

N

) + ρp

(
μ̂X

N, μ̂Y
N

)
,

we conclude that

lim inf
N→∞ N1/dE

[
ρp

p

(
U , μ̂X

N

)]1/p ≥ lim inf
N→∞ N1/dE

[
ρp

p

(
U , μ̂Y

N

)]1/p − lim sup
N→∞

N1/dE
[
ρ

p
p

(
μ̂X

N, μ̂Y
N

)]1/p

≥ lim inf
N→∞ N1/d(nM/N)1/paV rand

M,p(U ) − CM−(1/(2p)−1/d)

≥ M1/dV rand
M,p(U ) − CM−(1/(2p)−1/d).
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The proof is finished as above. �

4. Proof of the high resolution formula

4.1. Proof of the high resolution formula for general p

Definition 2. We call a finite measure μ on Rd approachable from below, if there exists for every ε > 0 a finite number
of pairwise disjoint cubes B1, . . . ,Bn (which are parallel to the coordinate axes) and positive reals α1, . . . , αn such
that ν := ∑

αk U (Bk) satisfies

ν ≤ μ and ‖μ − ν‖ ≤ ε.

A finite measure μ on Rd is called approachable from above, if there exists for every δ, ε > 0 a finite number of
pairwise disjoint cubes B1, . . . ,Bn and positive reals α1, . . . , αn such that ν := ∑

αk U (Bk) satisfies

ν ≥ μ|B(0,δ) and ‖ν − μ|B(0,δ)‖ ≤ ε.

Remark 5.

1. The uniform distribution on a rectangle with positive Lebesgue measure is approachable from above and below and
it is straight-forward to verify that one can allow arbitrary (nondisjoint) rectangles B1, . . . ,Bn in the definition of
approachability without changing the definition.

2. By 1. we can express a measure which is approachable from below or above locally as the limit of a monotone se-
quence of measures with Lebesgue density. Hence it has itself a Lebesgue density. Conversely, every finite measure
which has a density that is Riemann integrable on any ball B(0, δ) (δ > 0), is approachable from below and above.

Proposition 2. Let μ denote a compactly supported probability measure that is approachable from below. Further let
p ∈ [1, d/2). Then

lim sup
N→∞

N1/dE
[
ρ

p
p (μ, μ̂N)

]1/p ≤ κunif
p

(∫
Rd

(
dμ

dλd

)1−p/d

dλd

)1/p

.

Proof. Let ε > 0 and choose a finite number of pairwise disjoint cubes B1, . . . ,BK and positive reals α1, . . . , αK such
that μ∗ := ∑K

k=1 αk U (Bk) ≤ μ and ‖μ − μ∗‖ ≤ ε. For k = 1, . . . ,K let μ(k) = U (Bk), set α0 = ‖μ − μ∗‖ and fix a
probability measure μ(0) such that

μ =
K∑

k=0

αkμ
(k).

For each k, we consider empirical measures (μ̂
(k)
n )n∈N of a sequence of independent μ(k)-distributed random vari-

ables. We assume independence of the individual empirical measures and observe that for an additional independent
multinomial random variable M = (Mk)k=0,...,K with parameters N and (αk)k=0,...,K one has

Nμ̂N
L=

K∑
k=0

Mkμ̂
(k)
Mk

.

We assume without loss of generality strict equality in the last equation. Set ν = ∑K
k=0

Mk

N
μ(k) and observe that by

the triangle inequality

E
[
ρ

p
p (μ, μ̂N)

]1/p ≤ E
[
ρ

p
p (μ, ν)

]1/p + E
[
ρ

p
p (ν, μ̂N )

]1/p
.

The first expression on the right hand side is of order O(N−1/2p) (see the proof of Proposition 3). By Theorem 2(i) and

Lemma 6 of the Appendix, there is a concave function ϕ : [0,∞) → R such that E[nρp
p (U ([0,1)d), ̂U ([0,1)d)n)] ≤
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ϕ(n) for all n ∈ N0 and

lim
n→∞

1

n1−p/d
ϕ(n) = (

κunif
p

)p
.

Denote by a1, . . . , aK the edge lengths of the cubes B1, . . . ,BK and let a0 > 0 be such that the support of μ is
contained in a cube with side length a0. Then, by Lemma 1, Proposition 1 and Jensen’s inequality,

NE
[
ρ

p
p (ν, μ̂N )

] ≤
K∑

k=0

E
[
Mkρ

p
p

(
μ(k), μ̂

(k)
Mk

)]

≤ (
κcube
p

)p
a

p

0 E
[
M

1−p/d

0

] +
K∑

k=1

a
p
k E

[
ϕ(Mk)

]

≤ (
κcube
p

)p
a

p

0 (α0N)1−p/d +
K∑

k=1

a
p
k ϕ(αkN),

so that

lim sup
N→∞

Np/dE
[
ρ

p
p (ν, μ̂N )

] ≤ (
κcube
p

)p
a

p

0 ε1−p/d + (
κunif
p

)p
K∑

k=1

a
p
k α

1−p/d
k .

Note that for x ∈ Bk , f (x) := dμa

dλd ≥ αk/a
d
k and we get

a
p
k α

1−p/d
k =

∫
Bk

a
p−d
k α

1−p/d
k dx ≤

∫
Bk

f (x)1−p/d dx.

Finally, we arrive at

lim sup
N→∞

Np/dE
[
ρ

p
p (μ, μ̂N)

] ≤ (
κunif
p

)p
∫

Rd

f (x)1−p/d dx + (
κcube
p

)p
a

p

0 ε1−p/d .

Letting ε → 0 the assertion follows. �

Proposition 3. Let μ be a finite singular measure on the Borel sets of [0,1)d . For p ∈ [1, d/2), one has

lim
N→∞N1/dV rand

N,p (μ) = 0.

Proof. Without loss of generality we will assume that μ is a probability measure. Let ε > 0 and choose an open set
U ⊂ Rd such that μ(U) = 1 and λd(U) < ε. We fix finitely many pairwise disjoint cubes B1, . . . ,BK with

U ⊃ B1 ∪ · · · ∪ BK and μ(B1 ∪ · · · ∪ BK) ≥ 1 − ε.

We set B0 = [0,1)d\(B1 ∪ · · · ∪ BK) and consider the (Bk)-approximation of μ to μ̂N . According to the discussion
following Lemma 2, we consider the random probability measure ν on [0,1)d with

ν|Bk
= μ̂N (Bk)

μ(Bk)
μ

∣∣∣∣
Bk

.

Then the vector Z := (Nμ̂N(Bk))k=0,...,K is multinomially distributed with parameters N and (μ(Bk))k=0,...,K and
the coupling introduced below Lemma 2 achieves

ρ
p
p (μ, ν) ≤ 1

2
dp

K∑
k=0

∣∣∣∣Zk

N
− μ(Bk)

∣∣∣∣.
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Consequently,

E
[
ρ

p
p (μ, ν)

]1/p ≤
(

1

2N
dp

K∑
k=0

E
∣∣Zk − Nμ(Bk)

∣∣)1/p

= O
(
N−1/2p

)
. (19)

We denote by a1, . . . , aK the edge lengths of the cubes Bk , i.e. ak = λd(Bk)
1/d , and set a0 = 1. Note that ν|Bk

and
μ̂N |Bk

have the same mass for all k. We apply Lemma 1, Proposition 1 and Jensen’s inequality to deduce that

E
[
ρ

p
p (ν, μ̂N )

] ≤
K∑

k=0

E
[
ρ

p
p (ν|Bk

, μ̂N |Bk
)
] ≤ 1

N

(
κcube
p

)p
K∑

k=0

a
p
k E

[(
μ̂N (Bk)N

)1−p/d]

≤ (
κcube
p

)p
N−p/d

K∑
k=0

a
p
k

(
μ(Bk)

)1−p/d
.

Next, we apply Hölder’s inequality with exponents d/p and (1 − p/d)−1 to get

E
[
ρ

p
p (ν, μ̂N )

] ≤ (
κcube
p

)p

(
K∑

k=1

λd(Bk)

)p/d

·
(

K∑
k=1

μ(Bk)

)1−p/d

N−p/d + (
κcube
p

)p
μ(B0)

1−p/dN−p/d

≤ (
κcube
p

)p(
εp/d + ε1−p/d

)
N−p/d .

It follows from (19) and the triangle inequality that

lim sup
N→∞

N1/dE
[
ρ

p
p (μ, μ̂N)

]1/p ≤ κcube
p

(
εp/d + ε1−p/d

)1/p

which finishes the proof since ε > 0 is arbitrary. �

Theorem 4. Let p ∈ [1, d
2 ) and let μ denote a probability measure on Rd with finite qth moment for some q >

dp
d−p

.
If the absolutely continuous part μa of μ is approachable from below with density f , then

lim sup
N→∞

N1/dV rand
N,p (μ) ≤ κunif

p

(∫
Rd

f (x)1−p/d dx

)1/p

. (20)

If the absolutely continuous part μa of μ is approachable from above with density f , then

lim inf
N→∞ N1/dV rand

N,p (μ) ≥ κunif
p

(∫
Rd

f (x)1−p/d dx

)1/p

. (21)

Proof. We only prove the first statement since the second one is proved analogously (first establishing a corresponding
version of Proposition 2). Let δ > 0 and set

μ(1) = μa|B(0,δ)

μa(B(0, δ))
, μ(2) = μs |B(0,δ)

μs(B(0, δ))
, and μ(3) = μ|B(0,δ)c

μ(B(0, δ)c)
,

where we let μ(i) be an arbitrary probability measure in case the denominator is zero. As in the proof of Proposition 2,
we represent μ̂N with the help of independent sequences of empirical measures (μ̂

(1)
n )n∈N0 , . . . , (μ̂

(3)
n )n∈N0 and an in-

dependent multinomially distributed random variable M = (Mk)k=1,2,3 with parameters N and (μa(B(0, δ)),μs(B(0,

δ)),μ(B(0, δ)c)) as

Nμ̂N =
3∑

k=1

Mkμ̂
(k)
Mk

.
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As before one observes that for the random measure ν = ∑3
k=1

Mk

N
μ(k)

E
[
ρ

p
p (μ, ν)

]1/p = O
(
N−1/2).

Further, by Lemma 1,

NE
[
ρ

p
p (ν, μ̂N )

] ≤
3∑

k=1

E
[
Mkρ

p
p

(
μ(k), μ̂

(k)
Mk

)]
.

By Propositions 2 and 3 and Lemma 6 of the Appendix, there exist concave functions ϕ1 and ϕ2 with

nV rand
n,p

(
μ(k)

)p ≤ ϕk(n) for n ∈ N, k = 1,2

and

ϕ1(n) ∼ (
κunif
p

)p
n1−p/d

∫
B(0,δ)

f (x)1−p/d

μa(B(0, δ))1−p/d
dx and ϕ2(n) = o

(
n1−p/d

)

as n → ∞. By Jensen’s inequality, E[Mkρ
p
p (μ(k), μ̂

(k)
Mk

)] ≤ ϕk(E[Mk]) so that

lim sup
N→∞

1

N1−p/d
E

[
M1ρ

p
p

(
μ(1), μ̂

(1)
M1

)] ≤ (
κunif
p

)p
∫

B(0,δ)

f (x)1−p/d dx.

Analogously, using Proposition 3,

lim sup
N→∞

1

N1−p/d
E

[
M2ρ

p
p

(
μ(2), μ̂

(2)
M2

)] = 0

and, by Theorem 3,

lim sup
N→∞

1

N1−p/d
E

[
M3ρ

p
p

(
μ(3), μ̂

(3)
M3

)] ≤ (
κPierce
p,q

)p
[∫

B(0,δ)c
‖x‖q

max dμ(x)

]p/q

,

where we used that 1 − p
d

− p
q

≥ 0. Altogether, we get

lim sup
N→∞

Np/dE
[
ρ

p
p (μ, μ̂N)

]

≤ (
κunif
p

)p
∫

B(0,δ)

f (x)1−p/d dx + (
κPierce
p,q

)p
[∫

B(0,δ)c
‖x‖q

max dμ(x)

]p/q

and letting δ → ∞ finishes the proof. �

4.2. Proof of the high resolution formula for p = 1

In this section, we consider the special case p = 1. We will write ρ instead of ρ1. The case p = 1 is special because
of the following lemma.

Lemma 4. Let μ,ν, κ be finite measures on Rd such that ‖μ‖ = ‖ν‖. Then one has

ρ(μ + κ, ν + κ) = ρ(μ, ν).
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Proof. One has

ρ(μ + κ, ν + κ) = sup

{∫
f d(μ + κ) −

∫
f d(ν + κ): f 1-Lipschitz

}

= sup

{∫
f dμ −

∫
f dν: f 1-Lipschitz

}
= ρ(μ, ν),

where the first equality can be found in [28], p. 95. �

The following lemma shows that the map μ �→ lim supN→∞(N1/dV rand
N,1 (μ)) and likewise μ �→ lim infN→∞(N1/d ×

V rand
N,1 (μ)) are continuous with respect to the total variation norm.

Lemma 5. Let d ≥ 3 and q > d
d−1 . For probability measures μ and ν on Rd one has

lim sup
N→∞

N1/d
∣∣V rand

N,1 (μ) − V rand
N,1 (ν)

∣∣ ≤ 2κPierce
1,q ‖μ − ν‖1−1/d−1/q

(∫
‖x‖q

max|μ − ν|(dx)

)1/q

.

Proof. Without loss of generality, we assume that μ �= ν. Let α = μ∧ν
‖μ∧ν‖ , μ∗ = μ−μ∧ν

‖μ−μ∧ν‖ and ν∗ = ν−μ∧ν
‖ν−μ∧ν‖ (let α

be an arbitrary probability measure in case μ ∧ ν = 0). For fixed N ∈ N let (M1,M2) be multinomially distributed
with parameters N and (‖μ ∧ ν‖,1 − ‖μ ∧ ν‖). We represent μ̂N and ν̂N as combinations of independent empirical
measures (α̂n), (μ̂∗

n) and (ν̂∗
n) as

Nμ̂N = M1α̂M1 + M2μ̂
∗
M2

and Nν̂N = M1α̂M1 + M2ν̂
∗
M2

.

By Lemma 1(ii) and (i), one has

ρ(Nμ,Nμ̂N) ≤ ρ
(
Nμ,M1α + M2μ

∗) + ρ
(
M1α + M2μ

∗,M1α̂M1 + M2μ̂
∗
M2

)
≤ ρ

(
Nμ,M1α + M2μ

∗) + ρ(M1α,M1α̂M1) + ρ
(
M2μ

∗,M2μ̂
∗
M2

)
. (22)

Observe that

E
[
ρ
(
Nμ,M1α + M2μ

∗)] ≤ E
[∣∣M1 − E[M1]

∣∣]ρ(
μ∗, α

) = O
(
N1/2). (23)

Further, by Theorem 3 and Jensen’s inequality, one has

E
[
ρ
(
M2μ

∗,M2μ̂
∗
M2

)] ≤ κPierce
1,q ‖μ − ν‖1−1/d−1/qN1−1/d

(∫
‖x‖q

max(μ − ν)+(dx)

)1/q

+ O
(
N1/2), (24)

where we used that (μ − ν)+ = ‖μ − ν‖μ∗. Conversely, by Lemma 4 and Lemma 1,

ρ(M1α,M1α̂M1) = ρ
(
M1α + M2ν̂

∗
M2

,M1α̂M1 + M2ν̂
∗
M2

)
= ρ

(
M1α + M2ν̂

∗
M2

,Nν̂N

)
≤ ρ(Nν,Nν̂N) + ρ

(
M1α + M2ν̂

∗
M2

,Nν
)

= ρ(Nν,Nν̂N) + ρ
(
M1α + M2ν̂

∗
M2

+ M2ν
∗,Nν + M2ν

∗)
≤ ρ(Nν,Nν̂N) + ρ

(
M2ν̂

∗
M2

,M2ν
∗) + ρ

(
M1α + M2ν

∗,Nν
)
.

The expected values of the last two summands can be estimated like (24) and (23). Inserting the estimates into (22),
the assertion of the lemma follows. �

We now prove the general upper and lower bounds in the case p = 1.
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Proof of Theorem 2(ii) for p = 1. Let μ = μa +μs be the Lebesgue decomposition of μ and let f denote the density
of μa . It is now straightforward to verify that μ(n) with density

f (n)(x) = 2−nd

∫
Sn,m1,...,md

f (y)dy for x ∈ Sn,m1,...,md
,

where Sn,m1,...,md
:= 2−n([m1,m1 + 1) × · · · × [md,md + 1)), satisfies ‖μa − μ(n)‖ → 0 and

∫ ‖x‖q
max|μa −

μ(n)|(dx) → 0. Since μ(n) + μs is approachable from below and above, Lemma 5 allows to extend the upper and
lower bounds of Theorem 4 to the case with general density if p = 1. �

Appendix

Lemma 6. Suppose that f,g : N0 → [0,∞) are functions with the following properties:

• g is nondecreasing, concave and limn→∞ g(n) = ∞.
• α := lim supn→∞

f (n)
g(n)

∈ [0,∞).

Then there exists a concave function ϕ : N0 → [0,∞) dominating f with

lim
n→∞

ϕ(n)

g(n)
= α.

Proof. For ε > 0 choose n0 such that f (n) ≤ (α + ε)g(n) for all n ≥ n0. Then there exists some Cε ≥ 0 such that
f (n) ≤ (α + ε)g(n) + Cε =: ϕε(n) for all n ∈ N0. Since all ϕε are concave, so is ϕ(n) := infε>0 ϕε(n). Then ϕ

dominates f and

lim sup
n→∞

ϕ(n)

g(n)
≤ lim sup

n→∞
ϕε(n)

g(n)
= α + ε + lim sup

n→∞
Cε

g(n)
= α + ε,

lim inf
n→∞

ϕ(n)

g(n)
= lim inf

n→∞ inf
ε>0

ϕε(n)

g(n)
= lim inf

n→∞ inf
ε>0

(
α + ε + Cε

g(n)

)
≥ α.

The result follows since ε > 0 is arbitrary. �
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