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Abstract. The σ -finite measure Psup which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s
coinvariant and coharmonic functions for Lévy processes and Chaumont’s h-transform processes with respect to these functions
are utilized for the construction of Psup.

Résumé. On introduit la mesure σ -finie Psup, unifiant les pénalisations selon le supremum pour un processus de Lévy stable. Dans
la construction de Psup on utilise les fonctions co-invariantes et co-harmoniques de Silverstein pour les processus de Lévy, et les
processus h-transformés par rapport à ces fonctions selon l’approche de Chaumont.
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1. Introduction

Roynette, Vallois and Yor ([19] and [20], see also [21] and [22]) have considered the limit laws of Wiener mea-
sure weighted by various processes (Γt ), and they call these studies Brownian penalisations. Especially we call
the case where the weight process is given by a function of its supremum, i.e., (S) Γt = f (St ), supremum pe-
nalisation. Concerning the Brownian supremum penalisations, the authors [20] have obtained the following re-
sult. Let X = ((Xt ), (Ft ),W) be the canonical representation of a 1-dimensional standard Brownian motion with
W(X0 = 0) = 1 and let F∞ = σ(

∨
t Ft ). Put St = sups≤t Xs . If f is a non-negative Borel function which satisfies∫ ∞

0
f (x)dx = 1, (1.1)

then there exists a unique probability law W(f ) on F∞ such that

W[f (St )Fs]
W[f (St )] −→ W(f )[Fs] as t → ∞, (1.2)

for any fixed s > 0 and for any bounded Fs -measurable functional Fs . Moreover the limit measure W(f ) is character-
ized by

W(f )|Fs = M
(f )
s · W|Fs , (1.3)
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where (M
(f )
s , s ≥ 0) is a ((Fs),W)-martingale which has the form

M
(f )
s = f (Ss)(Ss − Xs) +

∫ ∞

Ss

f (x)dx. (1.4)

We remark that these martingales (M
(f )
s ) which are known as the Azéma–Yor martingales were applied to solve the

Skorokhod embedding problem; see [1], [2], also [16] and references therein. In [20] the authors have also obtained
the description of the probability measure W(f ) as follows.

Theorem 1.1 (Roynette, Vallois and Yor [20]). The following holds.

(i) W(f )(S∞ ∈ dx) = f (x)dx.
(ii) Let g = sup{t ≥ 0: Xt = S∞}. Then W(f )(g < ∞) = 1 and, under W(f ), we have

(a) (Xu,u ≤ g) and (Xg − Xg+u,u ≥ 0) are independent;
(b) conditional on S∞ = x, the pre-supremum process (Xu,u ≤ g) is distributed as a Brownian motion starting

from 0 and stopped at its first hitting time of x;
(c) the post-supremum process (Xg − Xg+u,u ≥ 0) is distributed as a 3-dimensional Bessel process starting

from 0.

Theorem 1.1 implies that, under the limit measure W(f ), the time g when the process attains its overall supremum
is finite, so that the supremum penalisation procedure can be interpreted as looking for probabilities on canonical
space, which are close to W, and such that S∞ < ∞ a.s.

Roynette, Vallois and Yor considered Brownian penalisations for many other kinds of weighted processes. For
instance, (L) Γt = f (Lt ) where Lt denotes the local time of X at the origin, and (K) Γt = exp(− ∫

L(t, x)V (dx))

where L(t, x) denotes the local time of X at x; we call the former case local time penalisation and the latter case
Kac killing penalisation. Meanwhile Najnudel, Roynette and Yor [15] have introduced a certain σ -finite measure W
defined as follows:

W =
∫ ∞

0

du√
2πu

(
Π(u) • P 3B

)
, (1.5)

where Π(u) denotes the law of Brownian bridge from 0 to 0 of length u and P 3B = (P 3B,+ + P 3B,−)/2 denotes the
law of symmetrized 3-dimensional Bessel process; P 3B,+ is the law of 3-dimensional Bessel process starting from 0,
BES(3), whereas P 3B,− is the law of (−BES(3)). The authors in [15] have shown that the Brownian penalisations
including (S)(L)(K) can be understood in a unified manner, thanks to this measure W . Especially in the supremum
penalisation case, they have shown the following absolute continuity relationship between W and W(f ):

f (S∞) · W − = W(f ) on F∞, (1.6)

where

W − = 1{S∞<∞} · W

=
∫ ∞

0

du√
2πu

(
Π(u) • P 3B,−

2

)
. (1.7)

(See Fig. 1.)
As a generalisation of these studies, Yano, Yano and Yor [27] have considered the two kinds of penalisations (L)

and (K) in the case of symmetric α-stable Lévy process with index α ∈ (1,2]. Let us denote by ((Xt ),P) such a stable
Lévy process with P(X0 = 0) = 1. The authors have introduced a σ -finite measure P defined as follows, which is the
analogue of W :

P =
∫ ∞

0

Γ (1/α)

απ
du

u1/α

(
Q(u) • P×)

, (1.8)

where Q(u) denotes the law of the stable bridge from 0 to 0 of length u and P× denotes the h-transform process with
respect to the harmonic function |x|α−1 of the process killed at the first hitting time of 0. We should remark that the
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Fig. 1. Sample path of Π(u) • P 3B,− .

process under the measure P× is called conditioned to avoid 0, because of the following property obtained by K. Yano
[25]: if a functional Z is of the form Z = f (Xt1, . . . ,Xtn) for some 0 < t1 < · · · < tn and some continuous function
f : Rn → R which vanishes at ∞, then one has

P×[Z] = lim
t→∞ lim

ε→0+ P[Z ◦ θε|∀u ≤ t,Xu ◦ θε 
= 0], (1.9)

where θ· is the shift operator: Xu ◦ θ· = X·+u. Moreover the following long-time behavior of path under P× is also
obtained by K. Yano [26]: if α ∈ (1,2), then

P×(
lim sup
t→∞

Xt = lim sup
t→∞

(−Xt) = lim
t→∞|Xt | = ∞

)
= 1. (1.10)

Thus we can see immediately that, under P , S∞ = ∞ a.e. That is, P cannot unify the supremum penalisations (S) in
the stable case.

Yano, Yano and Yor [28] have studied the supremum penalisation for a (α,ρ)-stable Lévy process with index
α ∈ (0,2] and positivity parameter ρ ∈ (0,1). The authors have introduced a generalised Azéma–Yor martingale
(M

(f )
s ) which is defined as

M
(f )
s = f (Ss)(Ss − Xs)

αρ + αρ

∫ ∞

Ss

f (x)(x − Xs)
αρ−1 dx, (1.11)

for any non-negative Borel function f satisfying

0 <

∫ ∞

0
f (x)xαρ−1 dx < ∞ (1.12)

and also introduced the probability measure P(f ) given as

P(f )|Fs = M
(f )
s

M
(f )

0

· P

∣∣∣∣
Fs

. (1.13)

The authors obtained the following result:
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Theorem 1.2 (Yano, Yano and Yor [28]). Let f be a non-negative function which satisfies either of the following
two conditions:

(i) f (x) = 1{x≤a} for some a > 0;
(ii) f is absolutely continuous with respect to the Lebesgue measure and satisfies

lim
x→∞f (x) = 0 and 0 <

∫ ∞

0

∣∣f ′(x)
∣∣xαρ dx < ∞. (1.14)

Then it holds that, for any s > 0 and any bounded Fs -measurable functional Fs ,

P[f (St )Fs]
P[f (St )] −→ P(f )[Fs] as t → ∞. (1.15)

We remark that the condition (ii) in Theorem 1.2 is stronger than the condition (1.12) because we have∫ ∞

0
f ′(x)xαρ dx = αρ

∫ ∞

0
f ′(x)dx

∫ x

0
yαρ−1 dy

= αρ

∫ ∞

0
yαρ−1 dy

∫ ∞

y

f ′(x)dx

= k − αρ

∫ ∞

0
f (y)yαρ−1 dy.

One may conjecture that the assumption of Theorem 1.2 can be weakened to the condition (1.12) that is sufficient to
define the generalised Azéma–Yor martingale and the measure P(f ); however, this is still an open problem.

In the present paper we introduce a certain σ -finite measure Psup by using Chaumont’s h-transform processes for
Lévy processes (cf. Theorem 5.1 below):

Psup =
∫ ∞

0
dxψ(x)(P0↗x • Px↓x),

where ψ is the function stated below in (2.10), P0↗x denotes the law of the process starting from 0 and conditioned
to hit x continuously (in fact, under P0↗x , the process starting from 0 is killed at the first hitting time at x), and Px↓x

denotes the law of the process starting from x and conditioned to stay below level x. Psup is another analogue of W
and P , and it is a generalisation of W − given in (1.7). We remark that, in the Brownian case, P BM

sup is given by the
following:

P BM
sup =

∫ ∞

0
dx

(
W0↗x • P 3B,−

x

)
=

∫ ∞

0
dx

∫ ∞

0
du

x√
2πu3

e−x2/(2u)
(
W

(u)
0↗x • P 3B,−

x

)
, (1.16)

where W0↗x denotes the law of Brownian motion killed at the first hitting time at x and W
(u)
0↗x(·) = W0↗x(·|T{x} =

u), and P
3B,−
x denotes the law of the translation by x of (−BES(3)). (See Fig. 2.) The latter equality is obtained from

the well-known fact (see, e.g., [11]) that

W(T{x} ∈ du) = du
x√

2πu3
e−x2/(2u). (1.17)

We note that the measure P BM
sup equals W − by the agreement formula obtained by Pitman and Yor [17].

We then show that the measure Psup unifies the supremum penalisations. More precisely, we shall define a prob-
ability measure P(f ) as the transformation of the law P of a Lévy process by the generalised Azéma–Yor martingale
defined as (6.2) below. This measure P(f ) is the generalisation of (1.13) for a general Lévy process. We then prove
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Fig. 2. Sample path of W
(u)
0↗x

• P
3B,−
x .

the absolute continuity relationship between Psup and P(f ) in the Lévy case, which is the analogue of (1.6) (cf. Theo-
rem 7.3 below):

f (S∞) · Psup

Psup[f (S∞)] = P(f ) on F∞.

We obtain a detailed description of P(f ) as a consequence of this result (cf. Theorem 7.5 below):

P(f ) =
∫ ∞

0
P(f )(S∞ ∈ dx)(P0↗x • Px↓x).

To prove the absolute continuity relationship between Psup and P(f ), we shall introduce a path decomposition of the
law P of a Lévy process up to a fixed time t with respect to the position and the time where the process attains its
supremum before time t .

The organization of the present paper is as follows. In Sections 2 and 3, we recall some preliminary facts about
Lévy processes and (α,ρ)-stable Lévy processes, respectively. If a reader needs to see details, he/she may refer to,
e.g., [3,10,12,23]. In Section 4, we review Chaumont’s two kinds of h-transform processes for a Lévy process. In
Section 5, we establish a path decomposition of the law of a Lévy process at the position and the time where the Lévy
process attains its supremum up to a fixed time t . In Section 6, we introduce the generalised Azéma–Yor martingale
in the general Lévy case, which is the generalisation of (1.4) and (1.11). A certain probability measure which should
appear as the limit measure of the supremum penalisation is also introduced in this section. In Section 7, we introduce
the σ -finite measure Psup which unifies the supremum penalisations and give some properties of the measure Psup. In
Section 8, we compare Psup with P and give some remarks on these measures.

2. Preliminaries about Lévy processes

Let D([0,∞)) be the space of càdlàg paths ω : [0,∞) → R ∪ {δ} with lifetime ζ(ω) = inf{s: ω(s) = δ} where δ is
a cemetery point. Let (Xt ) denote the coordinate process, Xt(ω) = ωt , and let (Ft ) denote its natural filtration with
F∞ = ∨

t≥0 Ft . Let P be the law of a Lévy process X = (Xt , t ≥ 0) with P(X0 = 0) = 1 such that

P
[
exp{iλXt }

] = e−tΨ (λ), t ≥ 0, λ ∈ R, (2.1)
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where

Ψ (λ) = iγ λ + σ 2λ2

2
+

∫
R\{0}

(
1 − eiλx + iλx1{|x|<1}

)
ν(dx) (2.2)

for some constants γ , σ , and Lévy measure ν on R \ {0} which satisfies∫
R\{0}

(
x2 ∧ 1

)
ν(dx) < ∞. (2.3)

We denote by Px the law of X + x under P for every x ∈ R. Throughout this paper we assume the following absolute
continuity condition (A1):

(A1) For each α > 0, there exists an integrable function uα such that

Px

[∫ ∞

0
e−αtf (Xt )dt

]
=

∫ ∞

−∞
uα(y)f (x + y)dy, (2.4)

for every non-negative Borel function f .

Let St and It be respectively the supremum and the infimum processes up to time t , that is, for all t < ζ(ω),

St = sup{Xs : 0 ≤ s ≤ t} and It = inf{Xs : 0 ≤ s ≤ t}. (2.5)

Let TA denote the first entrance time of a Borel set A ⊂ R of X, i.e.,

TA = inf{s > 0: Xs ∈ A}. (2.6)

Define

R = S − X. (2.7)

The process R = (Rt , t ≥ 0) is called the reflected process of X at the supremum. We recall that R is a strong Markov
process (Bingham [5], see also [4]). We consider the following condition (A2):

(A2) 0 is regular for (0,∞) with respect to X under P, i.e., P(T(0,∞) = 0) = 1.

Then 0 is regular for itself with respect to R, and hence we can define a local time L = (Lt , t ≥ 0) at level 0 of R. We
denote by τ the right-continuous inverse of L and let H = X(τ) = S(τ). We recall that the pair (τ,H) is a bivariate
subordinator, called the (upwards) ladder process, in particular, τ and H are separately also subordinators, called the
(upwards) ladder time and the (upwards) ladder height process, respectively. Denote by X∗ the dual process of X, i.e.,
X∗ = −X. Consider

(A2∗) 0 is regular for (−∞,0) with respect to X under P.

Then we can define a local time L∗ at level 0 of R∗ = S∗ − X∗ = X − I , and also get the (downwards) ladder time τ ∗
and the (downwards) ladder height time H ∗ of R∗.

We denote by E the set of càdlàg paths e : [0,∞) → R ∪ {δ} such that

e(t)

{∈ R \ {0}, 0 < t < ζe;
= δ, t ≥ ζe,

where

ζe = inf
{
t > 0 : e(t) = δ

}
. (2.8)

We call E the set of excursions and an element e ∈ E an excursion path. For e ∈ E, we call ζe the lifetime of the
excursion e. Set D = {l : τl − τl− > 0}. For each l ∈ D, we set

el(t) =
{

Rt+τl− , 0 ≤ t < τl − τl−;
δ, t ≥ τl − τl−.



1020 Y. Yano

By Itô’s theorem, the point process (el, l ∈ D) which takes values on E is a Poisson point process, and its characteristic
measure n is called the Itô measure of excursions. Similarly, we can introduce excursions e∗ with respect to R∗ and
denote by n∗ its Itô measure.

We recall the following important formula, see also p. 7 in [4], and Proposition (1.10) in Chapter XII in [18].
Denote by P (Ft ) the predictable σ -field relative to (Ft ) (cf. p. 47 in [18]), and let E = σ {e(t)}.

Theorem 2.1 (Compensation formula). Let F = F(t,ω, e) be a positive process defined on [0,∞) × D × E, mea-
surable with respect to P (Ft ) ⊗ E and vanishing at δ. Then one has

P

[∑
l∈D

F(τl−,X, el)

]
= P ⊗ n̂

[∫ ∞

0
dLtF (t,X, X̂)

]
, (2.9)

where the symbol̂means independence.

Under (A1) and (A2), there exists a unique coexcessive function ψ for the killed process, i.e., P−x[ψ(X∗
t ) ×

1{t<T(0,∞)}] ≤ ψ(x) for x ≥ 0, which satisfies

∫ ∞

0
ψ(y)f (y)dy = P

[∫ ∞

0
f (Sτs )ds

]
= P

[∫ ∞

0
f (St )dLt

]
, (2.10)

for any non-negative Borel function f on [0,∞). We remark that ψ is continuous and satisfies that 0 < ψ(x) < ∞
for x ∈ (0,∞). Thanks to Silverstein [24], the function ψ is coharmonic on (0,∞), that is,

P−x

[
ψ

(
X∗

TM

)
1{TM<T(0,∞)}

] = ψ(x), x > 0, (2.11)

where M denotes a subinterval of (−∞,0) whose complement (−∞,0) \ M is open and has compact closure. We
assume further that

(A3) Px(T(−∞,0) < ∞) = 1 for x > 0.

Note that (A3) is equivalent to that I∞ = −∞ P-a.s. Then the function h given by

h(x) =
∫ x

0
ψ(y)dy = P

[∫ ∞

0
1{St≤x} dLt

]
(2.12)

is coinvariant by Silverstein [24], that is,

P−x

[
h
(
X∗

t

)
1{t<T(0,∞)}

] = h(x), x > 0. (2.13)

We remark that the function h is finite, continuous, increasing, and that h(0) = 0. We remark that every positive
coinvariant function is also coharmonic.

Similarly, under (A1) and (A2∗), there exists a version of the potential density of the subordinator (Iτ∗
s
)s≥0. That is,

there exists a unique coexcessive function ψ∗ for the killed process, i.e., Px[ψ∗(Xt )1{t<T(−∞,0)}] ≤ ψ∗(x) for x ≥ 0,
which satisfies∫ ∞

0
ψ∗(y)f (y)dy = P

[∫ ∞

0
f (Iτ∗

s
)ds

]
= P

[∫ ∞

0
f (It )dL∗

t

]
, (2.14)

for any non-negative Borel function f on (0,∞). Also thanks to Silverstein [24], the function ψ∗ is coharmonic on
(0,∞), that is,

Px

[
ψ∗(XTM ′ )1{TM ′<T(−∞,0)}

] = ψ∗(x), x > 0, (2.15)

where M ′ denotes a subinterval of (0,∞) whose complement (0,∞) \ M ′ is open and has the compact closure. If we
assume further that
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(A3∗) P−x(T(0,∞) < ∞) = 1 for x > 0.

Note that (A3∗) is equivalent to that S∞ = ∞ P-a.s. Then the function h∗ given by

h∗(x) =
∫ x

0
ψ∗(y)dy = P

[∫ ∞

0
1{It≤x} dL∗

t

]
(2.16)

is coinvariant, that is,

Px

[
h∗(Xt )1{t<T(−∞,0)}

] = h∗(x), x > 0. (2.17)

3. Preliminaries about (α,ρ)-stable Lévy processes

Consider a probability measure P on D([0,∞)) with respect to which X is a strictly stable Lévy process of index
α ∈ (0,2] with P(X0 = 0) = 1. That is,

P
[
eiλXt

] = e−tΨ (λ), t ≥ 0, λ ∈ R, (3.1)

where

Ψ (λ) =
⎧⎨
⎩

c|λ|α(
1 − iβ sgn(λ) tan πα

2

)
, α ∈ (0,1) ∪ (1,2),

c|λ| + diλ, α = 1,
cλ2, α = 2,

(3.2)

for some constants c > 0, d ∈ (−∞,∞) and β ∈ [−1,1]. The Lévy measure ν is given by

ν(dx) =
⎧⎨
⎩

(c+1{x>0} + c−1{x<0})|x|−α−1 dx, α ∈ (0,1) ∪ (1,2),
c̃|x|−2 dx, α = 1,
0, α = 2,

(3.3)

where β = (c+ − c−)/(c+ + c−), and for some constant c̃ > 0. When c+[−] = 0, the process is spectrally negative
[positive] (or, has no positive [negative] jumps). We remark that the condition (A1) is also valid in the stable Lévy
case because of the scaling property of X.

Put ρ = P(Xt ≥ 0). By the scaling property of X, ρ does not depend on t > 0. We call ρ the positivity parameter.
It is well known that the value of ρ for α 
= 1,2 can be represented in terms of the parameter β as

ρ = 1

2
+ 1

πα
arctan

(
β tan

πα

2

)
. (3.4)

See Section 2.6 in [29], and p. 218 in [3]. The range of the value of ρ is classified as follows:

ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∈ [0,1] if α ∈ (0,1)

(when ρ = 0 or 1, the process is a subordinator or a negative subordinator),
∈ (0,1) if α = 1,

∈ [1 − 1/α,1/α] if α ∈ (1,2)

(when ρ = 1 − 1/α or 1/α, the process is spectrally positive or spectrally negative),
= 1/2 if α = 2.

Assume that

(B) ρ ∈ (0,1).

Note that (B) is equivalent to that |X| is not a subordinator. Then αρ ∈ (0,1]. We note that the condition (B) for the
stable Lévy case implies the conditions (A2) and (A2∗), that is, 0 is regular for both (0,∞) and (−∞,0) with respect
to X. Therefore we can define the local times L, L∗, etc. for the reflected and dual reflected processes in this case.
Moreover the condition (B) also implies the conditions (A3) and (A3∗): More precisely, when α ∈ (1,2], (A3) and
(A3∗) hold since X is strictly stable; when α ∈ (0,1], they hold because of the condition (B).
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Assuming (B), the function h defined in (2.12) is

h(x) = Cxαρ, x > 0 (3.5)

for some constant C > 0. This is obtained from the fact that the ladder time process τ is a stable subordinator of index
ρ and the ladder height process H is a stable process of index αρ (see Lemma VIII 1 in [4]). Furthermore, in this case,
we have

ψ(x) = Cαρxαρ−1, x > 0. (3.6)

Similarly, we have

h∗(x) = Dxα(1−ρ) and ψ∗(x) = Dα(1 − ρ)xα(1−ρ)−1, x > 0 (3.7)

for some constant D > 0. These constants C and D may depend upon the choice of the local time L and L∗, respec-
tively.

Example 3.1 (Brownian case). When α = 2 and ρ = 1/2, X is a 1-dimensional Brownian motion up to a multiplica-
tive constant. In this case we have

h(x) = x and ψ(x) = 1, x > 0. (3.8)

4. Chaumont’s two kinds of conditionings for a Lévy process

In this section we shall review two kinds of conditionings for a Lévy process introduced by Chaumont [6,7], which
are obtained by Doob’s h-transform.

Let X = ((Xt ),P) be a Lévy process with the conditions (A1), (A2) and (A3). The functions ψ and h are stated as
(2.10) and (2.12), respectively.

4.1. The process conditioned to stay negative

For non-negative Ft -measurable functional Ft , define (P−x↓0, x > 0) as

P−x↓0
[
Ft(X)

] := 1

h(x)
P−x

[
h
(
X∗

t

)
1{t<T(0,∞)}Ft(X)

]
, x > 0. (4.1)

The family (P−x↓0|Ft , t ≥ 0) is proved to be consistent by the coinvariance of the function h and hence P−x↓0 is
well-defined as a probability measure on F∞. The process (X,P−x↓0) is called the process starting from (−x) and
conditioned to stay negative since it has the following property:

Theorem 4.1 ([6], Theorem 1). Let e be an independent exponential random variable with index 1. Then, for any
x > 0, t ≥ 0 and any Ft -measurable functional Ft , it holds that

lim
ε→0

P−x[1{t<e/ε}Ft |Xs < 0,0 ≤ s ≤ e/ε] = P−x↓0[Ft ]. (4.2)

It is proved by Chaumont [6] and Chaumont and Doney [9] that P−x↓0 converges in the Skorokhod sense to P0↓0
as x → 0. Thus it follows from Theorem 4.1 that, for every x ≥ 0,

P−x↓0

(
X0 = −x; ζ = ∞;Xt < 0 for all t > 0; lim

t→∞Xt = −∞
)

= 1. (4.3)

Here ζ denotes the lifetime.
Chaumont [6] also showed the absolutely continuity between P0↓0 and the excursion measure n of the reflected

process R = S − X as follows:
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Theorem 4.2 ([6], Theorem 3). It holds

P0↓0
[
Ft (X)

] = n
[
h(Xt )1{t<ζe}Ft

(
X∗)], (4.4)

for non-negative Ft -measurable functional Ft .

For b ≤ a, denote by Pb↓a the law of X + a under Pb−a↓0, that is, (X,Pb↓a) is the process starting from b and
conditioned to stay below level a.

4.2. The process conditioned to hit 0 continuously

Define (P−x↗0, x > 0) as

P−x↗0
[
1{t<ζ }Ft(X)

] := 1

ψ(x)
P−x

[
ψ

(
X∗

t

)
1{t<T(0,∞)}Ft(X)

]
, (4.5)

for non-negative Ft -measurable functional Ft . The process (X,P−x↗0) is called the process starting from (−x) and
conditioned to hit 0 continuously, or also called the process conditioned to die at 0, and has the following property:

Theorem 4.3 ([6], Proposition 2). For x > 0, it holds that

P−x↗0(X0 = −x; ζ < ∞;Xt < 0 for all t < ζ ;Xζ− = 0) = 1, (4.6)

where ζ denotes the lifetime.

The following result is also shown by Chaumont [6]:

Theorem 4.4 ([6], Proposition 3). For any x > 0, k > 0, t ≥ 0 and any Ft -measurable functional Ft ,

lim
ε→0

P−x[1{t<T(−k,∞)}Ft |ST(0,∞)− ≥ −ε] = P−x↗0[1{t<T(−k,0)}Ft ]. (4.7)

Denote by P0↗x the law of X + x under P−x↗0, that is, (X,P0↗x) is the process starting from 0 and conditioned
to hit x continuously. For later use, we rewrite (4.5) by translation to obtain

P0↗x

[
1{t<ζ }Ft(X)

] = 1

ψ(x)
P
[
ψ(x − Xt)1{t<T(x,∞)}Ft(X)

]
, (4.8)

since we have

P0↗x

[
1{t<ζ }Ft(X)

] = P−x↗0
[
1{t<ζ }Ft (X + x)

]
= 1

ψ(x)
P−x

[
ψ

(
X∗

t

)
1{t<T(0,∞)}Ft (X + x)

]
= 1

ψ(x)
P
[
ψ

(
x + X∗

t

)
1{t<T(x,∞)}Ft(X)

]
.

5. Path decomposition at the position and the time where the Lévy process attains its supremum up to time t

Our aim in this section is to prove Theorem 5.1, which consists of a path decomposition with respect to the position
and the time where the Lévy process attains its supremum up to time t > 0.

Let us denote by X(u) the coordinate process considered up to time u, i.e.,

X
(u)
t =

{
Xt, t < u;
δ, t ≥ u
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and denote by P
(u)
x the law of X(u) under Px . We denote the concatenation between two independent processes X(u)

and X̂(v) by X(u) • X̂(v), i.e.,

(
X(u) • X̂(v)

)
t
=

⎧⎨
⎩

X
(u)
t , 0 ≤ t < u;

X̂
(v)
t−u, u ≤ t < u + v;

δ, t ≥ u + v.

We define the measure P
(u)
x •P

(v)
y as the law of the concatenation X(u) • X̂(v) between two independent processes X(u)

and X̂(v) where (X(u), X̂(v)) is considered under the product measure P
(u)
x ⊗ P̂

(v)
y .

For t > 0, we denote the last time when the process attains its supremum before t by

gt = sup{s ≤ t : Xs = Ss}, (5.1)

with the convention sup ∅ = 0.

Theorem 5.1. Let X = ((Xt ),P) be a Lévy process with P(X0 = 0) = 1 and assume (A1), as well as both (A2) and
(A2∗). Let Ft(X

(t)) = F(t,Xt∧·). Then it holds that

P
[
Ft

(
X(t)

)] =
∫

ρt (dx du)
(
P

(u)
0↗x • M(t−u)

x

)[
Ft

(
X(t)

)]
, (5.2)

where the integral is taken over [0,∞) × [0, t) and

ρt (dx du) = dxψ(x)P0↗x(ζ ∈ du)n(ζe > t − u); (5.3)

P
(u)
0↗x(·) = P0↗x(·|ζ = u) (ζ denotes the lifetime); (5.4)

M(s)
x

[
F(X)

] = n[F(x − X(s)); ζe > s]
n(ζe > s)

(ζe denotes the lifetime). (5.5)

In other words, the following statements hold:

(i) ρt (dx du) gives the joint distribution of St and gt , i.e.,

ρt (dx du) = P(St ∈ dx,gt ∈ du); (5.6)

(ii) given gt = u, the pre-supremum process (Xs, s ≤ u) and the post-supremum process (Xu −Xu+s ,0 ≤ s ≤ t −u)

are independent under P;
(iii) given St = x and gt = u, (Xs, s ≤ u) under P is distributed as P

(u)
0↗x ; the process conditioned to hit x continu-

ously, with duration u;
(iv) given St = x and gt = u, (x − Xu+s ,0 ≤ s ≤ t − u) under P is distributed as the meander M(t−u) := M

(t−u)
0 .

Remark 5.2. The fact (ii) in Theorem 5.1 is well-known and can be found in Lemma VI 6 in [4].

Remark 5.3. We can also see that Xgt = Xgt−, that is, the process does not jump at gt ; the last hitting time of its
supremum up to time t . This fact is guaranteed by the conditions (A2) and (A2*), see also [4], p. 160.

Remark 5.4. Theorem 5.1 is obtained independently by Chaumont [8] in his recent work for some purpose different
from ours.

Before the proof of Theorem 5.1, we recall the following lemma from Chaumont [7]:
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Lemma 5.5 ([7], Lemma 3). Let X = ((Xt ),P) be a Lévy process with P(X0 = 0) = 1 satisfying conditions (A1),
(A2) and (A2∗). Denote by L the local time at 0 of the reflected process R = S −X. Let H be a predictable functional.
Then it holds that

P

[∫ ∞

0
Ht(X)dLt

]
=

∫ ∞

0
P−x↗0

[
Hζ (X + x)

]
ψ(x)dx. (5.7)

The proof of Lemma 5.5 for the stable Lévy process is given in [7]. Lemma 5.5 for the general Lévy process is
proved in the same way, so we omit the proof.

Proof of Theorem 5.1. We have

∫ ∞

0
dtFt

(
X(t)

) =
∑
l∈D

∫ ζ(el)

0
Fτl−+r

(
X(τl−) • (Xτl− − el)

)
dr. (5.8)

Hence we have

P

[∫ ∞

0
dtFt

(
X(t)

)] = P

[∑
l∈D

∫ ζ(el)

0
Fτl−+r

(
X(τl−) • (Xτl− − el)

)
dr

]

= P ⊗ n̂
[∫ ∞

0
dLs

∫ ζ̂e

0
Fs+r

(
X(s) • (

Xs − X̂(r)
))

dr

]
, (5.9)

by the compensation formula (Theorem 2.1). By Lemma 5.5, we have

(5.9) =
∫ ∞

0
dxψ(x)(P−x↗0 ⊗ n̂)

[∫ ∞

0
Fζ+r

((
X(ζ) + x

) • (
Xζ + x − X̂(r)

))
1{r<ζ̂e} dr

]

=
∫ ∞

0
dxψ(x)(P−x↗0 ⊗ n̂)

[∫ ∞

0
Fζ+r

((
X(ζ) + x

) • (
x − X̂(r)

))
1{r<ζ̂e} dr

]
. (5.10)

Here we use the fact that Xζ = 0. By translation by x of P−x↗0 and then changing of variable ζ + r = u, we
have

(5.10) =
∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[∫ ∞

0
Fζ+r

(
X(ζ) • (

x − X̂(r)
))

1{r<ζ̂e} dr

]

=
∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[∫ ∞

0
Fu

(
X(ζ) • (

x − X̂(u−ζ )
))

1{u−ζ<ζ̂e}1{u>ζ } du

]
. (5.11)

This identity holds with Ft replaced by e−qtFt for any q > 0, and hence, by uniqueness of the Laplace transform, we
obtain

P
[
Ft

(
X(t)

)] =
∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[
Ft

(
X(ζ) • (

x − X̂(t−ζ )
))

1{t−ζ<ζ̂e}1{t>ζ }
]

(5.12)

=
∫ ∞

0
dxψ(x)

∫ t

0
P0↗x(ζ ∈ du)

(
P

(u)
0↗x ⊗ n̂

)[
Ft

(
X(u) • (

x − X̂(t−u)
))

1{t−u<ζ̂e}
]

(5.13)

=
∫ ∞

0
dxψ(x)

∫ t

0
P0↗x(ζ ∈ du)n(ζe > t − u)

(
P

(u)
0↗x ⊗ M̂(t−u)

x

)[
Ft

(
X(u) • X̂(t−u)

)]
, (5.14)

which completes the proof. �
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Remark 5.6.
(i) In the (α,ρ)-stable Lévy case with α ∈ (0,2] and ρ ∈ (0,1), it is well known that (see Lemma 3.2 in [13])

n(ζe > t) = K · t−ρ, (5.15)

where K > 0 is some constant, and hence we obtain from (3.6) and (5.3) that

P(St ∈ dx,gt ∈ du) = K̃ · dxxαρ−1P0↗x(ζ ∈ du)(t − u)−ρ, (5.16)

where K̃ > 0 is other constant. Furthermore, together with the following well-known fact (see, e.g., Lemma VIII 13 in
[4]) that

P(gt ∈ du) = 1

Γ (1 − ρ)Γ (ρ)
uρ−1(t − u)−ρ du, (5.17)

then we obtain

P(St ∈ dx|gt = u)du = K · dxxαρ−1P0↗x(ζ ∈ du)Γ (1 − ρ)Γ (ρ)u1−ρ. (5.18)

(ii) In the Brownian case, i.e., α = 2 and ρ = 1/2 in (3.2), we note that (Xt )
law= (W2ct ) for a 1-dimensional standard

Brownian motion (Wt), and we have the following:

P(St ∈ dx,gt ∈ du) = dx du
x

2cπ
√

u3(t − u)
e−x2/(4u); (5.19)

P0↗x(ζ ∈ du) = P(T{x} ∈ du) = du
x

2c
√

πu3
e−x2/(4u), (5.20)

because of the following well-known facts (see, e.g., p. 102 and p. 80 in [11], respectively):

P(S̃t ∈ dx, g̃t ∈ du) = dx du
x

π
√

u3(t − u)
e−x2/(2u); (5.21)

P(T̃{x} ∈ du) = du
x√

2πu3
e−x2/(2u), (5.22)

where S̃t = sups≤t Ws , g̃t = sup{s ≤ t : Ws = S̃t }, and T̃A = inf{s > 0: Ws ∈ A} for a Borel set A ⊂ R. Thus we can
easily check that the equality (5.16) is valid.

Remark 5.7. Assume moreover (A3). Then, thanks to Bertoin’s result; Corollary 3.2 in [3], it holds that

lim
t→∞ M(t)

[
F(X)

] = P0↓0
[
F(X)

]
, (5.23)

where

M(t)
[
F(X)

] = M
(t)
0

[
F(X)

] = n[F(−X(t)); ζe > t]
n(ζe > t)

. (5.24)

6. Generalised Azéma–Yor martingales and definition of a probability measure P(f )

Let us introduce a generalisation of (1.4) and (1.11). Let X = ((Xt ),P) be a Lévy process with notation given in
Section 2 and assume (A1), (A2) and (A3). Let ψ and h be the functions given by (2.10) and (2.12), respectively. Let
f be a non-negative Borel function on [0,∞) satisfying

(0 <)

∫ ∞

0
f (x)ψ(x)dx < ∞. (6.1)
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We introduce the process (M
(f )
t , t ≥ 0) by

M
(f )
t = f (St )h(St − Xt) +

∫ ∞

St

f (x)ψ(x − Xt)dx. (6.2)

Theorem 6.1. (M
(f )
t , t ≥ 0) is a ((Ft ),P)-martingale.

The proof of Theorem 6.1 is done in the same way as in [28] in the stable Lévy case; the coinvariance of the
function h plays a key role. Thus we omit it.

We introduce the probability measure P(f ) on F∞ as follows:

P(f )|Ft = M
(f )
t

M
(f )

0

· P

∣∣∣∣
Ft

. (6.3)

Since (M
(f )
t ) is a martingale, the consistency holds, and hence P(f ) is well defined.

7. The σ -finite measure which unifies the supremum penalisations

Let us consider a Lévy process X = ((Xt ),P) with P(X0 = 0) = 1. In this section we assume:

(A1), i.e., absolute continuity condition for the resolvent;
(A2) & (A2∗), i.e., 0 is regular for both (0,∞) and (−∞,0) with respect to X;
(A3) & (A3∗), i.e., I∞ = −∞ and S∞ = ∞ P-a.s.,

where I∞ and S∞ are the overall infimum and supremum of Xt , respectively, i.e., I∞ = inf{Xt : t ≥ 0} and S∞ =
sup{Xt : t ≥ 0}. Remark again that the condition (B) in the (α,ρ)-stable Lévy case implies all the above conditions.

We introduce Psup as follows.

Definition 7.1. Define

Psup =
∫ ∞

0
dxψ(x)(P0↗x • Px↓x), (7.1)

where P0↗x denotes the law of X + x under P−x↗0, i.e., P0↗x denotes the law of the process starting from 0 and
conditioned to hit x continuously, and Px↓x denotes the law of X + x under P0↓0, i.e., Px↓x denotes the law of the
process starting from x and conditioned to stay below level x.

Denote

g = sup{t ≥ 0: Xt = S∞}. (7.2)

Theorem 7.2. The following statements hold:

(i) Psup(S∞ ∈ dx,g ∈ du) = dxψ(x)P0↗x(ζ ∈ du), in particular, Psup(S∞ ∈ dx) = dxψ(x);
(ii) Psup is a σ -finite measure on F∞;

(iii) Psup is singular to P on F∞;
(iv) For each t > 0 and A ∈ Ft , it holds that

Psup(A) =
{

0, if P(A) = 0;
∞, if P(A) > 0.

(7.3)

Consequently, Psup is not σ -finite on Ft for t < ∞.
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Proof.

(i) We have

Psup =
∫ ∞

0
dxψ(x)

∫ ∞

0
P0↗x(ζ ∈ du)

(
P

(u)
0↗x • Px↓x

)
, (7.4)

and hence

Psup
[
F(S∞)G(g)

] =
∫ ∞

0
dxψ(x)

∫ ∞

0
P0↗x(ζ ∈ du)

(
P

(u)
0↗x • Px↓x

)[
F(S∞)G(g)

]
=

∫ ∞

0
dxψ(x)F (x)

∫ ∞

0
P0↗x(ζ ∈ du)G(u),

for any test functions F and G. Thus we obtain the desired result.
(ii) For each x > 0, Psup(S∞ < x) = ∫ x

0 ψ(y)dy is finite, which shows the desired conclusion.
(iii) We have Psup(S∞ = ∞) = 0 by definition. On the other hand, we have P(S∞ < ∞) = 0 by our assumption

(A3∗). This implies that Psup is singular to P on F∞.
(iv) Suppose that P(A) = 0 for A ∈ Ft . We have

Psup(A) =
∫ ∞

0
dxψ(x)(P0↗x • Px↓x)(A)

=
∫ ∞

0
dxψ(x)(P0↗x • Px↓x)[1A; t < ζ ] +

∫ ∞

0
dxψ(x)(P0↗x • Px↓x)[1A; t ≥ ζ ] =: I1 + I2.

On one hand, we have

I1 =
∫ ∞

0
dxψ(x)P0↗x[1A; t < ζ ]

=
∫ ∞

0
dxP

[
ψ(x − Xt)1{t<T(x,∞)}1A

] (
by (4.8)

)
= 0.

On the other hand, we have

I2 =
∫ ∞

0
dxψ(x)(P0↗x • Px↓x)

[
1A(X); t ≥ ζ

]
=

∫ ∞

0
dxψ(x)(P0↗x ⊗ P̂0↓0)

[
1A

(
X(ζ) • (

x + X̂(t−ζ )
))

1{t≥ζ }
]

=
∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[
h(X̂t−ζ )1{t−ζ<ζ̂e}1A

(
X(ζ) • (

x − X̂(t−ζ )
))

1{t≥ζ }
]
, (7.5)

by the definition of P0↓0. Then

(7.5) =
∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[
h
(
x − (x − X̂t−ζ )

)
1A(X)1{0≤t−ζ<ζ̂e}

]
=

∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[
h
(
x − (

X(ζ) • (
x − X̂(t−ζ )

))
t

)
1A(X)1{0≤t−ζ<ζ̂e}

]
= P

[
h(St − Xt)1A

]
(by Theorem 5.1)

= 0.

Thus we obtain Psup(A) = 0.
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Conversely, suppose that P(A) > 0 for A ∈ Ft . Then we see that

Psup(A) ≥
∫ ∞

0
dxψ(x)P0↗x[1A; t < ζ ]

=
∫ ∞

0
dxP

[
ψ(x − Xt)1{t<T(x,∞)}1A

]
≥

∫ ∞

1
dxP

[
ψ(x − Xt)1{t<T(1,∞)}1A

]
= P

[{
h(∞) − h(1 − Xt)

}
1{t<T(1,∞)}1A

]
.

Since we have

h(∞) = lim
x→∞h(x) = lim

x→∞ P

[∫ ∞

0
1{St≤x} dLt

]
= P

[∫ ∞

0
dLt

]
= P[L∞] = ∞,

thus Psup(A) = ∞. Therefore the proof is completed. �

We shall give some relationships between the measures Psup, P and P(f ).

Theorem 7.3. It holds that

Psup
[
f (S∞)Ft (X)

] = P
[
M

(f )
t Ft (X)

]
, (7.6)

for any Ft -measurable functional Ft(X). Consequently, one has

Psup[f (S∞)Ft (X)]
Psup[f (S∞)] = P

[
M

(f )
t

M
(f )

0

Ft(X)

]
= P(f )

[
Ft(X)

]
(7.7)

and

f (S∞) · Psup

Psup[f (S∞)] = P(f ) on F∞. (7.8)

Proof. Recall the computation in the proof of Theorem 7.2(iv). We have

Psup
[
f (S∞)Ft (X)

] =
∫ ∞

0
dxψ(x)(P0↗x • Px↓x)

[
f (S∞)Ft (X)

]
=

∫ ∞

0
dxψ(x)f (x)(P0↗x • Px↓x)

[
Ft (X)

]
, (7.9)

since S∞ = x under the measure P0↗x • Px↓x . Then

(7.9) =
∫ ∞

0
dxψ(x)f (x)(P0↗x • Px↓x)

[
Ft (X); t < ζ

]
+

∫ ∞

0
dxψ(x)f (x)(P0↗x • Px↓x)

[
Ft (X); t ≥ ζ

]
=: I1 + I2.

On one hand, we have

I1 =
∫ ∞

0
dxψ(x)f (x)P0↗x

[
Ft(X); t < ζ

] =
∫ ∞

0
dxf (x)P

[
ψ(x − Xt)1{t<T(x,∞)}Ft(X)

]
= P

[
Ft(X)

∫ ∞

0
dxf (x)ψ(x − Xt)1{St≤x}

]
. (7.10)
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On the other hand, we obtain from the same computation in the proof of (iv) in the previous theorem that

I2 =
∫ ∞

0
dxψ(x)f (x)(P0↗x • Px↓x)

[
Ft(X); t ≥ ζ

]
=

∫ ∞

0
dxψ(x)f (x)(P0↗x ⊗ n̂)

[
h(x − Xt)Ft (X)1{0≤t−ζ<ζ̂e}

]
=

∫ ∞

0
dxψ(x)(P0↗x ⊗ n̂)

[
f (St )h(St − Xt)1{t−ζ<ζ̂e}Ft(X)1{t≥ζ }

]
. (7.11)

By Theorem 5.1, we get

(7.11) = P
[
f (St )h(St − Xt)Ft (X)

]
. (7.12)

Combining (7.10) and (7.12), we obtain

Psup
[
f (S∞)Ft (X)

] = P

[
Ft(X)

∫ ∞

St

dxf (x)ψ(x − Xt)

]
+ P

[
Ft(X)f (St )h(St − Xt)

]

= P

[
Ft(X)

{∫ ∞

St

dxf (x)ψ(x − Xt) + f (St )h(St − Xt)

}]
, (7.13)

that is,

Psup
[
f (S∞)Ft (X)

] = P
[
M

(f )
t Ft (X)

]
. (7.14)

Especially, when t = 0, we have

Psup
[
f (S∞)

] =
∫ ∞

0
dxf (x)ψ(x). (7.15)

Therefore we obtain

Psup[f (S∞)Ft (X)]
Psup[f (S∞)] = P

[
M

(f )
t

M
(f )

0

Ft (X)

]
= P(f )

[
Ft(X)

]
. (7.16)

This completes the proof. �

Remark 7.4. Recently Najnudel and Nikeghbali [14] gave a generalization of W . A non-negative submartingale
(Xt , t ≥ 0) is said to be of the class (�) if it can be decomposed as Xt = Nt + At where (Nt , t ≥ 0) and (At , t ≥ 0)

are Ft -adapted process, (Nt ) is a càdlàg martingale, and (At ) is a continuous increasing process which is carried by
the set of zeros with A0 = 0. Then they proved that there exists a σ -finite measure Q such that

Q[Ft ;g ≤ t] = P[FtXt ], (7.17)

for all non-negative Ft -measurable functional Ft . Here g is the last exit time from 0. It may be quite natural to ask
now whether the process (h(St − Xt), t ≥ 0) is of the class (�) or not. However, we have not succeeded in answering
the question.

The measure Psup does not depend upon f . Recall that P(f ) is the limit measure of supremum penalisation. The
measure Psup implies the following fact that gives the detailed description of P(f ).

Theorem 7.5. One has

P(f ) =
∫ ∞

0
P(f )(S∞ ∈ dx)(P0↗x • Px↓x). (7.18)
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That is, it holds that, under P(f ),

(i) P(f )(S∞ ∈ dx) = 1
M

(f )
0

ψ(x)f (x)dx where M
(f )

0 = ∫ ∞
0 ψ(x)f (x)dx;

(ii) given g = u, (Xs, s ≤ u) and (Xu − Xu+s , s ≥ 0) are independent;
(iii) given S∞ = x and g = u, (Xs, s ≤ u) is distributed as the process conditioned to hit x continuously with duration

u;
(iv) given S∞ = x and g = u, (−(x − Xu+s), s ≥ 0) is distributed as the process conditioned to stay negative.

Under our assumption in this section, the following result for the martingale (M
(f )
t ) can be proved.

Theorem 7.6. Let X = ((Xt ),P) be a Lévy process with (A1), (A2), (A2∗), (A3) and (A3∗), and let M
(f )
t be the

process given in (6.2). Then M
(f )
t converges to 0 P-a.s. as t → ∞.

Proof. We show that M
(f )
t → 0 P-a.s. through the measure Psup. Since (M

(f )
t ) is a non-negative P-martingale as

proved before, there exists a F∞-measurable functional M
(f )∞ such that M

(f )
t → M

(f )∞ P-a.s. by the martingale con-
vergence theorem. For a > 0,

P
[
M

(f )∞
] = P

[
M

(f )∞ 1{S∞≥a}
] (

by the fact that P(S∞ = ∞) = 1
)

≤ lim inf
t→∞ P

[
M

(f )
t 1{St≥a}

]
(by Fatou’s lemma)

= lim inf
t→∞ Psup

[
f (S∞)1{St≥a}

] (
by (7.7)

)
= Psup

[
f (S∞)1{S∞≥a}

]
(by the dominated convergence theorem).

Letting a → ∞, then Psup[f (S∞)1{S∞≥a}] → 0. Thus P[M(f )∞ ] = 0, and therefore we obtain P(M
(f )∞ = 0) = 1. �

8. Some remarks on P and Psup

Let us consider a symmetric (i.e., ρ = 1/2) stable Lévy process X with index α ∈ (1,2], and recall the σ -finite
measure P which is given in [27] (see also [25]):

P =
∫ ∞

0
P
[
dLX

u

](
Q(u) • P×)

, (8.1)

where LX
t denotes the local time at 0 of X itself, Q(u) denotes the law of the stable bridge from 0 to 0 with length u

and P× denotes the h-transform process with respect to the harmonic function |x|α−1 of the process killed at the first
hitting time of 0. On comparison, it becomes clear that the two σ -finite measures Psup and P are quite different: Psup
is based on the excursion theory for the reflected process of a Lévy process, whereas P comes from the excursion
theory for a Lévy process itself. We stress that this difference cannot appear in the Brownian case because of the fact

that (St , St − Xt)t≥0
law= (LX

t , |Xt |)t≥0 which is known as Lévy’s theorem.
Finally, we would like to emphasize the following fact again:

P (S∞ < ∞) = 0 and Psup(S∞ = ∞) = 0. (8.2)

We mention the relationship between Psup and P as follows:

(i) P ⊥ Psup on F∞;
(ii) if A ∈ Ft , then

P (A) > 0 ⇐⇒ Psup(A) > 0, (8.3)

and both are infinite.
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