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Abstract. Our purpose is to investigate properties for processes with stationary and independent increments under G-expectation.
As applications, we prove the martingale characterization of G-Brownian motion and present a pathwise decomposition theorem
for generalized G-Brownian motion.

Résumé. Notre but est d’étudier des propriétés de processus a accroissements stationnaires et indépendants sous une G-espérance.
Comme application, nous démontrons la caractérisation de la martingale de G-mouvement Brownien et fournissons un théoreme
de décomposition trajectorielle pour le G-mouvement Brownien généralisé.
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1. Introduction

Recently, motivated by the modelling of dynamic risk measures, Shige Peng ([3-5]) introduced the notion of a G-
expectation space. It is a generalization of probability spaces (with their associated linear expectation) to spaces
endowed with a nonlinear expectation. As the counterpart of Wiener space in the linear case, the notion of G-Brownian
motion was introduced under the nonlinear G-expectation.

Recall that if {A;} is a continuous process over a probability space (§2, F, P) with stationary, independent in-
crements and finite variation, then there exists some constant ¢ such that A, = ct. However, it is not the case in the
G-expectation space (27, L lG(.QT), E ). A counterexample is {(B),;}, the quadratic variation process for the coor-
dinate process {B;}, which is a G-Brownian motion. We know that {(B),} is a continuous, increasing process with
stationary and independent increments, but it is not deterministic.

The process {(B),} is very important in the theory of G-expectation, which shows, in many aspects, the difference
between probability spaces and G-expectation spaces. For example, we know that for a probability space continuous
local martingales with finite variation are trivial processes. However, [4] proved that in a G-expectation space all pro-
cesses in form of fot ns d(B)s — fot 2G(ng)ds,n e Mé (0, T) (see Section 2 for the definitions of the function G (-) and
the space M, ]G (0, 7)), are nontrivial G-martingales with finite variation (in fact, they are even nonincreasing) and con-
tinuous paths. [4] also conjectured that any G-martingale with finite variation should have such representation. Up to
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now, some properties of the process {(B);} remain unknown. For example, we know that, if G(x) = % SUPy <5 <5 o2x

generates the G-expectation, we have gz(t —s) <(B); — (B)s <o (t —s) forall s <t, but we do not know whether
{%(B) s} belongs to Mé (0, T). This is a very important property since {%(B) s} € Mé (0, T) would imply that the
representation mentioned above of G-martingales with finite variation is not unique.

For the case of a probability space, a continuous local martingale {M;} is a standard Brownian motion if and only
if the quadratic variation process (M); = t. However, it’s not the case for G-Brownian motion since its quadratic
variation process is only an increasing process with stationary and independent increments. How can we give a char-
acterization for G-Brownian motion?

In this article, we shall prove that if A; = fot hgds (respectively A; = fot hsd(B)y) is a process with stationary,

independent increments and h € Mcl; (0, T) (respectively h € Mg’+(0, T), for some B > 1), then there exists some
constant ¢ such that # = c. As applications, we prove the following conclusions (Question 1 and 3 are put forward by
Prof. Shige Peng in private communications):

L {5 (B)s) & M0, 7).
2. (Martingale characterization)
A symmetric G-martingale {M;} is a G-Brownian motion if and only if its quadratic variation process {{M);}
has stationary and independent increments;
A symmetric G-martingale {M,} is a G-Brownian motion if and only if its quadratic variation process (M), =
c(B); for some ¢ > 0.

The sufficiency of the second assertion is trivial, but not the necessity.

3. Let {X;} be a generalized G-Brownian motion with zero mean, then we have the following decomposition:
X =M + Ly,

where {M;} is a (symmetric) G-Brownian motion, and {L;} is a nonpositive, nonincreasing G-martingale with
stationary and independent increments.

This article is organized as follows: In Section 2 we recall some basic notions and results of G-expectation and the
related space of random variables. In Section 3 we characterize processes with stationary and independent increments.
In Section 4, as application, we prove the martingale characterization of G-Brownian motion and present a decompo-
sition theorem for generalized G-Brownian motion. In Section 5 we present some properties for G-martingales with
finite variation.

2. Preliminary

We recall some basic notions and results of G-expectation and the related space of random variables. More details of
this section can be found in [3-8].

Definition 2.1. Let §2 be a given set and let H be a vector lattice of real valued functions defined on $2 with ¢ € 'H for
all constants c. H is considered as the space of “random variables.” A sublinear expectation EonHisa Sfunctional
E:H—R satisfying the following properties: For all X,Y € H, we have

(a) Monotonicity: If X > Y then l:?(X) > E(Y).

(b) Constant preserving: E (c)=c.

(¢) Sub-additivity: E(X) — E(Y) < E(X —Y).

A

(d) Positive homogeneity: E(ALX) = AE(X), A>0.

(2,H, E) is called a sublinear expectation space.

Definition 2.2. Let X\ and X be two n-dimensional random vectors defined respectively in sublinear expectation
spaces (821, H1, E1) and (822, Ha, E3). They are called identically distributed, denoted by X1 ~ X», if E1[¢(X1)] =
Ex[o(X2)], for all ¢ € Cy Lip(R"), where Cy Lip(R") is the space of real continuous functions defined on R" such that

lo(x) — o] < C(1+ Ix* + y[*)Ix = yl, forallx,yeR",
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where k and C depend only on ¢.

Definition 2.3. In a sublinear expectation space (82, H, E) a random vector Y=(1,...,Y,), Y € H,is said to be
independent of another random vector }f =(Xy,..., ){m )A, X; € H, under E(-), denoted by Y L X, if for every test
function ¢ € Cp Lip(R™ x R") we have E[p(X,Y)] = E[E[p(x, Y)]x=x].

Definition 2.4 ( G-ilormal distribution). A d-dimensional random vector X = (X1, ..., X4) in a sublinear expecta-
tion space ($2,'H, E) is called G-normal distributed if for every a, b € Ry we have

aX +bX ~ a2 +b2X,

where X is an independent copy of X. Here the letter G denotes the function

[ —

G(A):= -~ E[(AX,X)]:S4 — R,

2

where Sy denotes the collection of d x d symmetric matrices.

The function G(-) : S4 — R is a monotonic, sublinear mapping on S; and G(A) = lE[(AX, X)) < %|A|E[|X|z] =
%|A|&2 implies that there exists a bounded, convex and closed subset I” C S; such that

G(A) = % sugTr(yA). 2.1
ye

If there exists some B > 0 such that G(A) — G(B) > BTr(A — B) for any A > B, we call the G-normal distribution
nondegenerate. This is the case we consider throughout this article.

Definition 2.5. (i) Let 27 = Co([0, T, R?) be endowed with the supremum norm and { B;} be the coordinate process.

Set H(% ={¢(By,....,B)n>1,1n,....,t, €[0,T], ¢ € Cl,Lip(RdX”)}. G-expectation is a sublinear expectation
defined by

E[X]1= E[p(J11 — 1081, .../t — tm—1Em) ],
forall X = ¢(By — By, By, — By, ..., By, — By, ), where &1, ..., &, are identically distributed d-dimensional G-

normally distributed random vectors in a sublinear expectation space (2,H, E) such that & 11 is independent of
1,....&) foreveryi=1,...,m—1.(82r, HO, E) is called a G-expectation space.

(ii) Let us define the conditional G-expectation E, of & € H(} knowing H?, fort € [0, T]. Without loss of generality
we can assume that & has the representation & = ¢(By — By, By, — By, ..., By, — By, ) with t =t;, for some
1 <i <m, and we put

EAQ [‘/)(Btl - Bl()v Btz - le, cee Brm - Btm,l)]
= (Z)(Bl‘l - Bl‘()7 Bl‘2 - Bt| DR Bt; - Bt,‘_l)a

where

G(x1, ..., x)) = E[p(x1, ..., xi, Byy,, — Bys ..., By, — By, )]

Define ||] .6 = [E(|§|1’)]1//’ for & € ’H(% and p > 1. Then for all 7 € [0, T], Et(~) is a continuous mapping on ’H(%

with respect to the norm || - ||1,¢ and therefore can be extended continuously to the completion Lé; (£27) of H(% under
the norm || - ||1,G.-
Let L;p(27) :={9(Bsy, ..., By)In > 1,11,...,1, € [0, T], 0 € CpLip(R¥*™)}, where Cp 1ip(RY*") denotes the

set of bounded Lipschitz functions on R4 [1] proved that the completions of Cj(£27), H(} and L;,(£27) under
Il - | p,c are the same; we denote them by LZ(QT).
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Definition 2.6. (i) We say that {X,} on (27, LIC;(QT), E ) is a process with independent increments if for any 0 <t <
Tandso<---<sp<t<t=<---<t, <T,

(th _Xt()9'--7Xt,, _thfl) J—(Xsl _XS()v---vXS _Xsm,l)-

m

(i1) We say that {X;} on (21, LE(QT), E) with X; € L};(Q,) for every t € [0, T] is a process with independent
increments w.r.t. the filtration if forany 0 <s < T and so < -+ - <sp <s <tp<--- <1, <T,

Xy — Xgp5 -0 Xy, — Xy, ) L (Bs; — By, ..., By, — By, ).

Remark 2.7. (i) Let & € Llc;(.QT). If there exists s € [0, T] such that for any so < --- < s, <5, § L (By, —
By, ..., By, — By, _|), then we have Ey(€) = E(&). In fact, there is no loss of generality, we assume E(£) = 1
and C > & > ¢ for some C, ¢ > 0. Setn:ES(E).Foranyn € N, we have

E(™") = E(n"¢).
Since & L n", we have
E(™)=E@")=---=Em=1.
By this, we have
n<l1, gq.s.
On the other hand, we have
E[(n—1’]=E[nn—2)]+1=E[nE-2)]+1.
Since & —2 1 n, we have
E[1=mn?]=E0 —mn.
By Theorem 2.12 below, there exists P € P such that
Ep[(1=n)*]=E[0 - n?].
Noting that
Ep(l—m <EQ-m=E[1-n’]=Ep[(1=n)?] < Ep(1l—n),
we have
Ep[(1—n?]=Ep(1—n).
By this, we have
n2 =n, P-as.
Since n > ¢, we have n =1, P-a.s. So we have
E[1—mn?]=Ep[(1—m?]=0.

(i) Let {X,} on (27, L]G (8£27), E) be a process with stationary and independent increments and let ¢ = E(XT)/ T.
IfE(X,) —0ast ] 0,then forany 0 <s <t <T, we have E(X, — X5) =c(t —s).
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Definition 2.8. Let {X,} be a d-dimensional process defined on (27, L]G(.QT), l:?) such that:

(i) Xo=0
(i1) {X:} is a process with stationary and independent increments w.r.t. the filtration;
(iii) lim; o E[|X, P17 =0

Then {X,} is called a generalzzed G -Brownian motion.
If in addition E(Xt) = E( X:)=0forallt €[0,T], {X;} is called a (symmetric) G-Brownian motion.

Remark 2.9. (i) Clearly, the coordinate process {B;} is a (symmetric) G-Brownian motion and its quadratic variation
process {{B);} is a process with stationary and independent increments (w.r.t. the filtration).

(i) [4] gave a characterization for the generalized G-Brownian motion: Let {X;} be a generalized G-Brownian
motion. Then

X,+S—X,~ﬁ$+sn fort,s >0, 2.2)

where (§,n) is G-distributed (see, e.g., [6] for the definition of G-distributed random vectors). In fact, this character-
ization presented a decomposition of generalized G-Brownian motion in the sense of distribution. In this article, we
shall give a pathwise decomposition for the generalized G-Brownian motion.

Let Hg (0, T') be the collection of processes of the following form: for a given partition {tg, ..., ty} = 7 of [0, T'],
N >1,
N-1
(@) =Y Ej(@) ;.10
j=0

where & € Lip($2;),i=0,1,2,...,N — 1. For every n € HO.(0, T), let [nll g2 = {E(fy’ Ins 12 ds)P/2}V/2, il yr =

{E(fO [ns]? ds)}'/P and denote by Hg(O T), MG(O T) the completions of Hg(O, T) under the norms || - ||HGp, Il - ||M(p;
respectively.

Definition 2.10. For every n € Hg (0, T') with the form

N-—1
(@)=Y &(@)y;.,,10),
j=0
we define
N-1
I(n) = /O n(s)dBy =Y £i(By,, — B:)).
j=0

By B-D-G inequality (see Proposition 4.3 in [10] for this inequality under G-expectation), the mapping
I: Hg 0,7)— Lé(.QT) is continuous under || - ||H(1;> and thus can be continuously extended to Hg O, 7).

Definition 2.11. (i) A process {M,} with values in L1 (827) is called a G-martingale les (M;) = M for any s <t.
If {M,} and {—M,} are both G- mamngales we call {M,} a symmetric G martmgale
(ii) A random variable € € L} ¢ (827) is called symmetric le(E) + E( &)=

A G-martingale {M;} is symmetric if and only if M7 is symmetric.
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Theorem 2.12 ([1,2]). There exists a tight subset P C M (27) such that
E()=maxEp(§) forall € e HY.
PeP

P is called a set that represents E.

Remark 2.13. (i) Let (2°, F°, P®) be a probability space and {W;} be a d-dimensional Brownian motion under P°.
Let FO = {.7-",O } be the augmented filtration generated by W. [1] proved that

t
Py = {ph|ph =Pox7! X, =f hs AWy, h € L2, ([0, T; Fl/z)}
0

is a set that represents E, where '/ := {y'2|y € '} and I is the set in the representation of G(-) in the for-
mula (2.1).
(i1) For the 1-dimensional case, i.e., 27 = Co([0, T], R),

Lio = L%O([O, T1; Fl/z) = {h|h is adapted w.r.t. Fo ando < hg < E},
where % = E(Blz) and g2 = —E(—Blz).
G(a)=1/2E[aB}]=1/2[G%a" —o?a™]| foraeR.
(iii) Set c(A) = SUppep,, P(A), for A € B(£21). We say A € B(§27) is a polar set if c(A) = 0. If an event happens

except on a polar set, we say the event happens q.s.

3. Characterization of processes with stationary and independent increments

In what follows, we only consider the G-expectation space (£27, L%;(.QT), E ) with 27 = Co([0, T'], R) and g2 =
E(B?) > —E(-B})=0?>0.

Lemma 3.1. For { € M.(0,T) and & > 0, let

c_ L[
& = gsds
I (t—e)*

and

ke—1

1 ke

,0

&= Z g/(k y Cs ds lyke, (k+1)e1 (1),
k=1 —be

wheret € [0, T, kee <T < (ke +1)e. Thenas ¢ - 0

I5* =€y =0 and 16" ~<lg0r, >0

Proof. The proofs of the two cases are similar. Here we only prove the second case. Our proof starts with the obser-
vation that for any ¢, ¢’ € Mg; 0,7)

J¢0 - f/S’O”Mg;(o,T) <|e- 5/”1\45(01)' G.1)

By the definition of the space M, é (0, T), we know that for every £ € M, Cl; (0, T), there exists a sequence of processes
{¢"} with

my—1

g = Z ‘i:;ill]tf,t/’(’+l](t)
k=0
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and ;;-‘t”ﬁl € L[p(Q[l’cl) such that
k

||§—§”||M10(0!T)—>0 as n — 0o.

It is easily seen that for every n
” é.n;e,O

—§”||M,G(O,T)—>O ase — 0.

Thus we get

J¢#0~¢ ||MIG(0,T)

= ”58’0 S ”Mg;(o,T) + ¢~ é‘n;E’O“Mé(O,T) +¢"~¢ ”M’G(O,T)

<2[¢" ¢ mio.r) T g = gmie? “M(l;(o,T)'

(3.2)

(3.3)

The second inequality follows from (3.1). Combining (3.2) and (3.3), first letting ¢ — 0, then letting n — oo, we have

H;“E*O - CHM&(O,T) —0 ase—0.

O

Theorem 3.2. Let A; = fol hgds withh e M lG (0, T') be a process with stationary and independent increments (w.r.t.

the filtration). Then we have h = ¢ for some constant c.

Proof. Let ¢ := E(AT)/T > —E(—AT)/T =:c.Forn € N, set ¢ = T/(2n), and define A7/@?-0 a5 in Lemma 3.1.

Then we have

|n - RT/@m.0 ”MIG(O,T)

[2n=1 W (k+1)T/(2n)
S [ e
| =g JrT/an

(=1 k+1)T/@2n)
/

I
eSS

A%
e

(hy — h{/®0) ds
kT/(2n)

Lk=1

|
1>

Consequently, from the condition of independence of the increments and their stationarity, we have

|- hT/(zn)’OHM(l;(o,T)

n—1

> Z E[(A(2k+1)T/2n — Agryon) — (Askryon — Ak—1)1/20) ]
k=1
n—1

=Y @-oT/@n)

k=1
=( -0 —-DT/(2n).

[n—1 (2k+1)T/(2n) 2kT/(2n)
Z(/ hsds—f hsds>
Ly \J2kT/(2n) (2k—1)T/(2n)

n—1
= EZ[(A(Zk-H)T/Zn — Ageryon) — (Aot yon — Ak—1y1/20)]-
k=1
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So by Lemma 3.1, letting n — oo, we have ¢ = c¢. Furthermore, we note that M; := A, — ¢t is a G-martingale. In fact,
fort > s, we see

Eo(M;)

= Es (Mt - Ms) + Ms

= E(M; — My) + M;

= M;.
The second equality is due to the independence of increments of M w.r.t. the filtration.

So {M,} is a symmetric G-martingale with finite variation, from which we conclude that M; = 0, hence that

At =ct. (Il
Corollary 3.3. Assume o > o > 0. Then we have that {% (B)s} ¢ Mé 0, 7).

Proof. The proof is straightforward from Theorem 3.2. O

Corollary 3.4. There is no symmetric G-martingale {M;} which is a standard Brownian motion under G-expectation

(i.e. (M), =1).

Proof. Let {M,} be a symmetric G-martingale. If {M,} is also a standard Brownian motion, by Theorem 4.8 in [10]
or Corollary 5.2 in [11], there exists {h } € M(z; (0, T) such that

t
M[ Z/ hs st
0

t
/lﬁMBh:L
0

Thus we have % (B)s = hs_2 € Mé (0, T), which contradicts the conclusion of Corollary 3.3. U

and

Proposition 3.5. Let A; = fot hgds with he M IG (0, T) be a process with independent increments. Then A; is sym-
metric for every t € [0, T].

Proof. By arguments similar to those in the proof of Theorem 3.2, we have

Hh — pT/@m0 ”M};(O,T)

n—1
> EZ[(A(2k+1)T/2n — Agryon) — (Aot on — Ak—1)+1/20) ]
k=0

n—1

= Z{E(A(ZkJrl)T/Zn — Aokt jon) + E[_(AZkT/Zn — Agk—nyrron) ] }-
k=0

The right side of the first inequality is only the sum of the odd terms. Summing up the even terms only, we have

Hh — pT/em0 “Mé(O,T)

n—1

> Z{E(A(2k+2)T/2n — AQk+DT/20) + E[_(A(2k+1)T/2n — Ageron)]}-
k=0
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Combining the above inequalities, we have

2 I

0,7)
2n—1
> Z {E[Aw+1y7/20 — AkTj2n]| + E[—(AGs1y7/20 — Akt /20)]}
k=0
2n—1 2n—1
>E Z [Ak+1DT/20 — AkT)20] + E Z [—(AGs1)7/20 — AkT/20) ]
k=0 k=0
= E(Ar) + E(—Ar).
Thus by Lemma 3.1, letting n — oo, we have E(AT) + E(—AT) = 0, which means that A7 is symmetric. O

For n € N, define §,(s) in the following way:

n—1

8u(s) = Z(_l)il]%, (i+nl)T](S) forall s € [0, T].
i=0

In [12] we proved that lim,,— o E"(fOT 8, (s)hgds) =0for h e Mcl; O, 7).

Let 7, = o{Bs|s <t} and F = {F;}/¢(0,7]-

In the following, we shall use some notations introduced in Remark 2.13.

For every P € Py and 1 € [0,T], set A, p :={Q € Pyl|Q,7 = Pi7}. Proposition 3.4 in [9] gave the fol-
lowing result: For # € [0, T], assume & € LE(QT) and n € Lé(.Qt). Then n = l:?,(&‘) if and only if for every
P ePy

n =esssupPEQ(§|.7-",), P-as.,
QEAI,P

where ess sup? denotes the essential supremum under P.

Theorem 3.6. Let A; = fot hsd(B)s be a process with stationary, independent increments (w.r.t. the filtration) and
he Mé;’+(0, T).IfAr € Lg(.QT)for some B > 1, we have A; = c¢(B); for some constant ¢ > 0.

Proof. For the readability, we divide the proof into several steps:
Step 1. Set K; := f(; hgds. We claim that K7 is symmetric.

Step 1.1. Let & = E(Ar)/T and u = —E(—Ar)/T. First, we shall prove that % = £,
Actually, forany 0 <s <t < T, we have

R t R t 1 1 " t ﬁ
ES</ hrdr>=ES(/ o dA,)z_—2E5</ dAr>=_—2(t—s) q.s.,
K s o s o

where the inequality holds due to 6 := d<£ k<52, g.s. Noting that ur — A; is nonincreasing by Lemma 4.3 in

2
70> Py-as.,

Section 4 since it is a G-martingale with finite variation, we have, for every n € L

t
E5</ hrdr>

t
= esssupP"EQ</ hydr
QG-At,P,] s

)
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t
= esssup " Eg </ 67 1dA,
s

)
QEA[.PU

t
>u esssupP”EQ</ 6! dr‘.ﬂ)
_QE-At,P,? s

n
= ;(l —5).

So Es(f; hy dr) = max{Ly, 5}t —s) =%t — ), qs.

On the other hand,
w
—({t—5), .S.
2%, g

" t n t 1 R t
Ex<—f hrdr>=Es(/ —Qr_ldA,)z—zEs<—/ dA,):-
s s g N =

and for every n € L%O, Py-as.,

t
E, <— / h, dr)
S

t
=esssupP”EQ<—/ hrdr‘}])
Qe-/‘lt,P,7 §

t
= esssupP”EQ<—/ 6,1 dA, .7-})
QG-Ar.Py, s
t
zﬁesssupP”EQ<—/ Gr_ldr ]-})
QE-At,P,, s
w
=——({—¥)
72

since A; — [t is nonincreasing. So
T M
L :}(t —s5)=:—=A(t—s), Q5.

Noting that

R T
E</ 821 (8)hg ds>
0
T
hy ds>i|

[ @u=DT/Cn) A
= E[/ 82n($)hsds + Eon—1yT/(2n) <—f
0 2n—1)T/(2n)
2n—-2)T/(2n) A @n—1)T/2n)
|:/ 82, (8)hs ds + E(2n—2)T/(2n) (/ hy ds>:|
0 2n-2)T /(2n)

T ~
>(-M)—+E
2n
x - . 2n-=2)T/(2n)
> 2n_T+E|: f San (), ds},
0
we have

~( (T x— A
E / Son(s)hgds | > ——T.
0 2

261
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So

(T x—A
0= lim E</ 82 (5)hs ds> >t 27
n—o00 0 2

Q

2

Step 1.2. For every n € L, Ep,(Kr) = AT, which implies that K7 is symmetric.

FO°
—2 2
Step 1.2.1. We now introduce some notations: For 0 <s <t <T and n € LZFO, setn=o0,n=o0, n*=4/2 era— on
_ —1 _
Is.tland7=n=n*=nonls,1]°. Forn € N,set ! =3 7" (0 Nrys.10111(") + 0 Uiy 1.1214,1(r)) o0 Is, ] and " =

on Js, t], where t; = s + ﬁ(r —s5),j=0,...,2n.
Step 1.2.2. Ep,, (f{ (hy — 1) dr|F) — 0, Py-a.s., as n — oo.

Actually, we have, Py-a.s.,
t
}}) = EzEpﬁ(f h, dr
S

t t
it — ) = E (/ hrd<B>r> > E;L</ hy d(B),
t
Ep”</. hrdr

By similar arguments we have that

).

]-"S) <At —s), Pyas. 34

So

t
Epn</ hy dr’fs) > At —s), Pyas. (3.5)

Let’s compute the following conditional expectations:

t
Eop ([t =230, 0|7

n—1 i hi
i _7:[ ) 2i+1 ‘7:’1' 2i+2
:E}},—;n [Z{EPWZ/Q (h,—A)dr—l—EPn:“/ (,\—h,)dr”

i=0 i BDit1
n—1
=: Ef:n |:Z(Ai + Bi)],
i=0
n—1 J : .
where 82, (r) = D 7= (N 65110 = Vi 110i401 ()5 tj =8 + 5 (t —5), j =0,...,2n;

t n—1
Ep,, ( / (hy =) dr\fs) = Ey;, [Z(A,- - Bz-)}.
§ " Lizo

By (3.4) and (3.5) (noting that n and s, ¢ are all arbitrary), we conclude that A;, B; > 0, Py, -a.s. So

([ e -nw]7)

Noting that

t
= EPnn </ (hy — A)82,,(r) dr‘}-s)» Pn'a-s~

t t
Ep, (/ (hy — W)82 (r)dr‘]—'s) <E, [/ (hy — )\)52,,(r)dr], P,-a.s.
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and
) '
E; |:/ (hy — 2)é2n (1) dl’:| —0 gs.,asn— 00,
N

wehaveEpn(ft(h — A)dr|Fy) — 0, Py-a.s., as n — oo.

Step 1.2.3. Forany & € L] ¢(821), Ep, &|Fs) — Ep*(§|,7-"5) Py-as.,as n — oo.

In fact, for & = ¢(By, — By, ..., By, — B;,, ) € L,p(.Q,) the conclusion is obvious. For general £ € Llc(.Q[), there
exists a sequence {§™'} C L;,(£2;) such that E[|§m Ell= E[E, (|€™ —&])] — 0. So we can assume E"S(|§m —-&D—>0

g.s.
Then, Py-a.s., we have

|Ep, (E1F5) — Ep (61F)]
<|Epu E1Fs) — Epp (8" 1F)| + |Epp (8"1F5) — Eps (8"1F)|
+|Ep,. (6"|Fs) — Ep. (E1F)|
<2E(|€" —&|) + |Ep, (87| F) — Ep, (™1 7).

First letting n — oo, then letting m — oo, we have Epn,, (E|Fs) — Epn* (§1Fs), Py-a.s. So combining Step 1.2.2 and
Step 1.2.3, we have

t
Epn*U hrdr‘fs>=k(t—s), P,as. (3.6)
s

Step1.2.4.ForO<s<t<T,nelL?

t
EP”(7 </ hrdr
N

In fact, Step 1.2.2-Step 1.2.3 proved the following fact: If (3.4), (3.5) hold for some o, o’ € [g, 7], then (3.6) holds

for 2+" . So by repeating the Step 1.2.2-Step 1.2.3, we get the desired result.
7o» Ep (K1) =AT.
Letn, = 2.70 Ny Vi) (r) € LF0 with n;, = Z;L’ lai. lAi an .7-'0 measurable simple function, where {t, ..., t;,}

70,0 € [o,0],set n° =0 on]s,t] and n° =n on |s, t]°. We have

s> =it —s), Pyas.

Step 1 .2.5. For any simple process 1 € L2

is a given partition of [0, T] Set X, = [y n-dW,. Let FX = {]—' X} be the filtration generated by X.

) i AW, for & > 0 small enough. Let

)]

Fix 0 <i <m. Set n"* = = N5 110,5461(5) + a’; 1|,l+€ 71(s) and XJE =
FX"" = {FX”*} be the filtration generated by X/ 5. Then

i+l Lit1 it1
Epn<f h,dr>=EPo(/ hronr)zEPo[EPo(/ hy o X dr
ti+e ti+e ti+e

. i J.e . i,
Since A’j € ftﬂs = ftﬁg and X; = Z;‘:O X,] 81A,-i on [0, ti+1], we have

litl
E po < / hyoX dr‘f};g)
ti+e¢ '

n; it
=ZEP0(1A5_/ h, ongdr]'—H_S)
j=1
ni lig1 ) i
=21A3EP0(/ h,oxfﬁdr‘f,f;;).
j=1 f
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Noting that

tiy] ) e li+1 .
EPO</ hroxj’gdr‘ﬁﬁ) ZEPje</ hy dr‘ftﬁ&) o X =M(tiy1 —ti —e) Plas.,
tite ' G ti+e
by Step 1.2.4, we have Ep, (j;f_"“ hydr) =A(tiy1 —1;) and Ep, (K1) = AT.
Step 2. h = A.
Let M, = fot hyd(B)s — fot 2G(hg)ds and N; = fot hgd(B)s — Tat. As is mentioned in the Introduction, [4] proved

that {M;} is a G-martingale. Since { fé hgd(B)s} is a process with stationary and independent increments w.r.t. the fil-

tration, we know that {V;} is also a G-martingale. Let L; = E, (&T —3*K7). Then {L,}isa symmetric G-martingale
since K7 is symmetric. By the symmetry of {L,} we have

M, = E,(Mr)=E,(LT + Nr) =L, + N;.

By the uniqueness of the G-martingale decomposition, we get L =0 and h = X. (]

Remark 3.7. Clearly, h € M50, T) for some B > 1 implies A7 = [, hyd(B) € Lb.(27).

4. Characterization of the G-Brownian motion

A version of the martingale characterization for the G-Brownian motion was given in [13], where only symmetric
G-martingales with Markovian property were considered. Here we shall present a martingale characterization in a
quite different form, which is a natural but nontrivial generalization of the classical case in a probability space.

Theorem 4.1 (Martingale characterization of the G-Brownian motion).

Let {M,} be a symmetric G-martingale with Mt € L‘é (£27) for some a > 2 and {{M )} a process with stationary
and independent increments (w.r.t. the filtration). Then {M;} is a G-Brownian motion:

Let {M,} be a G-Brownian motion on (2, L]G(.QT), E ). Then there exists a positive constant ¢ such that (M); =
c(B);.

Proof. By Corollary 5.2 in [11], there exists & € Mé(O, T) such that M; = f(; hydB;. So (M); = fot h%d(B),. By
the assumption, we know that (M)t € Lg(.QT) for some 8 > 1. By Theorem 3.6, there exists some constant ¢ > 0

such that % = ¢. Thus by Theorem 2.12 and Remark 2.13, {M,} is a G-Brownian motion with M, distributed as
N(O, [ca’t, cT?t]).

On the other hand, if {M,} is a G-Brownian motion on (£27, Lé;(.QT)), then {M,} is a symmetric G-martingale.
By the above arguments, we have (M), = c(B), for some positive constant c. O

Let

n—1
H= ia‘a(r) = Zatkl],k,,kﬂ](t),n eN,O=ty<ti<---<t, =T
k=0

and H = {a € H|A[a = 0] =0}, where X is the Lebesgue measure.

Lemma 4.2. Let {L,} be a process with absolutely continuous paths. Assume that there exist real numbers ¢ < ¢ such
that c(t —s) < L; — Ly <¢(t —s) forany s <t.Let C(a) =ca™ —ca™ foranya € R. If

T T
E(/ a(s) dLS> :/ C(a(s)) ds forallae™H,
0 0

we have that {L;} is a process with stationary and independent increments such that ct = —E (=Ly) < E (Ly) =ct,
i.e., its distribution is determined by c, C.
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Proof. It suffices to prove the lemma for the case ¢ < ¢. For any a € H, let
05 = Cliats)z01 + cliacs)<o1-

By assumption,

/T T
E(/ a(s) dLS> =/ a(s)6y ds.
0 0

On the other hand, by Theorem 2.12, there exists some weakly compact subset P C M (£27) such that

E(€)=maxEp(§) forall & € LL(27),
PeP

which means that there exists P, € P such that

T T
Ep, (/ a(s) dLs> = / a(s)ey ds.
0 0

By the assumption for {L,}, we have P,{L; = fé 0¢ ds, for all t € [0, T']} = 1. From this we have

A I3 th
E[o(Ly, — Lyy, ... Ly, — Ly, )] = (p(/ 0%ds, ... / ¢ ds)
1 In

0 -1

for any ¢ € Cp(R") and n € N. Consequently,

E[(p(Ltl — Lt()’ ey Lt,l — Ltn—l)]

1 In
zsup(p(f Gfds,...,/ Gfds)
aeH 1o In—1

= sup  @(c1(ti—10). .. osCaltn — ta1)).
c1,...,cn€le,c]

The converse inequality is obvious. Thus {L,} is a process with stationary and independent increments such that
ct=—E(-L) < E(L)=q. H

Lemma 4.3. Let {L;} be a G-martingale with finite variation and Lt € L’f; (827) for some B > 1. Then {L;} is
nonincreasing. Particularly, L; < Lo = E(LT).

Proof. By Theorem 4.5 in [10], we know {L,} has the following decomposition
L;= E(LT) + M; + K;,

where {M,} is a symmetric G-martingale and {K;} is a nonpositive, nonincreasing G-martingale. Since both {L,} and
{K,} are processes with finite variation, we get M; = 0. Therefore, we have L, = E(Lt) + K; < E(LT) = Lo. [l

Theorem 4.4. Let {X,} be a generalized G-Brownian motion with zero mean. Then we have the following decompo-
sition:

Xy =M, + L,

where {M;} is a symmetric G-Brownian motion, and {L,} is a nonpositive, nonincreasing G-martingale with station-
ary and independent increments.
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Proof. Clearly {X,} is a G-martingale. By Theorem 4.5 in [10], we have the following decomposition
Xy =M, + Ly,

where {M,} is a symmetric G-martingale, and {L,} is a nonpositive, nonincreasing G-martingale. Noting that X,
L%(.{ZT) from the definition of generalized G-Brownian motion, we know that M;, L; € L’é (£27) forany 1 < g <3
by Theorem 4.5 in [10].

In the sequel, we first prove that {L;} is a process with stationary and independent increments. Noting that
E (—L;) = E (—X;) = ct for some positive constant ¢ since {X;} is a process with stationary and independent
increments, we claim that —L; — ¢t is a G-martingale. To prove this, it suffices to show that for any ¢t > s,
ES[—(L[ — Lg)]=c(t — ). In fact, since {M,} is a symmetric G-martingale, we have

E\[—(Li — L] = E[-(X: = My — X, + My)] = E;[-(X: - X))].
Noting that {X;} is a process with independent increments (w.r.t. the filtration),
E[~(X: = Xp)] = E[~(X: = X0)] = c(t — ).

Combining this with Lemma 4.3, we have —(L; — L) — c(t —s) <0 for any s < ¢. On the other hand, for any
a € 'H, noting that {M;} is a symmetric G-martingale, we have

T T n—1
EU a(s)dLs] - E[/ a(s)dxs} - E{Zamxm. - X,k)}.
0 0 k=0

Since {X,} is a process with stationary, independent increments, we have

R T
E|;/ a(s)dL{I
0

n—1

= Z E[atk (th+1 - th)]

k=0

n—1
= Z cay (te+1 — 1)
k=0

T T
:f Ca_(S)dSZ/ C(a(S))dS,
0 0

where C(a(s)) is defined as in Lemma 4.2 with ¢ =0, c = —c. By Lemma 4.2, {L,} is a process with stationary and
independent increments.

Now we are in a position to show that {M,} is a (symmetric) G-Brownian motion. To this end, by Theorem 4.1, it
suffices to prove that {(M);} is a process with stationary and independent increments (w.r.t. the filtration). Forn € N,
let

|
X] = Z Xer 2 Zier 2,11 /20 (2)
k=0
and
1

/(X)= Z (X (et 1ye/2n — Xk )2
k=0
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Observing that £2/'(X) = X? — 2 [; X" dX,, we have
|28(X) — 2" (X))
t
< 2( / (X7 — XT*")dMS‘ +
0

=2(I1]+ )

t
[z - xenyac,
0

)

for any n,m € N. It’s easy to check that
A t A
E(|II|)§C/ E(|X) —XI*"|)ds >0 asm,n— oo.
0

Noting that

2"—12"—1

I = Z Z (Xil/2"+jt/2"+"l - Xil/z")(Mil/2"+(j+l)t/2”+m - Mil/2n+jl‘/2"+m)
i=0 j=0

D
=224
i=0 j=0
we get
2n—12"M—1

2 2 FlU

Let’s estimate the expectation E [(Il.j )21
A j 2
E[(1])7]
= E[(Xi1jon 4 jejorsm — Xity2n)* My jon g (e jmsm — Mig o o yonim )]
<2E[(Xitjanjejontm — Xit/2”)2{(Xit/2"+(j+l)t/2”+’" - Xit/2"+jt/2"+’")2
2
+ (Lityr g Gjayjoem = Ligyon g jujomin)“}]-

Noting that —c(t —s) < L; — Ly <0, we have

2
A N2 A t
E[(Ilj) ] E E[(Xit/2”+jt/2"+’” - Xi[/zn)z{(Xit/2)1+(j+1)[/2n+m - Xil/2”+jt/2"+m)2 + CZW }:I

By (2.2), E [(X;—X )2] < Cq|t —s| for some constant C. From the condition of 1ndependent increments of X, we
have E[(I])z] < C22(n+m) for some constant C, hence that £(12) — 0, and finally that £ (|22 (X) — 2" (X)[) — 0
as m,n — 00. Then

(X) = lim o

LL(27),n—>00

is a process with stationary and independent increments (w.r.t. the filtration). Noting that (M); = (X);, (M); is also a
process with stationary and independent increments (w.r.t. the filtration). O
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5. G-martingales with finite variation

Proposition 5.1. Let n € Mé (0, T) with |n| = c for some constant c. Then

t t
K; :=f ns d(B)s —/ 2G(ns)ds (5.1
0 0

is a process with stationary and independent increments. Moreover, for fixed c, all processes in the above form have
the same distribution.

Proof. Since —c(E2 — gz)(t —5) < K; — K; <0forany s < ¢, by Lemma 4.2, it suffices to prove that for any a € H

T T
E([ ag de> =f C(ayg)ds,
0 0

where C (ay) is defined as in Lemma 4.2 withc =0, ¢ = —c(E2 — gz). In fact, noting that

T T T T
/adess/ 2G<ams>ds—f 2asG(ns)ds=f Clay)ds,
0 0 0 0

we have

/T T
E(/ ag dKS> < / C(ay) ds.
0 0

On the other hand, we have

A T A T T T
E(/ ag dKS> > —E{—|:/ 2G (agns) ds —/ 2asG(nS)ds]} :/ C(as)ds.
0 0 0 0

So {K;} is a process with stationary and independent increments and its distribution is determined by c. ]
Just like the conjecture by Shige Peng for the representation of G-martingales with finite variation, we guess that

any G-martingale with stationary, independent increments and finite variation should have the form of (5.1). At the
end we present a characterization for G-martingales with finite variation.

Proposition 5.2. Let {M;} be a G-martingale with Mt € Lg (827) for some B > 1. Then {M;} is a G-martingale with
finite variation if and only if { f (M;)} is a G-martingale for any nondecreasing f € Cp Lip(R).

Proof. Necessity. Assume {M,} is a G-martingale with finite variation. By Lemma 4.3, we know that {M,} is nonin-
creasing. By Theorem 5.4 in [11], there exists a sequence {n}'} C Hg (0, T') such that

E[ sup |M; — L,(n”)|’3] -0
t€l0,T]

as n goes to infinity, where L,(n") = fé ny d(B)s — fot 2G(ny)ds. It suffices to prove that for any 5 € Hg (0, T) and
nondecreasing f € Cl%(R), f(L¢(n)) is a G-martingale. In fact,

F(Li) = f(Lo) + /0 F(Ls(m) ALy (n)

t t
=f(Lo)+/0 f’(Ls(n))nsd<B>s—/0 2f'(Ls(m)G (1) ds.
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Since f/(Ls(n)) >0and f/(Ls(n))ns € Mg; (0, T), we conclude that

F(Le@) = f(Lo) + Li(f'(L(n))n)

is a G-martingale.

Sufficiency. Assume {f(M,)} is a G-martingale for any nondecreasing f € Cp 1ip(R). Let X; := arctan M,. Then
{X;} is abounded G-martingale and { f (X;)} is a G-martingale for any nondecreasing f € Cp Lip(R). By Theorem 4.5
in [10], we know {X,} has the following decomposition

X, = E(X7) + N, + K,

where {N,} is a symmetric G-martingale and { K} is a nonpositive, nonincreasing G-martingale. Then by Itd’s formula

t 2 i
¥ X1 = X0 +a/ e*Xs dX, + %/ X5 d(N).
0 0

For any o > 0, by assumption, e**! is a G-martingale. So L, := fé e*Xs dKy + %fé e*Xs d(N) is a G-martingale
with finite variation. By Lemma 4.3, L, is nonincreasing, by which we conclude that K; + 5(N), is nonincreasing.
So

E((N)7) < E(—K7) foralla > 0.

1R

By this, we conclude that E((N)T) =0and N; =0. Then X; = E(XT) + K; is nonincreasing, and consequently, M,
is nonincreasing. (]

Particularly, Proposition 5.2 provides a method to convert G-martingales with finite variation into bounded G-
martingales with finite variation.
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