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Abstract. Let h be a three times partially differentiable function on R
n, let X = (X1, . . . ,Xn) be a collection of real-valued

random variables and let Z = (Z1, . . . ,Zn) be a multivariate Gaussian vector. In this article, we develop Stein’s method to give
error bounds on the difference Eh(X) − Eh(Z) in cases where the coordinates of X are not necessarily independent, focusing on
the high dimensional case n → ∞. In order to express the dependency structure we use Stein couplings, which allows for a broad
range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the
Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.

Résumé. Soit h une fonction réelle sur R
n dont les dérivées partielles d’ordre trois existent, soit X = (X1, . . . ,Xn) un vecteur

de variables aléatoire réelles et soit Z = (Z1, . . . ,Zn) un vecteur aléatoire Gaussien. Dans cet article, nous établissons par la
méthode de Stein une majoration de la différence Eh(X) − Eh(Z) dans le cas où les coordonnées de X ne sont pas nécessairement
indépendantes; nous nous concentrons sur le cas de la grande dimension n → ∞. Pour exprimer la structure de dépendance, nous
utilisons des couplages de Stein, ce qui permet une large gamme d’applications, par exemple aux modèles d’urnes, au modèles avec
dépendance locale, au modèle de Curie–Weiss, etc. Nous présentons aussi des applications au modèle de Sherrington–Kirkpatrick
et à la percolation de dernier passage dans des rectangles étroits.
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1. Introduction

Let X and Z be random vectors in R
n and let h : Rn → R be a function of interest. A fundamental problem in

probability theory is to obtain bounds on the quantity∣∣Eh(X) − Eh(Z)
∣∣, (1.1)

that is, to estimate the error when we replace X in Eh(X) by Z. If the error in (1.1) is small irrespective of the detailed
properties of X and Z then we will attribute to the function h a certain degree of universality, which means that the
expected value only depends on certain basic characteristics of X and Z, such as the first few moments.

Of particular interest is the case where Z is a Gaussian vector having the same (or a similar) covariance structure
as X, and probably the most prominent occurrence of such universality is the central limit theorem. If X is a random
vector, such that the Xi are independent of each other, centred and scaled such that

∑
i VarXi = 1, and Z is a centred

Gaussian vector with uncorrelated coordinates having the same variances as those of X, then it is well known that
(1.1) is small for functions of the form

h(x) = g

(
n∑

i=1

xi

)
, (1.2)
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where g : R → R is not too irregular. A common heuristic says that the central limit theorem will also hold if inde-
pendence is replaced by some form of “weak” dependence, and, furthermore, it can be expected that in many cases
(1.1) will be small for more general functions than (1.2). Thus, in terms of dropping independence and considering
more general functions than (1.2), universality often can be observed beyond the standard setting of the central limit
theorem.

Even if the vector X is such that
∑

i Xi does not satisfy the central limit theorem, we can consider (1.1) for
functions more general than (1.2). Let, for example, ξi be the number of balls that end up in the ith urn, when
a fixed number of balls m is distributed independently among n urns. Clearly,

∑
i ξi = m, respectively,

∑
i Xi =

0 if the Xi are the centered and properly scaled ξi . Although these sums do not satisfy a central limit theorem,
it is nevertheless possible to give informative bounds on (1.1). Dembo and Rinott [11] and Chen and Röllin [10]
considered, for example, functions of the form h(x) = g(

∑
i ϕ(xi)) for fixed functions g and ϕ, where ϕ is non-linear.

For other, non-trivial choices of h we refer to Sections 4.1 and 4.2.
Over the last decades, Stein’s method has proved to be a very robust method to obtain explicit bounds for univariate

and multivariate distributional approximations in cases where X exhibits non-trivial dependencies which are not of
martingale type, but more combinatorial in flavour. Although Stein’s method for the multivariate normal distribution
has been successfully implemented in many places (see Meckes [18] and Reinert and Röllin [21] and references
therein), the dependence on the dimension of the results obtained so far may give the impression that the method
is not suitable if the dimension grows linearly with the size of the problem. Indeed, this high-dimensional case has
remained untackled until now. The purpose of this article is to close this gap.

It is important to note at this point that the type of bounds that we will obtain will generally not imply that the
marginal distributions of the individual coordinates will converge to a normal distribution. That is, the aim is not to
prove convergence to a multivariate normal distribution. In the already mentioned example of classic occupancy, if
the number of balls and urns are of the same order, then ξi will converge to a Poisson distribution with mean being
equal to the limiting ratio limm/n. Bounds on (1.1) will only be informative if they are smaller than the fluctuation
of h(X), that is, if the bounds are smaller than E|h(X)| (assuming here without loss of generality that Eh(Z) = 0),
which is an obvious upper bound on (1.1). The bounds that we obtain for functions h that concentrate only on a few
coordinates will typically have the same order as E|h(X)| and hence will not – and often cannot – be informative.

The remainder of the article is organised as follows. In the next section we will first discuss the key tools used in
this article, in particular the fundamental idea of using interpolation to estimate (1.1), the Gaussian integration by parts
formula and multivariate Stein couplings, leading to our main result, Lemma 2.1. In Section 3 we will then give some
abstract and more concrete examples of Stein couplings, ranging from the independent case to more sophisticated
dependencies. In Section 4 we will discuss various applications.

2. The key lemma

An old idea to compare two quantities of interest is to find an interpolating sequence between them and to estimate the
error “along the way” of the interpolation using the derivatives of h (paraphrasing Talagrand [29] on “Gaussian inter-
polation and the smart path method”). One of the earliest encounters of this idea is Lindeberg’s method of telescoping
sums. Define the interpolating sequence

Y(i) = (X1, . . . ,Xi,Zi+1, . . . ,Zn), (2.1)

and write

Eh(X) − Eh(Z) =
n∑

i=1

E
{
h
(
Y(i)

) − h
(
Y(i − 1)

)}; (2.2)

one can now bound the right-hand side of (2.2) using Taylor expansion; this idea has been successfully implemented by
Rotar’ [24], Chatterjee [7], Mossel et al. [19] and Tao and Vu [30] and surely by other authors. One of the important
consequences of this approach is apparent when we look at (2.1): it forces us to treat the coordinates of X in an
ordered way. If the components of X are independent or, more generally, a martingale difference sequence, then this
is of course desirable, and, indeed, quite a few central limit theorems for martingales are based upon (2.2) (see e.g.
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Bolthausen [4], Grama [15] and Rinott and Rotar’ [22]). And even if no such structure is apparent in the problem, one
can sometimes arrange X such that it will be close enough to a martingale difference sequence.

This approach, however, is not entirely satisfying. Often the martingale structure is “artificial” and one would like
to make use of a more natural dependence structure in X, instead (rates of convergences being another reason to avoid
martingales). And in some cases, one may have difficulties to linearise the problem at all.

A key difference in Stein’s method is to chose an interpolating sequence that, in contrast to Lindeberg’s telescoping
sum, treats the components of X symmetrically. Note that (2.1) essentially interpolates “along the coordinate axes”
and the order of the axes determines the linearisation of the problem. Instead, we will interpolate between X and Z

in a way that will linearly interpolate between the matrices XXt and ZZt . This approach is well-known as Gaussian
interpolation and independently developed by Slepian [25] and Stein [26], although the technique used by Stein looks
very much different from what is commonly referred to as Gaussian interpolation (the interpolation is “hidden” in the
solution to the so-called Stein equation).

Gaussian interpolation has become popular in many areas; Talagrand [29] gives a good account of the key idea, in
particular in the context of statistical mechanics (where Gaussian interpolation is referred to as smart path method).
The method is a key ingredient in the rigorous proof of the Parisi formula by Talagrand [28]. It is also an important tool
to prove universality in the bulk of eigenvalues for Wigner random matrices with matrix entries following so-called
Gaussian divisible distributions. The generalisation from these special distributions to the general case, however, uses
Lindeberg’s idea of telescoping sums; see Johansson [17] and Erdős et al. [13].

Now, assume that X and Z are independent and define the interpolating sequence Yt = √
tX + √

1 − tZ, 0 ≤
t ≤ 1. Note that, if EX = EZ = 0, then EYt = 0 and, if Cov(X) = Cov(Z), then Cov(Yt ) = Cov(X) for all t (which
may serve as an explanation why this particular Yt is a good choice). With hi being the partial derivative in the ith
coordinate, we can write

Eh(X) − Eh(Z) =
∫ 1

0

∂

∂t
Eh(Yt )dt

= 1

2

∫ 1

0
E

{
1√
t

∑
i

Xihi(Yt ) − 1√
1 − t

∑
i

Zihi(Yt )

}
dt (2.3)

(differentiation in (2.3) corresponds to taking differences in (2.2) and integration replaces summation, but this is
only a technical difference). One can easily see that, on the right-hand side of (2.3), the coordinates are treated
symmetrically. The result obtained by Slepian [25] (known as Slepian’s Lemma) is valid under the assumption that X

and Z are centred Gaussian vectors having a different covariance structure. In this case, the Gaussian integration by
parts formula

E
{
Zihi(Z)

} =
n∑

j=1

Cov(Zi,Zj )Ehij (Z) (2.4)

can be used to estimate the error on the right-hand side of (2.3) in terms of the covariances. Stein [26], on the other
hand, considered the univariate case, but where X is not Gaussian. Although (2.4) can still be used for Z, it needs to
be replaced by an approximate version of (2.4) for X.

In order to formalise this approximate version of the Gaussian integration by parts formula, we will make use of a
multivariate generalisation of Stein couplings, which were introduced by Chen and Röllin [10] in the univariate case,
and then give more concrete constructions later on. Throughout this article summations will always range from 1 to n

unless otherwise stated.

Definition 2.1. Let (X,X′,G) be a triple of n-dimensional random vectors. We say that the triple is a Stein coupling
if, for any smooth enough function f : Rn → R, we have

E

∑
i

Xifi(X) = E

∑
i

Gi

(
fi

(
X′) − fi(X)

)
(2.5)

whenever the involved expectations exist.
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Remark 2.2. If (X,X′,G) is a Stein coupling, it follows from the definition that

EXi = 0, E(GiDj + GjDi) = 2 Cov(Xi,Xj ) (2.6)

for all i and j , where we let D = X′ − X throughout this article (apply (2.5) to the functions f (x) = xi and f (x) =
xixj , respectively). If (2.5) is replaced by the stronger condition that

E
{
Xifi(X)

} = E
{
Gi

(
fi

(
X′) − fi(X)

)}
(2.7)

for all i, then

E(GiDj ) = E(GjDi) = Cov(Xi,Xj ) (2.8)

for all i and j .

Equation (2.5) is the key condition to obtain an approximate Gaussian integration by parts formula: if X and X′
are close to each other, then the difference on the right-hand side of (2.5) can be approximated by the corresponding
derivatives, leading to a formula similar to (2.4). Hence, it is crucial that X′ is only a small perturbation of X.

The following result, although not difficult to prove, is crucial for our approach. On one hand, it measures how
closely X satisfies the Gaussian integration by parts formula and, on the other hand, also compares the covariances
of X and Z (which in this article we will mostly assume to be the same). To make things more transparent, we keep
everything explicit in terms of the function h, instead of using the usual approach via Stein equation and its solution.

Unless otherwise stated, we will assume throughout this article that

EX = 0, VarXi = σ 2
i , E|Xi |3 = τ 3

i < ∞, τ̄ = sup
i

τi . (2.9)

We will denote by Σ = (σij )1≤i,j≤n the covariance matrix of X, where σij = E(XiXj ), and we have σii = σ 2
i .

Lemma 2.1. Let (X,X′,G) be a Stein coupling. Let X′′ and D̃ be n-dimensional random vectors and let S be a
random n × n matrix. Define D = X′ − X and D′ = X′′ − X. Assume that, for all k and l,

E(GkDl |X) = E(GkD̃l |X), E(Skl |X) = σkl. (2.10)

Let Z ∼ MVNn(0,Σ) be independent of the previous random vectors. Then, for any three times partially differentiable
function h,

Eh(X) − Eh(Z) = 1

2

∫ 1

0
ER1(t)dt − 1

2

∫ 1

0

∫ 1

0
t1/2

ER2(t, s)ds dt

+ 1

2

∫ 1

0

∫ 1

0

∫ 1

0
st1/2

ER3(t, sr)dr ds dt, (2.11)

where

R1(t) =
∑
k,l

(GkD̃l − Skl)hkl

(√
tX′′ + √

1 − tZ
)
,

R2(t, u) =
∑
k,l,m

(GkD̃l − Skl)D
′
mhklm

(√
tX + u

√
tD′ + √

1 − tZ
)
,

R3(t, u) =
∑
k,l,m

GkDlDmhklm

(√
tX + u

√
tD + √

1 − tZ
)
,

provided that ERi(·) exists for i = 1,2,3. In particular,∣∣Eh(X) − Eh(Z)
∣∣ ≤ 1

2
sup

t

∣∣ER1(t)
∣∣ + 1

3
sup
t,s

∣∣ER2(t, s)
∣∣ + 1

6
sup
t,s

∣∣ER3(t, s)
∣∣.
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It seems rather difficult at this point to convey the purpose of all the random vectors appearing in the lemma.
Probably the best way to get an intuition for such couplings is to go through the different applications given later
on; we also refer to Chen and Röllin [10] for the univariate case, where further examples are discussed. We note that
finding the appropriate random vectors will usually require some trial and error.

Remark 2.3. Let us make a few comments at this point.

1. We will use the following simple fact in the applications. If (X,X′,G) is a Stein coupling satisfying the stronger
condition (2.7) and if there is a σ -algebra F ′′ ⊃ σ(X′′) such that

E
(
GkD̃l |F ′′) = E

(
Skl |F ′′), (2.12)

then ER1(t) = 0.
2. Except for the case of local dependence in Section 3.5, we will choose D̃ = D.
3. The result can be easily extended to include other error terms from the proof of the lemma under weaker conditions.

We will use the following extension later on. If (X,X′,G) is not a Stein coupling, then one can include a measure
of how close (2.5) is satisfied; with

R0(t) =
∑

k

{
Xkhk

(√
tX + √

1 − tZ
) − Gkhk

(√
tX′ + √

1 − tZ
)

+ Gkhk

(√
tX + √

1 − tZ
)}

,

an additional 1
2

∫ 1
0

1√
t
ER0(t)dt appears on the right-hand side of (2.11).

4. If (X,X′,G) is not a Stein coupling, the identities (2.6) and (2.8) are no longer valid and need to be replaced by
corresponding approximate versions.

5. Note that the difference |GkD̃l − Skl | in R2(t, u) can usually be estimated by |GkD̃l | + |Skl | without changing the
rates of convergence. This is not the case for R1(t), where more care is required.

Proof of Lemma 2.1. Define the interpolating sequence Yt = √
tX + √

1 − tZ, 0 ≤ t ≤ 1. Starting from (2.3), and
using (2.4) and (2.5), we obtain

Eh(X) − Eh(Z) =
∫ 1

0

∂

∂t
Eh(Yt )dt

= 1

2

∫ 1

0
E

{∑
k

1√
t
Xkhk(Yt ) −

∑
k

1√
1 − t

Zkhk(Yt )

}
dt

= 1

2

∫ 1

0
E

{∑
k

1√
t
Gk

(
hk

(
Y ′

t

) − hk(Yt )
) −

∑
k,l

σklhkl(Yt )

}
dt, (2.13)

where Y ′
t = √

tX′ + √
1 − tZ. Let us recall the definition of R1(t) and introduce two additional error terms:

R1(t) =
∑
k,l

(GkD̃l − Skl)hkl

(
Y ′′

t

)
,

R4(t) :=
∑
k,l

(Skl − σkl)hkl(Yt ), R5(t) :=
∑
k,l

Gk(Dl − D̃l)hkl(Yt ),

where Y ′′
t = √

tX′′ + √
1 − tZ. Applying

hk

(
Y ′

t

) − hk(Yt ) =
∫ 1

0

√
t
∑

l

Dlhkl

(
Yt + s

√
tD

)
ds
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to (2.13), and adding and subtracting the terms from R1(t), R4(t) and R5(t) yields

Eh(X) − Eh(Z)

= 1

2

∫ 1

0
E

{∫ 1

0

∑
k,l

GkDlhkl

(
Yt + s

√
tD

)
ds −

∑
k,l

σklhkl(Yt )

}
dt

= 1

2

∫ 1

0
E

{
R1(t) + R4(t) + R5(t)

}
dt

+ 1

2

∫ 1

0
E

{∑
k,l

(GkD̃l − Skl)
(
hkl(Yt ) − hkl

(
Y ′′

t

))}
dt

+ 1

2

∫ 1

0

∫ 1

0
E

{∑
k,l

GkDl

(
hkl

(
Yt + s

√
tD

) − hkl(Yt )
)}

ds dt.

Note that, under (2.10), ER4(t) = ER5(t) = 0. Taylor expansion in the last two lines yields the final result; we refer
to Chen and Röllin [10] for a more detailed exposition of the proof in the univariate case. �

We now derive general norm bounds from Lemma 2.1, along the lines of Raič [20], Chatterjee and Meckes [8] and
Meckes [18]. Let ‖ · ‖ be a norm on R

n and let ‖| · ‖| be a norm on R
n×n, the space of n × n matrices. Define the

following measures of smoothness of h. For k ≥ 1, let

Mk(h) = sup
x∈Rn

sup
u(1),...,u(k)∈Rn

n∑
i1,...,ik=1

u
(1)
i1

· · ·u(k)
ik

‖u(1)‖ · · · ‖u(k)‖hi1,...,ik (x),

and for k ≥ 2 define

M̃k(h) = sup
x∈Rn

sup
A∈Rn×n

sup
u(3),...,u(k)∈Rn

n∑
i1,...,ik=1

Ai1i2u
(3)
i3

· · ·u(k)
ik

‖|A‖|‖u(3)‖ · · · ‖u(k)‖hi1,...,ik (x)

(if k = 2, the third supremum in the definition of M̃k(h) is just ignored). We then have the following straitforward
result.

Lemma 2.2. Under the assumptions of Lemma 2.1, let F ′′ be a σ -algebra with σ(X′′) ⊂ F ′′. Then, for all 0 ≤ t, s ≤ 1,∣∣ER1(t)
∣∣ ≤ M̃2(h)E

{∥∥∣∣E(
GD̃t − S|F ′′)∥∥∣∣},∣∣ER2(t, s)

∣∣ ≤ M̃3(h)E
{(∥∥∣∣GD̃t

∥∥∣∣ + ‖|S‖|)∥∥D′∥∥}
,∣∣ER3(t, s)

∣∣ ≤ M3(h)E
{‖G‖‖D‖2}.

It is clear from this lemma that the optimal choice of the norms ‖ · ‖ and ‖| · ‖| very much depends on the involved
random vectors and how they are coupled. This, in turn, determines which functions h are considered smooth enough
to yield informative bounds.

Let us fix some notation before we proceed. We denote by ‖ · ‖∞ the supremum norm of functions. For k ≥ 1 and
a k-times partially differentiable function f : Rn → R, we let

|f |k = sup
1≤i1≤···≤ik≤n

‖fi1...ik‖∞.

For functions g : R → R we will use the notation ‖g′‖∞,‖g′′‖∞, . . . , instead of the equivalent |g|1, |g|2, . . . .
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The couplings we construct in this article are such that the random vectors and matrices in Lemma 2.2 are small
with respect to the L1-norms

‖u‖1 =
n∑

i=1

|ui | and ‖|A‖|1 =
n∑

i,j=1

|Aij |.

It is not difficult to see that with respect to these norms we have

Mk(h) = M̃k(h) = |h|k.
For this reason, we will directly formulate our results in terms of |h|k .

Note that this is in contrast to the results for multivariate normal approximation of Chatterjee and Meckes [8] and
Reinert and Röllin [21]. There, the vectors and matrices are typically closer in L2 than in L1. Meckes [18] showed that
in this case | · |k is too strong to measure the smoothness of h, resulting in suboptimal dependence on the dimension.
Using instead Mk(h) and M̃k(h) with respect to the L2-norms, Meckes [18] showed that the dependence on the
dimension can be substantially reduced.

Remark 2.4. One may be interested in comparing the distributions of f (X) and f (Z) for some specific function
f : Rn → R. To this end, choose h(x) = g(f (x)) for g : R → R. Then, if (1.1) is small for all three times differentiable
functions g, then we can conclude that f (X) and f (Z) are close in distribution. We record the useful estimates

|h|1 ≤ |f |1
∥∥g′∥∥∞, |h|2 ≤ |f |2

∥∥g′∥∥∞ + |f |21
∥∥g′′∥∥∞,

|h|3 ≤ |f |3
∥∥g′∥∥∞ + 3|f |1|f |2

∥∥g′′∥∥∞ + |f |31
∥∥g′′′∥∥∞.

Remark 2.5. A particular function of interest is

f (x) = log
m∑

p=1

eβy(p)(x)

for functions y(p) : Rn → R, 1 ≤ p ≤ m. Define γk = supp |y(p)|k ; it is straightforward to check that

|f |1 ≤ βγ1, |f |2 ≤ βγ2 + 2β2γ 2
1 , |f |3 ≤ βγ3 + 6β2γ1γ2 + 6β3γ 3

1 .

3. Couplings

Many of the Stein couplings discussed by Chen and Röllin [10] can be adapted to the multivariate case: exchangeable
pairs, size-biasing, local dependence, etc. Instead of generalising all of them here (which will be done elsewhere with
emphasis on multivariate normal approximation for fixed dimension) we only go through a few of them explicitly and
instead present some other couplings not discussed by Chen and Röllin [10].

3.1. A theoretical result

One may wonder if, given a pair (X,X′) with EX = 0, there exists a G to make the triple (X,X′,G) a Stein coupling.
This question has been answered by Chen and Röllin [10] for the univariate case, but the construction given there can
also be used in the multivariate setting. Let F = σ(X) be the σ -algebra induced by X and let F ′ = σ(X′). Define
formally the sequence

G = −X + E
(
X|F ′) − E

(
E

(
X|F ′)|F

) + E
(
E

(
E

(
X|F ′)|F

)|F ′) − · · · .
If the sequence converges absolutely in each coordinate, then this will make (X,X′,G) a Stein coupling. Indeed,
E(G|F ) = −X and E(G|F ′) = 0 so that (2.5) is satisfied.
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To motivate the choice of G used in the next few settings, consider the case where the coordinates of X are
independent. Let I be uniformly distributed on {1, . . . , n}, independent of all else. Define the vector X(i) by

X
(i)
k = (1 − δki)Xk,

where δij is the Dirac delta function. Let X′ = X(I); that is, X′ is the vector where we have set a randomly chosen
coordinate to 0. Denote by ei the unit vector in direction i. Using independence of the coordinates,

E
(
X|F ′) = E

(
X(I) + eIXI |X(I)

) = X(I)

and

E
(
X′|F

) = 1

n

∑
i

X(i) =
(

1 − 1

n

)
X.

Hence,

G = −X + X′ −
(

1 − 1

n

)
X +

(
1 − 1

n

)
X′ −

(
1 − 1

n

)2

X +
(

1 − 1

n

)2

X′ + · · ·

= −eIXI −
(

1 − 1

n

)
eIXI −

(
1 − 1

n

)2

eIXI − · · · = −neIXI .

3.2. Independent coordinates

In order to illustrate the method in a simple setting, we start with independent coordinates using (X,X′,G) derived
in the previous section.

Theorem 3.1. Let X be as in (2.9) and assume the coordinates of X are independent. If Z is a vector of independent
centred Gaussian random variables with the same variances as X, then∣∣Eh(X) − Eh(Z)

∣∣ ≤ 5

6

∑
i

τ 3
i ‖hiii‖∞.

Proof. Let Gi = −nδiIXi and X′ = X′′ = X(I), hence Di = D′
i = −δiIXi . Let D̃ = D and Sij = nσ 2

i δiI δjI . It is
easy to see that (X,X′,G) is a Stein coupling satisfying the stronger condition (2.7), that (2.10) is satisfied and that
(2.12) holds with F ′′ = σ(X′′, I ); hence ER1(t) = 0. The following estimates are immediate:∣∣R2(t)

∣∣ ≤
∑

i

‖hiii‖∞
(
σ 2

i E|Xi | + E|Xi |3
) ≤ 2

∑
i

‖hiii‖∞E|Xi |3,
∣∣R3(t)

∣∣ ≤
∑

i

‖hiii‖∞E|Xi |3.

Lemma 2.1 concludes the theorem. �

Using Lindeberg’s telescoping sum and Taylor expansion, and noting that the first two moments of X and Z match,
one easily obtains∣∣Eh(X) − Eh(Z)

∣∣
≤ 1

6

∑
i

(
E|Xi |3 + E|Zi |3

)‖hiii‖∞ ≤ (1 + √
8/π)

6

∑
i

τ 3
i ‖hiii‖∞.

Not surprisingly, the constants obtained via Stein’s method are larger for the case of independent random variables.
However, applications with dependencies is the main purpose of using Stein’s method.
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3.3. Weak dependence

A simple way to measure how much a single coordinate Xi is influenced by the other coordinates is to look at the
fluctuation of the conditional mean and variance of Xi . To this end, let X be as in (2.9) and define X(i) as in Section 3.1.
Furthermore, let

μi

(
X(i)

) = E
(
Xi |X(i)

)
, σ 2

i

(
X(i)

) = Var
(
Xi |X(i)

)
.

Then we have the following.

Theorem 3.2. Let X be as in (2.9) and let Z ∼ MVNn(0,Σ). Then∣∣Eh(X) − Eh(Z)
∣∣ ≤

∑
i

‖hi‖∞E
∣∣μi

(
X(i)

)∣∣ + 1

2

∑
i

‖hii‖∞
(
Eμi

(
X(i)

)2 + E
∣∣σ 2

i

(
X(i)

) − σ 2
i

∣∣)
+ 5

6

∑
i

τ 3
i ‖hiii‖∞.

Proof. Define G, X′, X′′, S as in the proof of Theorem 3.1; the error terms R2 and R3 can be bounded in the same
way. As (X,X′,G) is not necessarily a Stein coupling, we need the additional error term

ER0(t) = E

∑
i

Xihi

(√
tX(i) + √

1 − tZ
) = E

∑
i

μi

(
X(i)

)
hi

(√
tX(i) + √

1 − tZ
)

(see Remark 2.3). Furthermore,

ER1(t) = E

∑
i

(
X2

i − σ 2
i

)
hii

(√
tX(i) + √

1 − tZ
)

= E

∑
i

((
Xi − μi

(
X(i)

))2 − σ 2
i − μi

(
X(i)

)2)
hii

(√
tX(i) + √

1 − tZ
)
.

This easily leads to the final bound. �

Note that if the Xi are independent, Theorem 3.2 reduces to Theorem 3.1. Götze and Tikhomirov [14] assumed that
μi(X

i) = 0 almost surely to obtain convergence rates to the semi-circular law in random matrix theory under such
dependence.

3.4. Constant sum and symmetry

Recall the classic occupancy problem from the Introduction. The sum of the vector that describes the number of
balls in each urn is equal to the total number of balls and hence, itself, does not satisfy a central limit theorem. This
motivates us to consider general centered vectors X that satisfy

n∑
i

Xi = 0 (3.1)

almost surely.
To apply our method, we will need to make more assumptions. A random vector X = (X1, . . . ,Xn) is called

exchangeable if its distribution is invariant under permutation of the coordinates. Note that (3.1) implies
∑

j σij = 0
for each i, and combined with exchangeability, we therefore have

σij = − σ 2
1

n − 1
(3.2)

for all i 
= j .
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Theorem 3.3. Let X be an exchangeable random vector satisfying (2.9) and let Z ∼ MVNn(0,Σ). Then

∣∣Eh(X) − Eh(Z)
∣∣ ≤ |h|2

[
Var

(∑
i

X2
i

)]1/2

+ 16|h|3nτ 3
1 . (3.3)

Remark 3.1. Note that the theorem can also be applied if X is not exchangeable, but h symmetric instead, that is
if h(x) remains the same under any permutation of the coordinates. In that case, Theorem 3.3 can be applied to the
randomly permuted X. Note that τ 3

1 is then replaced by n−1 ∑
i τ

3
i for the final result.

Proof of Theorem 3.3. For x ∈ R
n, let xik ∈ R

n be the vector obtained by interchanging the ith and kth coordinate
of x (if i = k then xik = x). Note that due to exchangeability,

E
{
ϕ(Xi)hi

(
Xik

)} = E
{
ϕ(Xk)hi(X)

}
(3.4)

for any function ϕ for which the expectations exist. Furthermore, for (i, j, k, l) ∈ [n]4 with

i = k ⇐⇒ j = l, (3.5)

denote by xijkl a permutation of x such that

E
{
ϕ(Xj ,Xl)hik(X)

} = E
{
ϕ(Xi,Xk)hik

(
Xijkl

)}
(3.6)

for all functions ϕ for which the expectations exist. Note that this permutation can be defined independently of x and
h: if X is exchangeable, keep [n] \ {i, j, k, l} fixed, map j �→ i and l �→ k and map the remaining numbers among
each other in any arbitrary, but fixed way. Let (I, J,K,L) be distributed on [n]4, such that (I, J,K,L) is uniform on
[n]3 and, given (I, J,K), L is uniform on [n] \ {J } if I 
= K , and J = L if I = K ; hence, (I, J,K,L) satisfies (3.5).
Define

X′ := XIK, X′′ := XIJKL

and

Gk = −nδkIXk, D̃k = Dk, Skl = n2δkI δlKσkl;
note that

Dl = δlI (XK − XI ) + δlK(XI − XK), D′
l =

∑
m∈{I,J,K,L}

δlm

(
X′′

l − Xl

)
.

Fix t and let, for notational convenience, f·(x) = Eh·(
√

tx + √
1 − tZ), where · stands for i, ij or ijk. Clearly,

E{Gkfk(X)} = E{Xkfk(X)}. Using exchangeability of X, we can use (3.4) to obtain

E

∑
k

Gkfk

(
X′) = −nE

{
XIfI

(
XIK

)} = −nE
{
XKfI (X)

}
= −1

n
E

∑
i,k

Xkfi(X) = 0.

Hence, (X,X′,G) is a Stein coupling. Now,

ER1(t) = E

∑
k,l

(Skl − GkDl)fkl

(
X′′)

= E

∑
k,l

[
n2δkI δlKσkl + δkI nXk

(
δlI (XK − Xl) + δlK(XI − Xl)

)]
fkl

(
X′′)

= n2
EσIKfIK

(
X′′) + nEXI (XK − XI )fII

(
X′′) + nEXI (XI − XK)fIK

(
X′′).
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Using exchangeability and (3.2),

n2
E

{
σIKfIK

(
X′′)} = n2

E
{
σJLfIK(X)

}
= 1

n
E

∑
i,j

σjj fii(X) + 1

n(n − 1)
E

∑
i,j,k 
=i,l 
=j

σjlfik(X)

= σ 2
1 E

∑
i

fii(X) − σ 2
1

n − 1
E

∑
i,k 
=i

fik(X).

Furthermore, using (3.1) and (3.6),

nE
{
XI (XK − XI )fII

(
X′′)} = nE

{
XJ (XL − XJ )fII (X)

}
= 1

n2
E

∑
i,j,l

Xj (Xl − Xj)fii(X)

= −1

n
E

∑
j

X2
j

∑
i

fii(X)

and

nE
{
XI (XI − XK)fIK

(
X′′)}

= nE
{
XJ (XJ − XL)fIK(X)

}
= 1

n2(n − 1)
E

∑
i,j,k 
=i,l 
=j

Xj (Xj − Xl)fik(X)

= 1

n2
E

∑
i,j,k 
=i

X2
j fik(X) − 1

n2(n − 1)
E

∑
i,j,k 
=i,l 
=j

XjXlfik(X)

= 1

n2
E

∑
j

X2
j

∑
i,k 
=i

fik(X) − 1

n2(n − 1)
E

∑
j,l 
=j

XjXl

∑
i,k 
=i

fik(X)

= 1

n2
E

∑
j

X2
j

∑
i,k 
=i

fik(X) + 1

n2(n − 1)
E

∑
j

X2
j

∑
i,k 
=i

fik(X)

= 1

n(n − 1)
E

∑
j

X2
j

∑
i,k 
=i

fik(X),

where for the last equality we used that 1
n(n−1)

= 1
n−1 − 1

n
. Hence,

∣∣ER1(t)
∣∣ ≤ 1

n(n − 1)

∣∣∣∣E{(∑
j

X2
j − nσ 2

1

) ∑
i,k 
=i

fik(X)

}∣∣∣∣
+ 1

n

∣∣∣∣E{(∑
j

X2
j − nσ 2

1

)∑
i

fi(X)

}∣∣∣∣
≤ 2|h|2

[
Var

(∑
i

X2
i

)]1/2

.
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This gives the first part of the result. Now,

ER2(t, u) = E

∑
k,l,m

(Skl − GkD̃l)D
′
mfklm

(
X + uD′)

= n2
E

∑
m∈{I,J,K,L}

σIK

(
X′′

m − Xm

)
fIKm

(
X + uD′)

− nE

∑
l∈{I,K},m∈{I,J,K,L}

XI

(
X′

l − Xl

)(
X′′

m − Xm

)
fIlm

(
X + uD′)

hence∣∣ER2(t, u)
∣∣ ≤ 8|h|3τ1

∑
i,j

|σij | + 32|h|3nτ 3
1 ≤ 8|h|3τ1nσ 2

1 + 32|h|3nτ 3
1 .

Similarly,

ER3(t, u) =
∑
k,l,m

GkDlDmhklm(X + uD)

= nE

∑
l∈{I,K},m∈{I,K}

XI

(
X′

l − Xl

)(
X′

m − Xm

)
hklm(X + uD),

hence∣∣ER3(t, u)
∣∣ ≤ 16|h|3nτ 3

1 . �

3.5. Local dependence

Stein couplings to handle local dependence has already been discussed by Chen and Röllin [10], based on similar
decompositions that appeared in many other places; we refer to the more detailed discussion in Chen and Röllin [10].
In particular, multivariate normal approximation for sums of locally dependent random vectors was considered by
Rinott and Rotar’ [23] and Raič [20].

Let X = (X1, . . . ,Xn) be as in (2.9). Assume that, for each i ∈ [n] := {1, . . . , n}, there is a subset Ai ⊂ [n] such
that XAc

i
and Xi are independent. Assume further that for each i ∈ [n] and j ⊂ Ai there is a subset Bij ⊂ [n] such that

Ai ⊂ Bij and XBc
ij

is independent of (Xi,Xj ). Central limit theorems for sums of random variables satisfying this

refined version of local dependence were analyzed in detail by Barbour et al. [2].

Theorem 3.4. Let X as above. Let Z ∼ MVNn(0,Σ). Then, for any three times partially differentiable function h,∣∣Eh(X) − Eh(Z)
∣∣ ≤ 1

3

∑
i

∑
j∈Ai

∑
k∈Bij

(|σij |E|Xk| + E|XiXjXk|
)‖hijk‖∞

+ 1

6

∑
i

∑
j,k∈Ai

E|XiXjXk|‖hijk‖∞ ≤ 5

6
τ̄ 3nη|h|3,

where η = supi

∑
j∈Ai

|Bij |.

Proof. Let I be uniform on [n] and, given I , let J be uniform on AI . Define the vectors X′, X′′, G and D̃ and the
matrix S as

Gk = −δkI nXk, X′
k = I[k /∈ AI ]Xk, X′′

k = I[k /∈ BIJ ]Xk,

Skl = n|AI |δkI δlJ σkl, D̃k = −|AJ |δkJ Xk.
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Note that X′ is independent of G, which makes (X,X′,G) a Stein coupling satisfying the stronger condition (2.7),
similarly as for the independent case. Furthermore, with F ′′ = σ(X′′, I ), (2.12) holds and therefore ER1(t) = 0. The
final bound follows now easily from Lemma 2.1. �

As we can see from the case of the CLT, where h(x) = g(
∑

i xi), the typical scaling of X is such that τ̄ 3 � n−3/2.
With this scaling, a “typical” function h will have the property that E|h(X)| � 1, whereas the bound of Theorem 3.4
is of order O(n−1/2).

Note that an m-dependent sequence is a special case of local dependence: we have |Ai | = 1+2m and Bij ≤ 1+3m.
However, the crucial aspect here is that the exact structure of the dependence is only important in terms of the size of
Ai and Bij . Any graph with maximal degree m that describes the dependence structure of X (that is, two subsets of
vertices are independent if there is no edge between them) will have the upper bounds |Ai | ≤ 1+m and |Bij | ≤ 1+2m.
In that case,

η ≤ 2(m + 1)2. (3.7)

4. Applications

In this section, we present two different types of applications. First, we consider concrete functions h, for which
we determine under what kind of dependencies (1.1) is small. If we can control the first three derivatives of h, then
we can analyse the universality of the given h with respect to dependence, for example for the different settings of
the previous section. The first two applications below are of this type. We analyse universality with respect to local
dependence only, but it is clear that many of the other settings can be used instead. In the case of local dependence, we
are interested in how big the “neighbourhoods” Ai and Bij are allowed to become while keeping the bounds on (1.1)
small enough. We use η from Theorem 3.4 as a simple measure of neighbourhood size, and hence dependence. These
applications are closely related to Chatterjee [6]. Whereas in the first application of the SK-model the dependence
enters in a straightforward way, in the second application of last passage percolation on thin rectangles, an certain
optimisation step has to be recalculated, including the measure of dependence η.

As a second type of application, we can consider more concrete vectors X, for which we want to show that (1.1)
is small for a large class of functions h. In this situation, the structure of the dependence of X will either fit into one
of the abstract settings of the previous section (this is the case for classic occupancy), or else, one has to construct a
Stein coupling from scratch; the latter is the case for the Curie–Weiss model.

4.1. Environment with dependencies in the Sherrington–Kirkpatrick spin glass model

Consider the N -spin system {−1,1}N . To each configuration σ ∈ {−1,1}N we assign the (random) Hamiltonian

HN(σ) = β√
N

∑
i<j

ξij σiσj ,

where ξ = (ξij )1≤i<j≤n is a family of random variables, which we call the environment. Given the environment ξ , we
assign to each σ the probability

P
ξ
N (σ ) = eHN(σ)

ZN(β, ξ)
,

where

ZN(β, ξ) =
∑
σ

eβHN(σ).

Let

pN(β) = 1

N
E logZN(β, ξ).
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It was proved by Talagrand [28] that pN(β) → p∞(β), the solution of the Parisi formula, if the ξij are independent
standard Gaussians. Carmona and Hu [5] showed that the same limit holds if the Gaussians are replaced by inde-
pendent copies of any random variable ξ with Eξ = 0 and E|ξ |3 < ∞. We shall extend this results to dependent
environments. To this end define

Z̃n(β, ξ) = E
ξ
{
eβ

∑n
i=1 Yiξi

}
,

where Y1, . . . , Yn is any family of random variables such that Yi only takes finitely many values and |Yi | ≤ 1 for all i.

Lemma 4.1. Let ξ = (ξ1, . . . , ξn) be a random environment such that Eξi = 0, Eξ2
i = 1 and E|ξi |3 ≤ τ̄ 3 < ∞, satis-

fying the dependence structure of Theorem 3.4. Let g ∼ MVNn(0,Σ) where Σ is the covariance matrix of ξ . Then∣∣E log Z̃n(β, ξ) − E log Z̃n(β, g)
∣∣ ≤ 5β3τ̄ 3nη. (4.1)

Proof. Let h(ξ) = log Z̃n(β, ξ); it is easy to see from Remark 2.5 that

‖hijk‖ ≤ 6β3

(note that γ2 = γ3 = 0 and γ1 ≤ 1 as |Yi | ≤ 1). Using Theorem 3.4, (4.1) is immediate. �

The following statement is a direct consequence of Lemma 4.1 for n = N(N − 1)/2 and β replaced by βN−1/2.

Theorem 4.2. Assume the environment ξ satisfies the dependence structure of Theorem 3.4 with η = o(N1/2) and
σij = 0 for i 
= j . Then

1

N
E logZN(β, ξ) → p∞(β).

Consider a fixed m-regular graph G on the set of vertices VN = {(i, j): 1 ≤ i < j ≤ N}. Let hij be i.i.d. centred
random variables with finite third moments. Let

ξij =
∏

(k,l)∼(i,j)

hkl .

Then it is straightforward to see that these ξij are centred and uncorrelated (note that ξij does not contain hij ).
Clearly, from (3.7), η ≤ 2(m + 1)2 and hence we can apply Theorem 4.2 as long as m = o(N1/4). Noticing that (4.1)
is independent of the underlying graph, we obtain the following.

Corollary 4.3. Let GN be a sequence of random mN -regular graphs on VN , where mN = o(N1/4). Then, with ξ as
above,

1

N
E

GN logZN(β, ξ) → p∞(β)

almost surely.

4.2. Last passage percolation for thin rectangles

The following statements about smooth approximation of the maximum function is well-known (and easy to verify).

Lemma 4.4. Let m be a positive integer. For each y ∈ R
m, let f0(y) = max{y1, . . . , ym} and fε(y) = ε log

∑
i eyi/ε .

Then

0 ≤ fε(y) − f0(y) ≤ ε logm.
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Consider functions y(p) : Rn → R, p = 1, . . . ,m, and let

Px = max
1≤p≤m

y(p)(x). (4.2)

The following theorem is similar to a result obtained by Chatterjee [6], but now includes η. To keep the bounds
simple we make the stronger assumption that the functions y(p) are linear, which what we will need subsequently.

Theorem 4.5. Let Px be as above with linear functions y(p). Let X be a family of n centred random variables with
finite third moments satisfying the dependence structure as in Theorem 3.4. Let g : R → R be three times differentiable.
Then, for Z ∼ MVNn(0,Σ),∣∣Eg(PX) − Eg(PZ)

∣∣ ≤ (
6
∥∥g′∥∥∞ + 6

∥∥g′′∥∥∞ + ∥∥g′′′∥∥∞
)
n1/3η1/3τ̄ γ1 log(m)2/3,

where γ1 = sup1≤p≤m |y(p)|1.

Proof. Using the notation of Lemma 4.4, define the functions

h0(x) = g
(
f0(x)

)
, hε(x) = g

(
fε(x)

)
.

Clearly∣∣h0(x) − hε(x)
∣∣ ≤ ∥∥g′∥∥∞ε logm.

We now use Remark 2.5. We clearly have γ2 = γ3 = 0. Furthermore, using again Lemma 4.4, it is easy to check that,

|hε|3 ≤ |fε|3
∥∥g′∥∥∞ + 3|fε|1|fε|2

∥∥g′′∥∥∞ + |fε|31
∥∥g′′′∥∥∞

≤ ε−2γ 3
1

(
6
∥∥g′∥∥∞ + 6

∥∥g′′∥∥∞ + ∥∥g′′′∥∥∞
)
.

Thus, using Theorem 3.4,∣∣Eh0(X) − Eh0(Z)
∣∣

≤ ∥∥g′∥∥∞ε logm + ∣∣Ehε(X) − Ehε(Z)
∣∣

≤ ∥∥g′∥∥∞ε logm + Cε−2τ̄ 3nηγ 3
1

(
6
∥∥g′∥∥∞ + 6

∥∥g′′∥∥∞ + ∥∥g′′′∥∥∞
)
.

Choosing ε = n1/3η1/3 log(m)−1/3τ̄ γ1, we obtain the final bound. �

Let us apply this result to last passage percolation on thin rectangles along the lines of Suidan [27]. Denote by π

an increasing path from (1,1) to (N, k) on the usual two dimensional lattice, where without loss of generality k ≤ N .
Let

y(π)(x) = k1/6

N1/2

(∑
i∈π

xi − 2
√

Nk

)
and let Px be as in (4.2), where the maximum ranges over all increasing paths π . Hence, Px is the (standardized)
longest increasing path between (1,1) and (N, k), where each lattice point (i, j) contributes xij to the length of
the path. If X is an i.i.d. family of geometric or exponential random variables, then Johansson [16] showed that
the properly centred and standardized PX will converge to F2 (the Tracy–Widom distribution for Gaussian unitary
ensembles) if k = N . For independent Xi that are neither exponentially nor geometrically distributed, the same results
is only known for thin rectangles, that is, for k being of smaller order than N ; see Bodineau and Martin [3], Baik
and Suidan [1] and Suidan [27]. In particular, if Xi have finite third moments, then k = O(Nα) for α < 1/7. We shall
expand this result to locally dependent X. If η remains bounded, we recover the same maximal order for k as in the
independent case. If η grows with N , however, the maximal order of k be will be affected.
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Corollary 4.6. Let X = (Xij )1≤i≤N,1≤j≤k be a collection of n = Nk random variables with mean 0 and variance 1,
satisfying the dependence structure of Theorem 3.4, and let Z ∼ MVNn(0,Σ). Then, for any three times differentiable
function g : R → R,

∣∣Eg(PX) − Eg(PZ)
∣∣ ≤ C(g, τ̄ )η1/3k7/6 log(N)2/3

N1/6
.

For some constant C(g, τ̄ ). If σij = 0 for all i 
= j , then the PX will converge to F2 if τ̄ remains bounded and if

k = o
(
N1/7 log(N)−4/7η−2/7).

Proof. Clearly, γ1 = k1/6N−1/2. Furthermore,

m =
(

N + k

N

)
≤

(
N

k

)k(
N + k

N

)N+k

.

As

log(m) = k
(
log(N) − log(k)

) + (N + k)
(
log(N + k) − log(N)

)
≤ k log(N) + 2k

applying Theorem 4.6 yields the final bound. �

4.3. Classic occupancy

As mentioned in the Introduction, we can obtain bounds on (1.1) for the classic occupancy problem. Distribute m

balls independently and uniformly among n urns. Let ξi be the number of balls in urn i. Then, ξi ∼ Bi(m,n−1) and∑
i ξi = m, and therefore

Xi = ξi − mn−1√
m(1 − n−1)

satisfies (2.9) and (3.1) and in addition
∑

i σ
2
i = 1.

Theorem 4.7. Let X be as above and let Z ∼ MVNn(0,Σ). Then, for any three times partially differentiable func-
tion h,

∣∣Eh(X) − Eh(Z)
∣∣ ≤ (|h|2 + 19|h|3

)√n2 + 4mn + 6

mn(n − 1)
.

Proof. We can apply (3.3), as X is exchangeable and (3.1) is satisfied. It is straightforward to verify that

VarX2
1 = n2 + 2(n − 1)(m − 3)

n2m(n − 1)
, Cov

(
X2

1,X
2
2

) = −n2 − 4n − 2m + 6

mn2(n − 1)2

(see Lemma 4.8 below), which implies

Var
∑

i

X2
i = nVarX2

1 + n(n − 1)

2
Cov

(
X2

1,X
2
2

) = n2 + 4mn − 2m − 8n + 6

2mn(n − 1)
.

Furthermore,

E|X1|3 ≤
√

EX2
1EX4

1 ≤
√

n2 + 3nm − 6n − 3m + 6

mn3(n − 1)
.
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From this, the final bound follows. �

We record here some identities for the mixed moments of the ξi , which are easy to verify and needed in the above
calculations.

Lemma 4.8. Let ξ1 and ξ2 be the number of balls when distributing m balls uniformly and independently among n

urns. Then

Eξ2
1 = m

n
+ m(m − 1)

n2
,

E(ξ1ξ2) = m(m − 1)

n2
,

E
(
ξ2

1 ξ2
) = m(m − 1)

n2
+ m(m − 1)(m − 2)

n3
,

E
(
ξ2

1 ξ2
2

) = m(m − 1)

n2
+ 2

m(m − 1)(m − 2)

n3
+ m(m − 1)(m − 2)(m − 3)

n4
.

4.4. Curie–Weiss model in the high-temperature regime

Consider the n-spin system {−1,1}n with Hamiltonian

H(σ) = −1

n

∑
i<j

σiσj .

To each configuration σ assign the probability

P(σ ) = e−βH(σ)

Z(β)
,

where Z(β) is the normalising constant. This model is well-known as Curie–Weiss model; we refer to Eichelsbacher
and Löwe [12] for a more detailed discussion of relevant literature. The authors of that article prove in particular
bounds in univariate central limit theorems for the total magnetisation of this and similar models. Here, instead, we
will estimate the error when we replace all the spins by corresponding Gaussian variables in the high-temperature
regime β < 1; this, in particular, implies the central limit theorem for the total magnetisation.

Previous approaches using Stein’s method to analyse the magnetisation of such models make use of exchangeable
pairs (Eichelsbacher and Löwe [12] and Chatterjee and Shao [9]) which typically involves resampling a spin condi-
tional on the other spins. It is worthwhile noting that the Stein coupling we will use does not require any resampling
and, hence, does not form an exchangeable pair.

To avoid confusion with the notation σi for the spins, we will use sij instead of σij to denote covariances in what
follows.

Theorem 4.9. Let Xi = n−1/2σi and let Z ∼ MVNn(0,Σ), where Σ = (sij )1≤i,j≤n with

sij =
{ 1

n
+ β

n2(1−β)
, if i = j ,

β

n2(1−β)
, if i 
= j .

Then, for β < 1,

∣∣Eh(X) − Eh(Z)
∣∣ ≤ Cβ

( |h|1 + |h|3
n1/2

+ |h|2
n

)
for some constant Cβ that only depends on β .
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Proof. Define

mi = 1

n

∑
j 
=i

σj , m = 1

n

∑
i

σi .

We recall the estimates

E|m|k ≤ Cβn−k/2;
see Eichelsbacher and Löwe [12], Lemma 3.5. Let (I, J,K,L) be distributed as in the proof of Theorem 3.3, inde-
pendent of all else. Using the notation from Section 3.1 and the proof of Theorem 3.3 (with respect to exchangeability
of X), define the vectors

X′ = X(I), X′′ = XIJKL.

Set D̃ = D and define G as

Gk = −n3/2δkK

(
β

n(1 − β)
+ δkI

)
(σI − βm).

Define the matrix S as

Skl = n2δkKδlI sIK .

Define now f· as in the proof of Theorem 3.3. Then,

−E

∑
k

Gkfk(X)

= n3/2
E

(
β

n(1 − β)
+ δKI

)
(σI − βm)fK(X)

= n−1/2
E

∑
i,k

(
β

n(1 − β)
+ δki

)
(σi − βm)fk(X)

= n−1/2
E

∑
i,k

(
βσi

n(1 − β)
− β2m

n(1 − β)
+ δkiσi − δkiβm

)
fk(X)

= n−1/2
E

∑
k

(
βm

1 − β
− β2m

1 − β
+ σk − βm

)
fk(X)

= n−1/2
E

∑
k

σkfk(X) = E

∑
k

Xkfk(X)

and

E

∑
k

Gkfk

(
X′)

= −n−3/2
E

(
β

n(1 − β)
+ δKI

)
(σI − βm)fK

(
X(I)

)
= −n−1/2

E

∑
i,k

(
β

n(1 − β)
+ δki

)
(σi − βm)fk

(
X(i)

)
= −n−1/2

E

∑
i,k

(
β

n(1 − β)
+ δki

)(
tanh(βmi) − βm

)
fk

(
X(i)

)
,
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where for the last equation we used that E(σi |X(i)) = tanh(βmi). Using the estimate∣∣tanh(βmi) − βm
∣∣ ≤ ∣∣tanh(βmi) − tanh(βm)

∣∣ + ∣∣tanh(βm) − βm
∣∣

≤ β

n
+ β3|m|3

6

we obtain∣∣∣∣E∑
k

Gkfk

(
X′)∣∣∣∣ ≤ |f |1 (6 + β2nE|m|3)(β(1 + β))

6(1 − β)n1/2

and hence∣∣ER0(t)
∣∣ ≤ |h|1 (6 + β2nEm3)(β(1 + β))

6(1 − β)n1/2
≤ Cβ |h|1

n1/2

(cf. Remark 2.3). Using exchangeability of X for the second equation, the fact that δKI = δJL and also that sIK = sJL,
we obtain

E

∑
k,l

(GkDl − Skl)fkl

(
X′′)

= n2
E

{(
1

n

(
β

n(1 − β)
+ δKI

)
(σI − βm)σI − sIK

)
fKI

(
XIJKL

)}
= n2

E

{(
1

n

(
β

n(1 − β)
+ δJL

)
(σJ − βm)σJ − sJL

)
fKI (X)

}
= 1

n
E

∑
i,j

{(
1

n

(
β

n(1 − β)
+ 1

)
(σj − βm)σj − sjj

)
fii(X)

}

+ 1

n(n − 1)
E

∑
i,j,k 
=i,l 
=j

{(
1

n

(
β

n(1 − β)

)
(σj − βm)σj − sjl

)
fki(X)

}

= E

{∑
j

(
1

n

(
β

n(1 − β)
+ 1

)
(1 − βσjm) − sjj

)∑
i

fii(X)

n

}

+ E

{ ∑
j,l 
=j

(
1

n

(
β

n(1 − β)

)
(1 − βσjm) − sjl

) ∑
i,k 
=i

fki(X)

n(n − 1)

}

= −E

{
(β + n(1 − β))βm2

n(1 − β)

∑
i

fii(X)

n
− (n − 1)β2m2

n(1 − β)

∑
i,k 
=i

fki(X)

n(n − 1)

}
.

Thus, ∣∣ER1(t)
∣∣ ≤ Cβ |h|2Em2 ≤ Cβ |h|2

n
.

Now

ER2(t, u) = E

∑
k,l,m

(GkDl − Skl)D
′
mfklm

(
X + uD′)

= n3/2
E

∑
m∈{I,J,K,L}

[
1

n

(
β

n(1 − β)
+ δKI

)
(σI − βm)σI − sIK

]
σmfKIm

(
X + uD′).
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From this, it is not difficult to see that∣∣ER2(t, u)
∣∣ ≤ Cβ |h|3

n1/2

(recall the definition of sij and note that the probability that I = K is 1/n). Similarly,

∣∣ER3(t, u)
∣∣ ≤ Cβ |h|3

n1/2
.

Putting all the estimates together, yields the claim. �
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