
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2013, Vol. 49, No. 3, 885–899
DOI: 10.1214/11-AIHP464
© Association des Publications de l’Institut Henri Poincaré, 2013

Representation formula for the entropy
and functional inequalities

Joseph Lehec

CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, place du maréchal de Lattre de Tassigny, 75016 Paris, France

Received 11 June 2010; revised 9 September 2011; accepted 14 November 2011

Abstract. We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace trans-
form. As an application, we give simple proofs of a number of functional inequalities.

Résumé. On démontre une formule stochastique pour l’entropie relative par rapport à la Gaussienne, dans le genre de la formule de
Borell pour la transformée de Laplace. Cette formule donne des preuves simples d’un certain nombre d’inégalités fonctionnelles.

MSC: 39B62; 60J65

Keywords: Gaussian measure; Entropy; Functional inequalities; Girsanov’s formula

1. Introduction: Borell’s formula

Let γd be the standard Gaussian measure on R
d :

γd(dx) = e−|x|2/2

(2π)d/2
dx,

where |x| = √
x · x denotes the Euclidean norm of x. In [5] Borell proves the following representation formula. Given

a standard d-dimensional Brownian motion B and a bounded function f : Rd → R we have

log

(∫
Rd

ef dγd

)
= sup

u

[
E

(
f

(
B1 +

∫ 1

0
us ds

)
− 1

2

∫ 1

0
|us |2 ds

)]
, (1)

where the supremum is taken over all random processes u, say bounded and adapted to the Brownian filtration.
Among other applications, he derives easily the Prékopa–Leindler inequality. The name Borell’s formula may be
unfair to Boué and Dupuis who in an earlier paper [6] obtained a stronger result, allowing the function f to depend
on the whole path (Bt )t∈[0,1] (see Theorem 9 below for a precise statement). Anyway, Borell and Boué–Dupuis agree
that representation formulas such as (1) arose much earlier in optimal control theory, particularly in Fleming and
Soner’s work [13], and Borell should definitely be credited for bringing these techniques in the context of functional
inequalities.

The present article deals with relative entropy. Let (Ω, A,m) be a measured space and μ be a probability measure.
The relative entropy of μ is defined by

H(μ|m) =
∫

Ω

dμ

dm
log

(
dμ

dm

)
dm if μ � m
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and H(μ|m) = +∞ otherwise. It is well known that there is a Legendre duality between relative entropy and logarith-
mic Laplace transform:

H(μ|m) = sup
f

(∫
f dμ − log

(∫
Ω

ef dm

))
. (2)

The purpose of this article is to prove a representation formula for the Gaussian relative entropy, both in R
d and in the

Wiener space, providing the entropy counterparts of the results mentioned above. All these formulas have a common
feature: Girsanov’s theorem. However, our approach is somewhat different from that of Borell and Boué–Dupuis:
it draws a connection with the work of Föllmer [14,15] which makes the whole argument arguably simpler. As an
application, we give new, unified and simple proofs of a number of Gaussian inequalities.

2. Representation formula for the entropy

This section contains the main results of the article. Let us recall a couple of classical facts about relative entropy, see
for instance [23], Section 10, and the references therein. If A is the Borel σ -field of a Polish topology on Ω then it
is enough to take the supremum over bounded and continuous functions in (2). In particular the map μ �→ H(μ|m) is
lower semicontinuous with respect to the topology of weak convergence of measures. If T : (Ω, A) → (Ω ′, A′) is a
measurable map then

H
(
μ ◦ T −1|m ◦ T −1) ≤ H(μ|m) (3)

and assuming that H(μ|m) < +∞, equality occurs if and only if the density dμ/dm is a function of T . We now
describe the setting of the article. Let W be the space of continuous paths{

w ∈ C 0(
R+,R

d
)
,w0 = 0

}
equipped with the topology of uniform convergence on compact intervals. Let B be the associated Borel σ -field and
let γ be the Wiener measure on (W, B). Let xt :w �→ wt be the coordinate process and (Gt )t≥0 be the natural filtration
of x. It is well known that B coincides with the smallest σ -field containing

⋃
t≥0 Gt . Let H be the Cameron–Martin

space: a path U belongs to H if there exists u ∈ L2([0,+∞);R
d) such that

Ut =
∫ t

0
us ds, t ≥ 0.

The norm of U in H is then defined by

‖U‖ =
(∫ +∞

0
|us |2 ds

)1/2

.

The Cauchy–Schwarz inequality shows that the Hilbert space H embeds continuously in W. Given a probability space
(Ω, A,P) equipped with a filtration (Ft )t≥0 we call drift any adapted process U which belongs to H almost surely.
Lastly, our Brownian motions are always d-dimensional, standard and always start from 0.

2.1. The upper bound

We shall use repeatedly Girsanov’s formula, see [18], Chapter 6.

Proposition 1. Let B be a Brownian motion defined on some filtered probability space (Ω, A,P, F ) and let U be a
drift. Letting μ be the law of B + U , we have

H(μ|γ ) ≤ 1

2
E‖U‖2. (4)
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Proof. Write Ut = ∫ t

0 us ds and assume for the moment that ‖U‖2 = ∫ ∞
0 |us |2 ds is uniformly bounded. Then by

Novikov’s criterion

Mt = exp

(
−

∫ t

0
us · dBs − 1

2

∫ t

0
|us |2 ds

)
, t ≥ 0,

is a uniformly integrable martingale and Girsanov’s formula applies. Under

dQ = M∞ dP

the process X := B +U is a Brownian motion. Therefore X has law μ and γ under P and Q, respectively. Then by (3)

H(μ|γ ) ≤ H(P|Q) = −E log(M∞) = 1

2
E‖U‖2,

which concludes the proof when ‖U‖ is bounded. In the general case, define the stopping time

Tn = inf

(
t ≥ 0,

∫ t

0
|us |2 ds ≥ n

)
,

let Un be the stopped process (Un)t = Ut∧Tn and μn be the law of B + Un. With probability 1 we have ‖U‖2 < +∞,
thus Tn → +∞ and Un → U in H, hence in W. Therefore μn → μ weakly. Also E‖Un‖2 → E‖U‖2 by monotone
convergence. Thus, using the lower semicontinuity of the entropy (observe that W is a Polish space)

H(μ|γ ) ≤ lim inf
n

H(μn|γ )

≤ lim inf
n

1

2
E‖Un‖2 = 1

2
E‖U‖2. �

Remark. It follows immediately that when E‖U‖2 < +∞, the law of B + U is absolutely continuous with respect
to the Wiener measure γ . Let us point out that this is actually true for all drifts U , even if E‖U‖2 = +∞, see [18],
Chapter 7.

2.2. Föllmer’s drift

Let us address the question whether, given a probability measure μ on W, equality can be achieved in (4). Recall that
(xt )t≥0 is the coordinate process on Wiener space (W, B, γ ) and that (Gt )t≥0 is its natural filtration. The following is
due to Föllmer [14,15].

Theorem 2. Let μ be a measure on (W, B) having density F with respect to γ . There exists an adapted process u

such that under μ the following holds.

1. The process Ut = ∫ t

0 us ds belongs to H almost surely.
2. The process y = x − U is a Brownian motion.
3. The relative entropy of μ is

H(μ|γ ) = 1

2
Eμ‖U‖2.

We sketch the proof for completeness.

Proof of Theorem 2. Throughout Eγ and Eμ denote expectations with respect to γ and μ respectively. On Gt the
measure μ has density

Ft := Eγ (F |Gt ),
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with respect to γ . A standard martingale argument shows that

μ
(

inf
t≥0

Ft > 0
)

= μ(F > 0) = 1. (5)

Since Brownian martingales can be represented as stochastic integrals there exists an adapted process v satisfying

γ

(∫ +∞

0
|vs |2 ds < +∞

)
= 1 (6)

and

Ft = 1 +
∫ t

0
vs · dxs, t ≥ 0.

Let u be the process defined by

ut = 1{Ft>0}(Ft )
−1vt .

It is adapted and (5) and (6) yield

μ

(∫ ∞

0
|us |2 ds < +∞

)
= 1,

which is the first assertion of the theorem.
The assertion 2 follows from Girsanov’s formula, see [18], Theorem 6.2.
Under μ, we have

Ft = 1 +
∫ t

0
Fsus · dxs

= 1 +
∫ t

0
Fsus · dys +

∫ t

0
Fs |us |2 ds.

Applying Itô’s formula (recall that F is positive and y is a Brownian motion under μ) we obtain

log(F ) =
∫ +∞

0
us · dys + 1

2

∫ +∞

0
|us |2 ds.

If Eμ‖U‖2 < +∞ the local martingale part in the equation above is integrable and has mean 0 so that

H(μ|γ ) = Eμ log(F ) = 1

2
Eμ‖U‖2.

Again, a localization argument shows that this equality remains valid when Eμ‖U‖2 = +∞, see [14], Lemma 2.6. �

To finish this subsection, we give a formula for Föllmer’s drift when the underlying density has a Malliavin deriva-
tive, we refer to the first chapter of [19] for the (little amount of) Malliavin calculus we shall use. For suitable
F : W → R we let DF : W → H be the Malliavin derivative of F . The domain of D in the space L2(W, B, γ ) is
denoted by D

2. If F ∈ D
2 then the Clark–Ocone formula asserts

Eγ (F |Gt ) = 1 +
∫ t

0
Eγ (DsF |Gs) · dxs, t ≥ 0.

We obtain the following result.
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Lemma 3. When F ∈ D
2 the process ut given by Theorem 2 is

ut = Eγ (DtF |Gt )

Eγ (F |Gt )
1{Eγ (F |Gt )>0}.

This implies that μ-almost surely

ut = Eμ

(
DtF

F

∣∣∣Gt

)
.

2.3. Optimal drift in a strong sense

According to Theorem 2, the filtered probability space (W, B,μ, G) carries a Brownian motion y. The process x =
y + U has law μ and the drift U satisfies

H(μ|γ ) = 1

2
Eμ‖U‖2.

Still, it remains open whether given a probability space, a filtration and a Brownian motion, there exists a drift achiev-
ing equality in (4).

It this section, we show that this is indeed the case, under some restriction on the measure μ. The approach is taken
from the article [4] in which Baudoin treats the case of Brownian bridges (see Section 2.5 below). We refer to [20] for
the background on stochastic differential equations.

Theorem 4. Let B be a Brownian motion defined on some filtered probability space (Ω, A,P, F ). Let μ be a measure
on W, absolutely continuous with respect to γ and let ut : W → R

d be the associated Föllmer process. If the stochastic
differential equation

Xt = Bt +
∫ t

0
us(X)ds, t ≥ 0, (7)

has the pathwise uniqueness property, then it has a unique strong solution. This solution X satisfies the following.

1. The process Ut = ∫ t

0 us(X)ds belongs to H almost surely.
2. The process X has law μ.
3. The relative entropy of μ is given by

H(μ|γ ) = 1

2
E‖U‖2.

Proof. According to Theorem 2, on (W, B,μ) the coordinate process x satisfies

xt = yt +
∫ t

0
us(x)ds,

where y is a Brownian motion. Therefore (7) has a weak solution. By Yamada and Watanabe’s theorem, if pathwise
uniqueness holds then (7) has a unique strong solution. Moreover, since pathwise uniqueness implies uniqueness in
law, the solution X has law μ. The rest of Theorem 4 concerns the law of X, so it is contained in Theorem 2. �

We end this section by showing that for a reasonably large class of measures μ, the stochastic differential equation
(7) does satisfy the pathwise uniqueness property.

Definition 5. Let S be the class of probability measures on (W, B, γ ) having a density of the form

F(w) = Φ(wt1, . . . ,wtn) (8)

for some integer n, for some sample 0 ≤ t1 < t2 < · · · < tn and for some function Φ : (Rd)n → R satisfying
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• Φ is Lipschitz.
• ∇Φ is Lipschitz.
• There exists ε > 0 such that Φ ≥ ε.

Lemma 6. If μ belongs to S then the equation (7) has the pathwise uniqueness property.

Proof. Let μ have density F given by (8). Then F ∈ D
2 and

DF(w) =
n∑

i=1

∇iΦ(wt1 , . . . ,wtn)1[0,ti ],

where ∇iΦ is the gradient of Φ in the ith variable. By Lemma 3, the process associated to μ is

ut (w) = Eγ (DtF (w)|Gt )

Eγ (F (w)|Gt )

=
n∑

i=1

Eγ (∇iΦ(wt1 , . . . ,wtn)|Gt )

Eγ (Φ(wt1, . . . ,wtn)|Gt )
1[0,ti ](t).

It is enough to prove that there is a constant C such that∣∣ut (w) − ut (w̃)
∣∣ ≤ C sup

0≤s≤t

|ws − w̃s | (9)

for all t ≥ 0 and for all w, w̃ ∈ W. Fix t ≥ 0 and assume that tk ≤ t < tk+1 for some k ∈ {0, . . . , n− 1}. By the Markov
property of the Brownian motion

E
(
Φ(wt1, . . . ,wtn)|Gt

) = Ψ (wt1 , . . . ,wtk ,wt ),

where Ψ (x1, . . . , xk, x) equals∫
W

Φ(x1, . . . , xk, x + wtk+1−t , . . . , x + wtn−t )γ (dw).

Then observe that ‖Ψ ‖lip ≤ ‖Φ‖lip. We have a similar property when 0 ≤ t < t1 and when tn ≤ t . The argument
applies also to ∇iΦ . The inequality (9) follows easily. �

To sum up, we have the following representation formula.

Theorem 7. Let (Ω, A,P, F ) be a filtered probability space and let B :Ω → W be a Brownian motion. For all μ ∈ S
we have

H(μ|γ ) = min
U

(
1

2
E‖U‖2

)
,

where the minimum is on all drifts U such that B + U has law μ.

2.4. The Boué and Dupuis formula

In this subsection the previous results are translated in terms of log-Laplace using the following lemma.

Lemma 8. Let f : W → R bounded from below. For every positive ε there exists μ ∈ S such that

log

(∫
W

ef dγ

)
≤

∫
W

f dμ − H(μ|γ ) + ε. (10)
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Proof. By monotone convergence we can assume that f is also bounded from above, and that
∫

ef dγ = 1. Set
F = ef and let μ be a probability measure on W having density G with respect to γ . Then

H(μ|γ ) −
∫

f dμ =
∫

G

F
log

(
G

F

)
F dγ.

Using t log(t) ≤ |t − 1| + |t − 1|2/2 we get

H(μ|γ ) −
∫

f dμ ≤
∫ ∣∣∣∣GF − 1

∣∣∣∣F dγ + 1

2

∫ ∣∣∣∣GF − 1

∣∣∣∣
2

F dγ

≤ ‖F − G‖L1(γ ) + C‖F − G‖2
L2(γ )

for some constant C (recall that f is bounded below). Therefore, it is enough to show that there exists μ ∈ S whose
density G is arbitrarily close to F in L2(γ ). This is a standard fact. �

Here is the Boué and Dupuis formula.

Theorem 9. For every function f : W → R measurable and bounded from below, we have

log

(∫
W

ef dγ

)
= sup

U

[
E

(
f (B + U) − 1

2
‖U‖2

)]
,

where the supremum is taken over all drifts U .

This is actually slightly more general than the result in [6], which concerns the space C([0, T ],R
d) for some finite

time horizon T .

Proof of Theorem 9. Let U be a drift and μ be the law of B + U . By Proposition 1 and the entropy/log-Lapace
duality

E

(
f (B + U) − 1

2
‖U‖2

)
≤

∫
f dμ − H(μ|γ ) ≤ log

(∫
W

ef dγ

)
.

On the other hand, given ε > 0, there exists a probability measure μ ∈ S satisfying (10). Since μ ∈ S , Theorem 7
asserts that there exists a drift U such that B + U has law μ and satisfying

H(μ|γ ) = 1

2
E‖U‖2.

Then (10) becomes

log

(∫
W

ef dγ

)
≤ E

(
f (B + U) − 1

2
‖U‖2

)
+ ε,

which concludes the proof. �

2.5. Brownian bridges

A measure μ on W satisfying

μ(dw) = ρ(w1)γ (dw), (11)

where ρ is some density on (Rd , γd) is said to be a Brownian bridge. It can be seen as the law of a Brownian motion
conditioned to have law ρ(x)γd(dx) at time 1.
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Lemma 10. Let ν have density ρ with respect to γd , we have

H(ν|γd) = inf
μ

(
H(μ|γ )

)
,

where the infimum is on all probability measures satisfying μ ◦ (x1)
−1 = ν. The infimum is attained when μ is the

bridge (11).

In other words, among all processes having law ν at time 1, the bridge minimizes the relative entropy. This is
essentially a particular case of (3), see also [4] and [16], p. 161.

Assume that ρ is differentiable and that ∇ρ ∈ L2(γd). Then F(w) = ρ(w1) belongs to D
2 and has Malliavin

derivative

DF(w) = ∇ρ(w1)1[0,1].

By Lemma 3 the Föllmer process of the bridge μ is such that

ut = Eμ
(∇ log(ρ)(w1)|Gt

)
1[0,1](t), μ-a.s.

We obtain the following result.

Lemma 11. Under μ, the process (ut )t∈[0,1] is a martingale. In particular

Eμ(ut ) = Eμ∇ log(ρ)(w1) = Eγ ∇ρ(w1) =
∫

Rd

xν(dx).

Now assume that ρ and ∇ρ are Lipschitz and that ρ ≥ ε, so that the bridge μ belongs to S . It is easily seen that ut

can also be written as

ut (w) = ∇ logP1−t ρ(wt )1[0,1](t),

where Pt denotes the heat semigroup on R
d :

∂tPt = 1

2
�Pt .

The stochastic differential equation (7) becomes

Xt = Bt +
∫ t∧1

0
∇ log(P1−sρ)(Xs)ds, t ≥ 0. (12)

By Lemma 6, there is a unique strong solution. Combining Lemma 10 with Theorem 4 we obtain the following dual
formulation of Borell’s result (1).

Theorem 12. Let ν and ρ be as above. Then

H(ν|γd) = inf
U

(
1

2
E‖U‖2

)
,

where the infimum is taken on all drifts U satisfying B1 + U1 = ν in law. The infimum is attained by the drift

Ut =
∫ t∧1

0
∇ log(P1−sρ)(Xs)ds,

where X is the unique solution of (12).
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3. Applications

Following Borell, we now derive functional inequalities from the representation formula. Let us point out that in all
but one applications we use Proposition 1 and Theorem 2 rather than Theorem 7.

3.1. Transportation cost inequality

Let T2 be the transportation cost for the Euclidean distance squared: given two probability measures μ and ν on R
d

T2(μ, ν) = inf

(∫
Rd×Rd

|x − y|2 dπ(x, y)

)
, (13)

where the infimum is taken over all couplings π of μ and ν, namely all probability measures on the product space
R

d × R
d having marginals μ and ν. There is a huge literature about this optimization problem, usually referred to as

Monge–Kantorovitch problem, see Villani’s book [24]. Talagrand’s inequality [22] asserts that

T2(ν, γd) ≤ 2H(ν|γd)

for every probability measure ν on R
d . The purpose of this subsection is to prove a Wiener space version of this

inequality.
On Wiener space the natural definition of T2 involves the norm of the Cameron–Martin space H: given two proba-

bility measures μ,ν on (W, B)

T2(μ, ν) = inf

(∫
W×W

∥∥w − w′∥∥2
π

(
dw,dw′)),

where the infimum is taken over all couplings π of μ and ν such that w − w′ ∈ H for π -almost all (w,w′).

Theorem 13. Let μ be a probability measure on (W, B). Then

T2(μ,γ ) ≤ 2H(μ|γ ).

Here is a short proof based of Theorem 2. Fair enough, Feyel and Üstünel [12] have a very similar argument.

Proof of Theorem 13. Assume that μ is absolutely continuous with respect to γ (otherwise H(μ|γ ) = +∞). Ac-
cording to Theorem 2 there exists a Brownian motion B and a drift U such that B + U has law μ and

H(μ|γ ) = 1

2
E‖U‖2.

Then (B,B + U) is a coupling of (γ,μ) and by definition of T2

T2(μ,γ ) ≤ E‖U‖2 = 2H(μ|γ ). �

Let us point out that Talagrand’s inequality can be recovered easily from this theorem, applying it to a Brownian
bridge. Details are left to the reader.

3.2. Logarithmic Sobolev inequality

In this section we prove the logarithmic Sobolev inequality for the Wiener measure, which extends the classical log-
Sobolev inequality for the Gaussian measure, due to Gross [17]. When μ is a measure on (W, B, γ ) with density F

such that DF is well defined, the Fisher information of μ is

I(μ|γ ) =
∫

W

‖DF‖2

F
dγ =

∫
W

∥∥∥∥DF

F

∥∥∥∥
2

dμ.
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Theorem 14. Let μ have density F with respect to γ and assume that F ∈ D
2. Then

H(μ|γ ) ≤ 1

2
I(μ|γ ). (14)

Proof. We consider the probability space (W, B,μ). Recall that (Gt )t≥0 is the filtration of the coordinate process. By
Theorem 2 and Lemma 3, letting

ut = Eμ

(
DtF

F

∣∣∣Gt

)

we have

H(μ|γ ) = 1

2
Eμ

∫ ∞

0
|ut |2 dt.

By Jensen’s inequality

Eμ|ut |2 ≤ Eμ

∣∣∣∣DtF

F

∣∣∣∣
2

so that

H(μ|γ ) ≤ 1

2
Eμ

∥∥∥∥DF

F

∥∥∥∥
2

which is the result. �

This may not be the most straightforward proof, see [8]. Let us emphasize that applying (14) to a Brownian bridge
yields the usual log-Sobolev inequality. More precisely, let ν be a probability measure on R

d having a smooth density
ρ with respect to γd and let μ be the measure on W given by

μ(dw) = ρ(w1)γ (dw).

Then H(ν|γd) = H(μ|γ ). On the other hand letting F(w) = ρ(w1) we have

DF(w) = ∇ρ(w1)1[0,1],

which implies easily that I(ν|γd) = I(μ|γ ). Thus (14) becomes

H(ν|γd) ≤ 1

2
I(ν|γd).

3.3. Shannon’s inequality

Given a random vector η on R
d having density ρ with respect to the Lebesgue measure, Shannon’s entropy is defined

as

S(η) = −
∫

Rd

ρ log(ρ)dx.

In other words S(η) = −H(ν|λd) where ν is the law of η and λd is the Lebesgue measure on R
d .

Theorem 15. Let η, ξ be independent random vectors on R
d and θ ∈ [0,π/2]

S
(
cos(θ)η + sin(θ)ξ

) ≥ cos(θ)2S(η) + sin(θ)2S(ξ). (15)
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This inequality plays a central role in information theory, see [11] for an overview on the topic.

Proof of Theorem 15. Let νθ be the law of cos(θ)η + sin(θ)ξ . By Theorem 2, Lemmas 10 and 11 there exists a
Brownian motion X and a drift U such that

• X1 + U1 has law ν0.
• H(ν0|γd) = E‖U‖2/2.
• E(U) = E(η)1[0,1].
Similarly, there exists a Brownian motion Y and a drift V satisfying the corresponding properties for νπ/2. Besides,
we can clearly assume that Y is independent of X. Then cos(θ)X + sin(θ)Y is a Brownian motion and

cos(θ)X1 + sin(θ)Y1 + cos(θ)U1 + sin(θ)V1

has law νθ . By Proposition 1 and Lemma 10

H(νθ |γd) ≤ 1

2
E
∥∥cos(θ)U + sin(θ)V

∥∥2
.

Denoting the inner product in H by 〈·, ·〉 we have

E〈U,V 〉 = 〈EU,EV 〉 = (Eη) · (Eξ),

so that

H(νθ |γd) ≤ cos(θ)2H(ν0|γd) + sin(θ)2H(νπ/2|γd)

+ cos(θ) sin(θ)(Eη) · (Eξ).

This is easily seen to be equivalent to (15). �

3.4. Brascamp–Lieb inequality

Let us focus on a family of inequalities dating back to Brascamp and Lieb’s article [7] on optimal constants in Young’s
inequality. Since then a number of nice alternate proofs have been discovered, see [3,9,10] and the survey article [1].
This subsection is inspired by the (unpublished) proof of Maurey relying on Borell’s formula.

Let E be a Euclidean space, let E1, . . . ,Em be subspaces and for all i let Pi be the orthogonal projection with
range Ei . The crucial hypothesis is the so-called frame condition: there exist c1, . . . , cm in R+ such that

m∑
i=1

ciPi = idE. (16)

Let x ∈ E, we then have |x|2 = (
∑

ciPix) · x and since Pi is an orthogonal projection

|x|2 =
m∑

i=1

ci |Pix|2. (17)

From now on W denotes the space of continuous paths taking values in E and starting from 0 and γ denotes the
Wiener measure on W. The spaces Wi and measures γi are defined similarly.

Theorem 16. Under the frame condition, for every probability measure μ on W we have

H(μ|γ ) ≥
m∑

i=1

ciH(μi |γi),

where μi = μ ◦ P −1
i is the push-forward of μ by the projection Pi .
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Proof. According to Theorem 2 there exists a standard Brownian motion B on E and a drift U such that B + U has
law μ and

H(μ|γ ) = 1

2
E‖U‖2.

Since Pi is an orthogonal projection, the process PiB is a standard Brownian motion on Ei . Also PiB + PiU has law
μ ◦ P −1

i = μi . By Proposition 1

H(μi |γi) ≤ 1

2
E‖PiU‖2, i = 1, . . . ,m.

On the other hand, the frame condition (17) implies easily that

‖U‖2 =
n∑

i=1

ci‖PiU‖2

pointwise. Taking expectation yields the result. �

As observed by Carlen and Cordero [9], this super-additivity property of the relative entropy is equivalent to the
following Brascamp–Lieb inequality.

Corollary 17. Under the frame condition, given m functions Fi : Wi → R+, we have

∫
W

m∏
i=1

(Fi ◦ Pi)
ci dγ ≤

m∏
i=1

(∫
Wi

Fi dγi

)ci

.

When the functions Fi depend only on the point w1 rather than on the whole path w we recover the usual
Brascamp–Lieb inequality for the Gaussian measure.

3.5. Reversed Brascamp–Lieb inequality

Again E is a Euclidean space and E1, . . . ,Em are subspaces satisfying the frame condition (16). Observe that if
x1, . . . , xm belong to E1, . . . ,Em respectively, then for any y ∈ E, the Cauchy–Schwarz inequality and (17) yield(

m∑
i=1

cixi

)
· y =

m∑
i=1

ci(xi · Piy)

≤
(

m∑
i=1

ci |xi |2
)1/2( m∑

i=1

ci |Piy|2
)1/2

=
(

m∑
i=1

ci |xi |2
)1/2

|y|.

Hence∣∣∣∣∣
m∑

i=1

cixi

∣∣∣∣∣
2

≤
m∑

i=1

ci |xi |2. (18)

Let Si be the class of probability measures on Ei which satisfy the conditions of Definition 5, replacing R
d by Ei .

Here is the reversed version of Theorem 16.
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Theorem 18. Given m probability measures μ1, . . . ,μm belonging to S1, . . . , Sm respectively, there exist m processes
X1, . . . ,Xm (defined on the same probability space) such that

1. Xi has law μi for all i = 1, . . . ,m.
2. Letting μ be the law of

∑
ciXi we have

H(μ|γ ) ≤
m∑

i=1

ciH(μi |γi).

Proof. Again let B be a standard Brownian motion on E. For i = 1, . . . ,m, the process PiB is a standard Brownian
motion on Ei . Since μi ∈ Si there exists a drift Ui such that the process Xi = PiB + Ui has law μi and

H(μi |γi) = 1

2
E‖Ui‖2.

Let X = ∑
ciXi and let μ be the law of X. Since

∑
ciPi is the identity of E

X = B +
m∑

i=1

ciUi.

By Proposition 1, we get

H(μ|γ ) ≤ 1

2
E

∥∥∥∥∥
m∑

i=1

ciUi

∥∥∥∥∥
2

.

On the other hand (18) easily implies that

∥∥∥∥∥
m∑

i=1

ciUi

∥∥∥∥∥
2

≤
m∑

i=1

ci‖Ui‖2,

pointwise. Taking expectation we get the result. �

This sub-additivity property of the entropy is a multi-marginal version of the displacement convexity property put
forward by Sturm [21]. By duality, we obtain the following reversed Brascamp–Lieb inequality.

Corollary 19. Assuming the frame condition, given m functions Fi : Wi → R+ bounded away from 0, and a function
G : W → R+ satisfying

m∏
i=1

Fi(wi)
ci ≤ G

(
m∑

i=1

ciwi

)
(19)

for all (w1, . . . ,wm) ∈ W1 × · · · × Wm, we have

m∏
i=1

(∫
Wi

Fi dγi

)ci

≤
∫

W

Gdγ.

Proof. By Lemma 8, for every i, there exists a measure μi ∈ Si such that

log

(∫
Wi

Fi dγi

)
≤

∫
Wi

log(Fi)dμi − H(μi |γi) + ε.
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Let X1, . . . ,Xm be the random processes given by the previous theorem, let X = ∑
ciXi and let μ be the law of X.

Then by duality and the hypothesis (19) we get

log

(∫
W

Gdγ

)
≥ E log(G)(X) − H(μ|γ )

≥ E

(
m∑

i=1

ci log(Fi)(Xi)

)
− H(μ|γ ).

Since H(μ|γ ) ≤ ∑
ciH(μi |γi), this is at least

∑
ci

(
log

(∫
Wi

Fi dγi

)
− ε

)
.

Letting ε tend to 0 yields the result. �

Again when the functions depend only on the value of the path at time 1, we recover the reversed Brascamp–Lieb
inequality for the Gaussian measure, which is due to Barthe [2].
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