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Abstract. A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point,
collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to
prove that a critical Galton–Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z

d with d ≥ 19
and the uniform spanning tree in Z

2 all have the infinite collision property. For power-law combs and spherically symmetric trees,
we determine precisely the phase boundary for the infinite collision property.

Résumé. Un graphe récurrent G a la propriété de collisions infinies si deux marches aléatoires indépendantes dans G, issues du
même état, se rencontrent infiniment souvent presque sûrement. Nous donnons un critère simple à l’aide de fonctions de Green qui
implique cette propriété, et nous l’utilisons pour prouver que la propriété de collisions infinies a lieu dans les cas suivants: un arbre
de Galton–Watson critique avec variance finie conditionné à survivre, l’amas de percolation critique conditionné à être infini dans
Z

d avec d ≥ 19 et l’arbre couvrant uniforme dans Z
2. Pour le graphe en forme de peigne aléatoire avec queues polynomiales et les

arbres à symétrie sphérique, nous déterminons précisément la région critique dans l’espace des phases pour les collisions infinies.

MSC: Primary 60J10; 60J35; secondary 60J80; 05C81
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1. Introduction

Let G be an infinite connected recurrent graph, and let X and Y be independent (discrete time) simple random
walks on G. For classical examples such as Z or Z

2 it is easy to see that X and Y collide infinitely often – that
is Z = |{t : Xt = Yt }| = ∞, a.s. However, Krishnapur and Peres [16] gave an example (the graph Comb(Z) which
is described below) of a recurrent graph for which the number of collisions Z is a.s. finite. This had an element of
surprise, as this graph is recurrent, whence the expected number of collisions is infinite, see the remarks following
Theorem 1.1 of [16]. In this paper we study the finite collision property in more detail. We start by establishing a
simple zero one law and a sufficient condition (in terms of Green functions) for infinite collisions. Using this we show
that a critical Galton–Watson tree (conditioned to survive forever), the incipient infinite cluster in high dimensions,
and the uniform spanning tree in two dimensions all have the infinite collision property.

We then examine subgraphs of Comb(Z) and investigate when they have the infinite collision property, and then
conclude the paper by looking at a class of spherically symmetric trees.

Remark 1.1. We note that all recurrent transitive graphs have the infinite collision property, since the number of
collisions in this case follows a geometric distribution.
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Remark 1.2. A transient graph of uniformly bounded vertex degree always has the finite collision property. There are
examples of transient graphs with unbounded vertex degree with infinitely many collisions. For more on the transient
case we refer the reader to [16].

We begin by defining what we mean by the finite/infinite collision property. Throughout this paper we will only
consider connected graphs.

Definition 1.3. Let G be a graph, and X, Y be independent (discrete time) simple random walks on G. We write Pa,b

for the law of the process ((Xt , Yt ), t ∈ Z+) when X0 = a,Y0 = b. Let

Z =
∞∑
t=0

1(Xt = Yt )

be the total number of collisions between X and Y . If

Pa,a(Z < ∞) = 1 for all a ∈ G (1.1)

then G has the finite collision property. If

Pa,a(Z = ∞) = 1 for all a ∈ G (1.2)

then G has the infinite collision property.

We will see below that these are the only two possibilities.
We recall the definition of Comb(Z):

Definition 1.4. Comb(Z) is the graph with vertex set Z × Z and edge set{[
(x,n), (x,m)

]
: |m − n| = 1

} ∪ {[
(x,0), (y,0)

]
: |x − y| = 1

}
.

Definition 1.5. Following [9], we define the wedge comb with profile f , denoted Comb(Z, f ) to be the subgraph of
Comb(Z) with vertex set

V = {
(x, y) ∈ Z

2: 0 ≤ y ≤ f (x)
}

and edge set the set of edges of Comb(Z) with vertices in V . We write Comb(Z, α) for the wedge comb with profile
f (k) = kα .

In [9] it is proved that Comb(Z, α) has the infinite collision property when α < 1/5.
We have the following phase transition:

Theorem 1.6.

(a) If α ≤ 1, then Comb(Z, α) has the infinite collision property.
(b) If α > 1, then Comb(Z, α) has the finite collision property.

We remark that the proofs of both (a) and (b) extend to the profiles of the form f (x) = C|x|α . Part (b) for 1 < α < 2
was also obtained independently by J. Beltran, D. Y. Chen, T. Mountford and D. Valesin (private communication).

Remark 1.7. This theorem shows that if the “teeth” in the comb are large then the finite collision property will hold,
while it fails if they are small. However, there is no simple monotonicity property for the finite collision property:
Comb(Z) has the finite collision property but is a subgraph of Z

2, which does not.
Further, we do not have any kind of “bracketing” property for collisions: we have Comb(Z,1) ⊂ Comb(Z,2) ⊂

Z
2 ⊂ Comb(Z2); and of these Comb(Z,1) and Z

2 have the infinite collision property while the other two graphs have
the finite collision property. (See [16] for the definition of Comb(Z2), and the proof that it has the finite collision
property.)
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Fig. 1. A spherically symmetric tree.

In Section 3 we will obtain a criterion, in terms of Green functions, or equivalently electrical resistance, for a graph
to have the infinite collision property. Using this, we can show that several graphs arising in critical phenomena have
the infinite collision property.

Theorem 1.8. The following random graphs all have the infinite collision property:

(a) A critical Galton–Watson tree with finite variance conditioned to survive forever.
(b) The incipient infinite cluster for critical percolation in dimension d ≥ 19.
(c) The Uniform Spanning Tree (UST) in Z

2.

For background on the critical Galton–Watson tree conditioned to survive, see [13]. For background on the incipient
infinite cluster and the UST, see [3] and [15], respectively. See Corollary 3.5 for a class of critical Galton–Watson trees
with infinite variance.

Another graph for which we can prove the infinite collision property is the supercritical percolation cluster in Z
2,

see Theorem 3.6. This was proved independently by Chen and Chen [8].
Finally we examine some spherically symmetric trees.

Definition 1.9. A tree is called spherically symmetric if every vertex at distance n from the root has the same number
of children (see Fig. 1). Let (bj )j be a sequence of positive integers. We define the spherically symmetric tree associated
to the sequence (bj )j as follows: we attach a segment of length b0 to the root o. At the end of that segment we have a
branch point with two branches, each of them having length b1, and so on.

We will look at a class of spherically symmetric trees where the lengths are of the form bj = 22βj
, where β > 0,

and will show that these trees exhibit two phase transitions: the critical parameter for recurrence of the product chain
on T × T is β = 2, while the critical parameter for the infinite collision property is β = 1/2. We establish this in the
following theorem.

Theorem 1.10.

(a) When β ≥ 2, the product chain on T × T is recurrent, and hence the tree has the infinite collision property.
(b) When β < 2, the product chain on T × T is transient.
(c) When β ≥ 1

2 , the tree has the infinite collision property.
(d) When β < 1

2 , the tree has the finite collision property.

We use c, c′c′′ to denote positive constants which may change on each appearance.
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2. 0–1 law

In this section we are going to prove that the event of having infinitely many collisions in a recurrent graph is a trivial
event, and hence has probability either 0 or 1. Thus in order to show the infinite collision property it suffices to show
that infinitely many collisions occur with positive probability.

Proposition 2.1. Let G be a (connected) recurrent graph, X and Y be independent random walks on G, and Z be the
number of collisions. Then for each (a, b) ∈ G × G,

Pa,b(Z = ∞) ∈ {0,1}.

Further, if there exist a0, b0 such that Pa0,b0(Z = ∞) > 0 then Pa,b(Z = ∞) = 1 for all a, b such that Pa,b(Xm =
a0, Ym = b0) > 0 for some m ≥ 0. In particular, either Pa,a(Z = ∞) = 0 for all a or else Pa,a(Z = ∞) = 1 for all a.

Proof. Let T X
n = σ(Xn,Xn+1, . . .), and define T Y

n analogously. Then since X is a recurrent Markov chain T X =⋂
n T X

n is trivial by Orey’s theorem (see [7]). By [18], Lemma 2, we have, since X and Y are independent, that

T =
∞⋂

n=1

σ
(

T X
n , T Y

n

) = σ
(

T X, T Y
)
,

which is trivial since T X and T Y are both trivial. Since the event {Yn = Xn i.o.} is T measurable, it therefore has
probability 0 or 1.

Now suppose Pa0,b0(Z = ∞) = 1 and let a, b,m be as above, i.e. Pa,b(Xm = a0, Ym = b0) > 0. Then

Pa,b(Z = ∞) ≥ Pa,b(Z = ∞|Xm = a0, Ym = b0)Pa,b(Xm = a0, Ym = b0) > 0.

By the 0–1 law therefore Pa,b(Z = ∞) = 1. �

Remark 2.2. The proof of Proposition 2.1 applies to any recurrent chain. Note that if Z′ denotes the total number
of edges that are crossed at the same time by two independent random walks on a recurrent graph (started from the
same state), then the event {Z′ = ∞} has probability zero or one (since the sequence of edges crossed by a recurrent
random walk forms a recurrent chain).

Corollary 2.3. Let An be finite subsets of G, let

Z(An) :=
∑

t

1(Xt = Yt ∈ An)

be the number of collisions in An, and Fn = {Z(An) > 0}.
(a) If G = ⋃

n An and P(Fn occurs i.o.) = 0 then G has the finite collision property.
(b) If An are disjoint and P(Fn) > c > 0 for all n then G has the infinite collision property.

Proof. (a) If G × G is recurrent then there are a.s. infinitely many collisions at each point x ∈ G, and so
P(Fn occurs i.o.) = 1. We can therefore assume that G × G is transient. Hence there are only finitely many colli-
sions in each set An, and as the total number of sets An with a collision is finite, the total number of collisions is
finite.

(b) We have P(Fn occurs i.o.) > c. However, Z ≥ ∑
n 1Fn , and so P(Z = ∞) > c. So by the 0–1 law, Proposi-

tion 2.1, we get P(Z = ∞) = 1. �
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3. Green function criterion for ∞ collisions

3.1. Background material

Firstly we are going to recall a few facts about heat kernels and effective resistances. We will follow rather closely the
exposition in [1] and [2]. Let d(x) denote the degree of a vertex x in a graph G. For two functions f , g ∈ R

V (G) we
define the quadratic form

E (f, g) = 1

2

∑
x,y∈V (G)

x∼y

(
f (x) − f (y)

)(
g(x) − g(y)

)
.

We define the transition density

qt (x, y) = Px(Yt = y)

d(y)
, t ∈ Z+.

Here we have divided by the degree of the vertex to make the transition density a symmetric function.
Let A and B be two subsets of V (G). The effective resistance between A and B is defined as follows:

Reff(A,B)−1 = inf
{

E (f,f ): E (f,f ) < ∞, f |A = 1, f |B = 0
}
. (3.1)

The term effective resistance comes from electrical network theory, since we can think of our graph as an electrical
network having unit resistances wherever there is an edge between two vertices. If we glue all points of A to a point a

and all points of B to b and apply a voltage V which then induces a current I from a to b, then the ratio V
I

is constant
and is equal to the effective resistance.

From the definition (3.1) of effective resistance we see that there is a unique function f achieving the infimum
appearing on the right-hand side of (3.1). This function must be harmonic everywhere outside the sets A and B .

For any graph G the effective resistance satisfies Reff(x, y) ≤ d(x, y) and if G is a tree, then

Reff(x, y) = d(x, y),

where d(x, y) stands for the graph-theoretic distance between x and y.
Let B(x0, r) = {y: d(x0, y) ≤ r} and YB

t (B := B(x0, r)) be the discrete time simple random walk on G killed
when it exits B(x0, r) and let qB

t be its transition density. The Green kernel is defined by gB(x, y) = ∑∞
t=0 qB

t (x, y).
It is easy to see that gB(x, ·) is a harmonic function on B \ {x} and that it satisfies the reproducing property, i.e.

that E (gB(x, ·), f ) = f (x), for any function f satisfying f |Bc = 0.
The function defined by h(y) := gB(x,y)

gB(x,x)
is harmonic on B \ {x} and takes value 1 at x and 0 on Bc, hence

Reff(x,Bc)−1 = E (h,h). Using now the reproducing property mentioned above we get that

Reff
(
x,Bc

) = gB(x, x),

a very useful equality that will be widely used in this paper.
If B is a finite subset of G then by spectral theory we can write

qB
t (x, y) =

∑
i

λt
iϕi(x)ϕi(y), (3.2)

where ϕi are the eigenfunctions and λi the eigenvalues of the associated transition operator. Since |λi | ≤ 1 for all i it
follows that

qB
2t+1(x, x) ≤ qB

2t (x, x) for all x ∈ B, t ≥ 0. (3.3)
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Letting B ↑ G this inequality extends to qt . From (3.3) we obtain

2gB(x, x) ≥ 2
∞∑
t=0

qB
2t (x, x) ≥

∞∑
t=0

(
qB

2t (x, x) + qB
2t+1(x, x)

) = gB(x, x). (3.4)

3.2. The criterion

Theorem 3.1. Let G be a recurrent graph with a distinguished vertex o. Let (Br)r be an increasing sequence of sets
such that Br �= G,∀r , and

⋃
r Br = G. Suppose that there exists C < ∞ such that for all r

gBr (x, x) ≤ CgBr (o, o) for all x ∈ Br.

Then G has the infinite collision property. Moreover, the number of edges crossed at the same time by two independent
random walks is infinite a.s.

Proof. Let (Br)r be the sequence of sets satisfying the assumptions of the theorem. Set B := Br and let XB and
YB be the two random walks killed after exiting the set B , and let qB

t be their transition densities. Let Z̃B count the
number of edges that are crossed at the same time by these two random walks, i.e.

Z̃B =
∞∑
t=0

1
(
XB

t = YB
t ,Xt+1 = Yt+1

)
.

To prove the theorem we are going to apply the second moment method to the random variable Z̃B , so we begin
by computing its first and second moments. For the first moment we have

Eo,o[Z̃B ] =
∑

t

∑
x∈B

∑
y∼x

Po,o

(
XB

t = YB
t = x,Xt+1 = Yt+1 = y

)
=

∑
t

∑
x∈B

∑
y∼x

qB
t (o, x)2d(x)2q1(x, y)2d(y)2

=
∑

t

∑
x∈B

qB
t (o, x)2d(x) =

∞∑
t=0

qB
2t (o, o).

We therefore have

gB(o, o) ≥ Eo,o[Z̃B ] ≥ 1

2
gB(o, o). (3.5)

Observe that since Br �= G and G was assumed to be a recurrent graph, we have that gBr (o, o) < ∞.
And for the second moment we have

Eo,o

[
Z̃2

B

] = Eo,o[Z̃B ] + 2
∑

t

∑
s≥t+1

∑
x∈B

∑
y∼x

∑
z∈B

∑
w∼z

qB
t (o, x)2d(x)2q1(x, y)2d(y)2

× qB
s−t−1(y, z)2d(z)2q1(z,w)2d(w)2

= Eo,o[Z̃B ] + 2
∑

t

∑
s≥t+1

∑
x∈B

∑
y∼x

∑
z∈B

qB
t (o, x)2qB

s−t−1(y, z)2d(z)

≤ Eo,o[Z̃B ] + 2
∑

t

∑
x∈B

∑
y∼x

qB
t (o, x)2gB(y, y)

≤ gB(o, o) + 2gB(o, o)max
y∈B

gB(y, y). (3.6)
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Applying the second moment method to the variable Z̃Br , and using (3.5), (3.6) and the hypotheses of the theorem
we obtain

Po,o

(
Z̃Br >

1

2
Eo,o[Z̃Br ]

)
≥ 1

4

(Eo,o[Z̃Br ])2

Eo,o[Z̃2
Br

] ≥ gB(o, o)

16(1 + 2CgB(o, o))
.

Since gBr (o, o) ≥ d(0)−1, it follows that Po,o(Z̃Br > 1
4gBr (o, o)) ≥ c > 0, for all r > 0. As r → ∞ we have Z̃Br ↗ Z̃,

where Z̃ is the total number of common edges traversed by X and Y . Letting r → ∞, we get Po,o(Z̃ = ∞) > c. Since
Z ≥ Z̃, we have Po,o(Z = ∞) > c, and so by the 0–1 law, Proposition 2.1, we get Po,o(Z = ∞) = 1. For the last
statement use Remark 2.2. �

The proof of (3.5) also gives

Lemma 3.2. Suppose that d(x) ≤ D for all x ∈ G. Let ZB be the total number of collisions of the killed walks XB

and YB . Then

1

2
gB(o, o) ≤ Eo,oZB ≤ DgB(o, o).

3.3. Applications of the Green kernel criterion

We now give a number of applications of this criterion, and in particular will prove Theorem 1.6(a) and Theorem 1.8.

Proof of Theorem 1.6(a). Let B := Br denote the set of vertices that are on the right of the origin and at horizontal
distance at most r from it – see Fig. 2. Then gBr (0,0) = Reff(0,Bc

r ) = d(0,Bc
r ) = r + 1 and since α ≤ 1 we have that

gBr (x, x) = Reff(x,Bc
r ) = d(x,Bc

r ) ≤ r + 1 = gBr (0,0), for any x ∈ Br . �

Proof of Theorem 1.8(a). In this proof we have two types of randomness. We define the Galton–Watson tree on a
probability space (Ω,P ), and denote the tree G(ω), and its root o.

Fig. 2. The set Br in the wedge comb.
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Fig. 3. A Galton–Watson tree with the set Br .

Let us quickly recall the structure of the critical Galton–Watson tree with finite variance conditioned to survive
forever. For more details see for instance [13]. Let (pk) be the offspring distribution of the critical Galton Watson–
tree. Now start with the root o. Give it a random number of offspring which follows the size-biased distribution, i.e.
P(X = k) = kpk . The random variable X has finite expectation, since the original distribution pk has finite variance.
Choose one of its offspring at random and give it a random number of offspring with the size-biased distribution
independently of before, and to all the others attach critical Galton–Watson trees with the same offspring distribution
(pk).

From this construction it follows that there is a unique infinite line of descent, which we call the backbone and off
the nodes on it there are critical finite trees emanating.

Let Br be the set of vertices on the backbone that are at distance at most r from the root, taken together with all
their descendants that are off the backbone – see Fig. 3.

Fix ε > 0. Let Nε
r be the number of trees of depth greater than r

ε
that are contained in the set Br , excluding the

backbone itself. If (Zn) is a critical branching process with finite variance, then Kolmogorov’s theorem states that

P(Zn > 0) ∼ 2

nσ 2
as n → ∞. (3.7)

Let Yi , for i = 0, . . . , r , be the number of offspring of the ith vertex on the backbone excluding the offspring
on the backbone. Then E(Yi) = ∑∞

k=1 k2pk − 1 = σ 2. We label the offspring of the ith vertex on the backbone by
j = 1, . . . , Yi if Yi ≥ 1. Also, we let Ti,j , for j = 1, . . . , Yi , be the descendant tree of the j th child off the backbone.
Using (3.7) we have

P
(
Nε

r ≥ 1
) ≤ E

(
Nε

r

) = E

(
r∑

i=0

Yi∑
j=1

1

(
Ti,j has depth >

r

ε

))
≤

r∑
i=1

E[Yi]
(

cε

σ 2r

)
≤ cε,

where c is a positive constant. So P(Nε
r = 0) ≥ 1 − cε and by Fatou’s lemma we have, setting Aε = {ω: Nε

r (ω) =
0 i.o.}, that

P(Aε) = P
(
Nε

r = 0 i.o.
) ≥ lim sup

r
P

(
Nε

r = 0
) ≥ 1 − cε.

Now gBr (o, o) = r + 1, and if Nε
r = 0 then gBr (x, x) ≤ r + r/ε for all x ∈ Br . If ω ∈ Aε then applying the Green

kernel criterion to the sets Br with r being such that Nε
r (ω) = 0, we get the infinite collision property for the graph

G(ω). Hence we deduce that

P
(
G(ω) has the infinite collision property

) ≥ P(Aε) ≥ 1 − cε
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and thus sending ε → 0, we get that G has the infinite collision property P -a.s. �

We have the following easy corollary of Theorem 3.1.

Corollary 3.3. Let (G(ω)) be a family of random graphs (defined on a space (Ω,P )) with a distinguished vertex o,
and let Br = B(o, r). For λ ≥ 1 let

J (λ) = {
r ∈ Z+: Reff

(
o,Bc

r

) ≥ r/λ
}
.

Suppose that there exists a function ψ(λ) with limλ→∞ ψ(λ) = 0 and r0 ≥ 1 such that

P
(
r ∈ J (λ)

) ≥ 1 − ψ(λ) for all r ≥ r0. (3.8)

Then G has the infinite collision property P -a.s.

Proof. For each x ∈ Br we have gBr (x, x) ≤ d(x, o) + r ≤ 2r , while for each r ∈ J (λ)

gBr (o, o) = Reff
(
o,Bc

r

) ≥ r/λ.

The condition (3.8) implies that

P
(
r ∈ J (λ) for infinitely many r

) ≥ 1 − ψ(λ).

If this event holds then Theorem 3.1 implies that G has the infinite collision property. Letting λ → ∞ concludes the
proof. �

Proof of Theorem 1.8(b) and (c). For both of these graphs the condition (3.8) has been verified. For the incipient in-
finite cluster in dimension d ≥ 19 see the proof of (2.1) at the end of Section 2 of [15]. For the UST see Proposition 3.6
of [3]. �

Remark 3.4. We could also have used Corollary 3.3 to prove Theorem 1.8(a), since [11], Proposition 1.1, proves that
a critical Galton–Watson tree with finite variance conditioned to survive forever satisfies the condition (3.8). However,
we preferred to give a simple direct proof.

We can also use Corollary 3.3 to handle a class of critical Galton–Watson trees with infinite variance.

Corollary 3.5. Let (Zn) be a critical Galton–Watson process with infinite variance such that

E
[
sZ1

] = s + (1 − s)αL(1 − s),

where α ∈ (1,2], and L(t) is slowly varying as t → 0. Let T ∗ be the tree associated with the process (Zn) conditioned
to survive forever. Then T ∗ has the infinite collision property.

Proof. The condition (3.8) for this tree is proved in [10], Lemma 3.1. �

We also have that many “fractal” graphs satisfy the infinite collision property. Examples of graphs of this kind are
given in Examples 3 and 4 in Section 5 of [1]: these include the graphical Sierpinski gasket – see Fig. 1 in [15]. All
these graphs have bounded vertex degree, and there exist β ≥ 2 and α ∈ [β − 1, β) such that for x, y ∈ G, r ≥ 1

|B(x, r)| � rα, Reff(x, y) � d(x, y)β−α.

Lemma 2.2 of [1] then proves that

Reff
(
x,B(x, r)c

) ≥ crβ−α.
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We therefore have

max
y∈B(x,r)

gB(x,r)(y, y)

gB(x,r)(x, x)
= max

y∈B(x,r)

Reff(y,B(x, r)c)

Reff(x,B(x, r)c)
≤ C

for all x ∈ G, r ≥ 1. Hence the hypotheses of Theorem 3.1 hold, and the graph has the infinite collision property.
Now we are going to give a short proof of the following theorem, which was proved independently in [8].

Theorem 3.6. Let X and Y be two independent discrete time simple random walks on the infinite supercritical per-
colation cluster in Z

2 started from the same point. Then X and Y will collide infinitely many times a.s.

Proof. Let P ∗
p denote the bond percolation measure Pp in Z

2 conditioned on the origin being in the infinite open

cluster C∞, and let Bn be the n by n box centered at the origin in Z
2. Denote by Cn the component of the origin in

C∞ ∩ Bn. It is well known, see e.g. [12], that

P ∗
p (Cn is the largest open cluster in Bn) → 1 as n → ∞.

Thus if Rn denotes the maximal effective resistance between two nodes in the largest open cluster in Bn, and R̃n is the
maximum over x ∈ Cn of the effective resistance in Cn between x and ∂Bn, then Rayleigh’s monotonicity principle
yields that P ∗

p (R̃n ≤ Rn) → 1 as n → ∞. In [5], Corollary 3.1, it is proved that for a large enough constant A, we have
Pp(Rn > A logn) → 0 as n → ∞, whence also P ∗

p (Rn > A logn) → 0. We deduce that P ∗
p (R̃n > A logn) → 0. But

Rayleigh’s monotonicity principle implies that in Cn we have Reff(0, ∂Bn) ≥ a logn for a suitable a > 0. Applying
the Green kernel criterion, Theorem 3.1, establishes the infinite collision property in C∞. �

4. Wedge comb with α > 1

In Section 3 we proved that wedge combs with profile f (x) = xα where α ≤ 1 have the infinite collision property. In
this section we will prove Theorem 1.6(b), that is that if α > 1 then the wedge comb has the finite collision property.
We do not have any simple general criterion for the finite collision property, and our proofs will rely on making
sufficiently accurate estimates of the transition density qt (x, y).

For x ∈ G we write x1 for the first coordinate of X.
Throughout this section we set

α′ = α ∧ 2, β ′ = 1 + α′

2 + α′ .

Note that 1 ≤ α′ ≤ 2 and 2/3 ≤ β ′ ≤ 3/4.
The main work in this section will be in proving the following.

Lemma 4.1. Let x = (k,h) ∈ G. The transition density q satisfies:

qt (0, x) ≤
{

c

tβ
′ if t ≥ k2+α′

,

c

(k2+α′
)β

′ if t < k2+α′
.

(4.1)

Remark 4.2. We note that the constants used in the proofs in this section do not depend on t , but could depend on α.

Before we prove this lemma, we will show how it leads easily to Theorem 1.6(b).
We define the set Qk,h, where h ≤ kα , as follows:

Qk,h = {
(k, y): 0 ≤ y ≤ h

}
and we set Zk,h = Z(Qk,h) to be the number of collisions of the two random walks in Qk,h. We also define Z̃k,h =
Zk,2h/3 − Zk,h/3, i.e. the number of collisions that happen in the set {(k, y): h

3 ≤ y ≤ 2h
3 }.
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Lemma 4.3.

(a) E[Zk,h] ≤ chk−α′
.

(b) E[Zk,h|Z̃k,h > 0] ≥ ch.

Proof. (a) By Lemma 4.1 we have

E[Zk,h] =
∑

t

∑
x∈Qk,h

qt (0, x)2 =
∑

t<k2+α′
h

c

k2(1+α′) +
∑

t≥k2+α′

ch

t2β ′ ≤ ch

kα′ .

(b) Since we are conditioning on the event {Z̃k,h > 0}, there is a collision at position x = (k, y) for some y with
h
3 ≤ y ≤ 2h

3 . Conditioned on this event, the total number of collisions that happen in the set Qk,h will be greater than
the number of collisions that take place before the first time that one of the random walks exits this interval. So, setting
B := Qk,h, and using (3.5) we have

E[Zk,h|Z̃k,h > 0] ≥ 1

2
gQk,h

(x, x) = 1

2
Reff

(
x,Qc

k,h

) ≥ ch. �

Proof of Theorem 1.6(b). By Lemma 4.3

chk−α′ ≥ E[Zk,h] ≥ P(Z̃k,h > 0)E[Zk,h|Z̃k,h > 0] ≥ chP(Z̃k,h > 0),

so that P(Z̃k,h > 0) ≤ ck−α′
. Now summing over all k and over all h ranging over powers of 2 and satisfying h ≤ kα ,

we get that∑
k

∑
hpowers of 2

P(Z̃k,h > 0) ≤
∑

k

log2
(
kα

)
ck−α′

< ∞, since α′ > 1.

Hence by Corollary 2.3 the total number of collisions is finite almost surely. �

Before we prove Lemma 4.1 we give some heuristics for the bound E[Zk,h] ≤ chk−(α∧2):
The expected time that the random walk takes to reach k on the horizontal axis started from 0 is of the order k2+α .

The reason for that is that the expected number of visits by the first coordinate to i ∈ Z+ before hitting k for the first
time is k − i. At every such visit the walk makes a vertical excursion, which takes time of order iα in expectation as
in Fig. 4. Hence the total time has expectation which is of order k2+α . Another way to see this is that the hitting time

Fig. 4. The set Qk,h .
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is half the commute time (due to reversibility) which is given by the resistance times the volume. For all α > 1, we
have that k2+α is the right order for the expected time. The actual time though differs in the two regimes 1 < α < 2
and α > 2.

The first coordinate makes k2 steps to go from k
2 to k. When 1 < α < 2, at each step of the horizontal coordinate we

perform an independent experiment. We succeed in each experiment, if we spend time greater than k2α on the tooth
in this step of the first coordinate. The probability of success is then lower bounded by c1

kα and in the k2 experiments
with high probability there will be a success and the expected number of successes is k2−α , thus the total time taken
to reach k will be of order k2+α .

When α > 2 the experiments described above will give us no success with high probability, and so this method no
longer gives us the right order for the hitting time. In this regime instead we declare a success if we spend time greater
than k4 on the tooth. The expected number of successes is then 1 and thus the total time to reach k is of order k4.

Thus the relevant times that will contribute to the expectation of Zk,h will be of order k2+α′
. The probability that

the two random walks will have the same horizontal coordinate will be ( 1
k
)2 and the probability that they will be at

the right height will be ( h

kα′ )2 and at the same height will be 1
h

. We get the uniform distribution, because by that time
the random walks will have mixed.

Putting all things together in the formula for the expectation we obtain the aforementioned expression.
The remainder of this section is devoted to the proof of Lemma 4.1. Our main tool to bound qt (0, x) will be by

comparison with Greens functions.

Lemma 4.4. Let B ⊂ G. Then

qt (x, x) ≤ 2gB(x, x)

tPx(τB ≥ t)
. (4.2)

Proof. The spectral decomposition (3.2) shows that q2j (x, x) is decreasing as a function of j , and also that
q2j+1(x, x) ≤ q2j (x, x) for j ≥ 0. Using this it is easy to verify that

qt (x, x) ≤ 2

t

t∑
j=0

qj (x, x). (4.3)

We now define gt (x, x) to be the Green kernel until time t , i.e. gt (x, x) = ∑t
j=0 qj (x, x). By the strong Markov

property and the fact that gt (y, x) ≤ gt (x, x) for all y we get

gt (x, x) ≤ gB(x, x) + P(τB < t)gt (x, x),

where τB is the first exit time from the set B; rearranging gives (4.2). �

To use this lemma we wish to choose the set B so that the Green kernel up to time t and the Green kernel of the
Markov chain killed after exiting the set B are comparable. To obtain the necessary bounds on the exit times from the
region B we now make precise some of the heuristics given above.

Note that for notational convenience we will often write Pk instead of P(k,0).

Lemma 4.5.

(a) Let k ≥ 0, k1 ≥ 1 and T = τH(k−k1,k+k1) be the first exit of X from H(k − k1, k + k1), where H(a,b) := {(x, y) ∈
G: a ≤ x ≤ b}. Then

Pk(T ≤ t) ≤ c exp
(−c

(
k2+α′

1 /t
)1/3)

. (4.4)

(b) Let k ≥ 1 and T = τH(0,k). Then

P0(T ≤ t) ≤ c exp
(−c

(
k2+α′

/t
)1/3)

.
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Proof. Note that (b) follows from (a) by just looking at the random walk from the first hit on 2k/3.
Suppose we have (4.4) when k1 ≤ k. Then if k1 > k we have H(k − k1, k + k1) = H(0, k + k1), and k+k1

2 ≥ k.

Then since X has to hit k+k1
2 before it leaves H(0, k + k1), we have

Pk(T ≤ t) ≤ P(k+k1)/2(T ≤ t) ≤ c exp
(−c

(
k2+α′

1 /t
)1/3)

.

Thus it is sufficient to consider the case when k1 ≤ k.
We now prove (a) in the case when k1 ≤ k. Let L be the number of horizontal steps that the random walk makes

until it leaves H = H(k − k1/2, k + k1/2). Choose constants λ > 0 and θ ≤ 1
4 . We have

Pk(T ≤ t) ≤ Pk

(
L < k2

1/λ
) + Pk

(
T ≤ t,L ≥ k2

1/λ
)
. (4.5)

The first probability appearing on the right-hand side of (4.5) is bounded above by the probability that a simple random
on Z+ travels distance k1/2 in less than k2

1/λ steps, which is smaller than c′ exp(−c′′λ).
To bound the second probability we are going to perform N = k2

1/λ independent experiments. In each experiment

we succeed if we hit level θkα′
1 on the tooth, and then spend time at least θ2k2α′

1 in the tooth before the next horizontal
step. (The conditions θ ≤ 1

4 and k1/2 ≤ k/2 ensure that there is enough room in each tooth.) Since a simple random
walk on Z ∩ [0, n] started at m ≤ n has probability at least c1 of taking more than m2 steps to hit zero, the probability
of success for each experiment is at least p = c1/(θkα′

1 ). Thus on the event {L ≥ N} we have that T stochastically

dominates θ2k2α′
1 Bin(k2

1/λ,p).
Hence

Pk

(
T ≤ t,L ≥ k2

1/λ
) ≤ P

(
Bin

(
k2

1/λ,p
) ≤ t

θ2k2α′
1

)
= P

(
Bin(N,p) ≤ s

)
, (4.6)

where s = t/(θ2k2α′
1 ).

By a straightforward application of Chernoff’s bound we have:

Lemma 4.6. Let μ < 1. Then there exists a positive constant μ′ such that

P
(
Bin(n,p) ≤ μnp

) ≤ e−μ′np.

Defineγ by t = γ k2+α′
1 . If γ 2/3 > (8c1)

−1 then by adjusting the constants c the bound (4.4) holds. We can therefore
assume that γ 2/3 ≤ (8c1)

−1. Let λ = γ −1/3, and θ = (2/c1)γ λ = (2/c1)γ
2/3; note that we have θ ≤ 1

4 . Then if

μ = s

Np
= λt

c1θk2+α′
1

= γ λ

c1θ
= 1

2
,

Lemma 4.6 gives

Pk

(
T < t,L ≥ k2

1/λ
) ≤ e−cNp ≤ exp

(−ck2−α′
1

(
c2

1/2
)
γ −1/3) ≤ e−c′γ −1/3

. (4.7)

Thus both terms in (4.5) are bounded by terms of the form c exp(−c′γ −1/3). �

Lemma 4.7. qt (u,u) ≤ c

tβ
′ for any u = (k,0) on the horizontal axis and t ≥ 1.

Proof. Let k1 = bt1/(α′+2), where b ≥ 1 is a constant which will be chosen later. We use Lemma 4.4 with

B = H(k − k1, k + k1) = {
(x, y) ∈ G: k − k1 ≤ x ≤ k + k1

}
.

Then Reff(x,Bc) ≤ ck1. By Lemma 4.5

Pk(τB < t) ≤ c1 exp
(−c2

(
k2+α′

1 /t
)1/3) = c1 exp

(−c2b
(2+α′)/3). (4.8)
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Taking b large enough, the right-hand side of (4.8) can be made less than 1/2. Hence by Lemma 4.4

qt (u,u) ≤ ct−1Reff
(
u,Bc

) ≤ ct−1k1 ≤ c′t−β ′
. �

Corollary 4.8. Let u = (k,0) on the horizontal axis and t ≥ 1. Then

qt (0, u) ≤ c

tβ
′ .

Proof. If t is even, then by the Cauchy–Schwarz inequality and Lemma 4.7 we get

qt (0, u) ≤ √
qt (0,0)

√
qt (u,u) ≤ c

tβ
′ .

If t is odd, then by the same argument we have

qt (0, u) = qt−1
(
(1,0), u

) ≤ c

tβ
′ . �

Lemma 4.9. qt (0, (k,h)) ≤ ct−β ′
e−h2/(c′t), for all points (k,h) and all times t > 0.

Proof. Let TA be the first hitting time of the set A for a simple random walk (S) on Z. Using the ballot theorem (see,
e.g. [14]) we get

Ph(T0 = s) = h

s
Ph(Ss = 0) ≤ c

h

s

1√
s

e−h2/(c′s). (4.9)

Let T b
a be the first hitting time of a for a simple random walk restricted to the interval [a, b]. Then for all s we

have

Ph

(
T m

0 = s
) = Ph−m

(
T 0−m = s

) = Ph−m(T{−m,m} = s)

≤ Ph−m(T−m = s) + Ph−m(Tm = s) ≤ Ph(T0 = s) + P2m−h(T0 = s). (4.10)

Thus by (4.9) we deduce

Ph

(
T m

0 = s
) ≤ c

h

s

1√
s

e−h2/(c′s) + c
2m − h

s

1√
s

e−(2m−h)2/(c′s). (4.11)

By reversibility we have qt (0, (k,h)) = qt ((k,h),0) and so by Corollary 4.8

qt

(
(k,h),0

) ≤
t−1∑
s=1

Ph

(
T kα

0 = s
)
qt−s

(
(k,0),0

) ≤
t−1∑
s=1

Ph

(
T kα

0 = s
)
c(t − s)−β ′

.

Therefore we get

qt

(
(k,h),0

) ≤ hc

(
t/2∑
s=1

1

s3/2

1

tβ
′ e−h2/(c′s) +

∑
t/2≤s≤t−1

1

t3/2

1

(t − s)β
′ e−h2/(c′s)

)

+ (
2kα − h

)
c

(
t/2∑
s=1

1

s3/2

1

tβ
′ e−(2kα−h)2/(c′s) +

∑
t/2≤s≤t−1

1

t3/2

1

(t − s)β
′ e−(2kα−h)2/(c′s)

)

≤ hc′′e−h2/(c′t) 1

tβ
′√

t
+ (

2kα − h
)
c′′e−(2kα−h)2/(c′t) 1

tβ
′√

t
.
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Since xe−x2/(c′t) ≤ c1
√

te−x2/(2c′t) for all x and 2kα − h ≥ h, we obtain

qt

(
(k,h),0

) ≤ c1t
−β ′

e−h2/(c1t). �

Lemma 4.10. Let x = (k,0). Then if t < k2+α , we have

qt (0, x) ≤ c

k1+α
= c

(
k2+α

)−β
.

Hence

sup
t≥0

qt (0, x) ≤ c
(
k2+α

)−β
.

Proof. Let m be an integer within distance 1 of k/2, and let T = Tm. Now

P0(Xt = x) = P0(Xt = x,Tm ≤ t/2) + P0(Xt = x,Tm ≥ t/2). (4.12)

By time reversibility, we have that

P0(Xt = x,Tm > t/2) = cPx(Xt = 0, last visit to m before t/2) ≤ cPx(Xt = 0, Tm < t/2),

so to bound the second term in (4.12) it suffices to bound Px(Xt = 0, Tm ≤ t/2).
By the strong Markov property we have

P0(Xt = x,Tm ≤ t/2) ≤ P0(Tm ≤ t/2) max
0≤s≤t/2

Pm(Xt−s = x).

We bound the first term above using Lemma 4.5, while the second term is bounded by ct−β . Thus writing t = k2+α/η,
we have

P0(Xt = x,Tm ≤ t/2) ≤ ct−β exp
(−c

(
k2+α/t

)1/3)
≤ ck−1−αηβe−cη1/3

≤ ck−1−α sup
η>0

(
ηβe−cη1/3) ≤ c′k−1−α.

The term Px(Xt = 0, Tm ≤ t/2) is bounded in exactly the same way. �

Proof of Lemma 4.1.
Let x = (k,h). Then the bound follows from Lemma 4.9 if t ≥ k2+α′

. If t ≤ k2+α′
then by considering the first hit

on k

Px(Xt = 0) ≤ max
0≤s≤t

Pk(Xs = 0) ≤ ck−1−α′

by Lemma 4.10. �

5. Spherically symmetric trees

In this section we are going to show the double phase transition taking place in the spherically symmetric trees of
lengths bn = 22βn

. We remark that for part (c) the Green kernel criterion, Theorem 3.1 does not apply.

Proof of Theorem 1.10(a). Let (Xn,Yn)n be a discrete time walk on the product space T × T . To show recurrence
of the pair (Xn,Yn), we are going to use the Nash–Williams criterion of recurrence, which can be found for instance
in [17], Chapter 21, Proposition 21.6.
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Let �n = {x ∈ T : d(0, x) = n} and

�∗
n =

(
�n ×

⋃
i≤n

�i

)
∪

(⋃
i≤n

�i × �n

)
⊂ T × T .

Let En be the set of edges with at least one vertex in �∗
n. Then the sets (E2n)n constitute a sequence of disjoint

edge-cutsets that separate (o, o) from ∞. To show recurrence of (Xn,Yn)n, by the Nash–Williams criterion we only
need to show that∑

n

|E2n|−1 = ∞. (5.1)

We have |En| ≤ c|�∗
n| ≤ c′|�n| × (

∑n
i=1 |�i |). However |�n| � (logn)1/β , and so

∑n
i=1 |�i | � ∑n

i=1(log i)1/β ≤
n(logn)1/β . Hence∣∣�∗

n

∣∣ ≤ Cn(logn)2/β

and therefore as β ≥ 2 (5.1) diverges. �

The remaining parts of the proof will require estimates of the transition probabilities of the random walk X on T .
Since it will sometimes be convenient to use these rather than the transition density qt (x, y) we write

pt(x, y) = Px(Xt = y).

Let

an =
n−1∑
i=0

bi, n ≥ 1. (5.2)

Note that the nth branch point from o is at distance an from o. For x ∈ T let n(x) be the number of branches at the
same level as x; n(x) is also the number of vertices y ∈ T such that d(o, y) = d(o, x). We write

Jn = {
x ∈ T : n(x) = 2n

};
these are the points between the (n − 1)th and nth branch points.

We now divide the segment of length bn into subintervals. The first one has length equal to 20an, the second one
2an and the �th one has length 2�−1an. In total we get order 2β(n−1) such intervals, say α2β(n−1). Let I i

n,� denote the
�th such interval on the ith branch, for i = 1, . . . ,2n and let Jn,� denote the collection of all these subintervals, i.e. 2n

in total.

Remark 5.1. Our main tool will be by comparison with a birth and death chain X̃ on Z+ that jumps to either x + 1
or x − 1 with the following probabilities. If x is at distance an from the origin for some n ≥ 1, then px,x+1 = 2

3 =
1 −px,x−1, otherwise for all other x, px,x+1 = 1

2 = 1 −px,x−1. Note that (n(x)) is a stationary measure for this birth
and death chain. We write pBD

t (0, x′) for the transition probabilities and qBD
t (0, x′) for its transition density with

respect to its stationary measure (n(x)). Note that X′
t = d(o,Xt ) has the law of this birth and death chain. Therefore

if for x ∈ T we write |x| = d(o, x) then by symmetry

pt(o, x) = 1

2n(x)
pBD

t

(
0, |x|). (5.3)

We write τ ′, T ′, etc. for hitting and exit times for the birth and death chain.
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Lemma 5.2. (a) For the birth and death chain we have for all t ≥ 0

pBD
t (0,0) ≤ ct−1/2(log t)−1/β (5.4)

and also

pBD
t (y, x) ≤ c(logx)1/β

√
t(log t)1/β

, ∀x, y ∈ Z+. (5.5)

(b) For x ∈ (2�an,2�+1an) and times t > (2�an)
2 we have

pBD
t (0, x) ≥ c√

t
. (5.6)

(c) Finally for x ∈ (2�an,2�+1an) and times t ≤ (2�an)
2 we have

pBD
t (0, x) ≤ c

2�an

. (5.7)

Proof. (a) Let B = {y ∈ Z+: y ≤ |x| + √
t}. Applying Lemma 4.4 to the birth and death chain X′

qBD
t

(|x|, |x|) ≤ c′′RBD
eff (|x|,Bc)

tP|x|(τ ′
B ≥ t)

.

It is easy to verify that RBD
eff (|x|,Bc) ≤ 2−n(x)−m2

√
t , where m is the number of branch points between |x| and

|x|+√
t ; note that at each branch point the effective resistance is halved. Since there are approximately β−1 log2 log2 r

branch points between 0 and r , we have m = 1
β
(log2 log2(|x| + √

t) − log2 log2 |x|), if x �= o and 1
β

log2 log2(
√

t) if

x = o. We now need to bound P|x|(τ ′
B < t). Since for each n,

∑n
k=1 bk � 22βn

, there must exist a branch of length at
least 1

2

√
t between |x| and |x| + √

t ; call this branch A. Let y be the midpoint of A. Then P|x|(τ ′
B < t) is smaller than

the probability that a simple random walk started at y remains in A for time at least t . But from the exponential hitting
time bounds for the simple random walk on Z we get that P|x|(τ ′

B ≥ t) > 1/2 and hence since 2n(x) � (log2 |x|)1/β ,

qBD
t (|x|, |x|) ≤ c′′2−n(x)t−1/2

(
log2(|x| + √

t)

log2 |x|
)−1/β

≤ c′′t−1/2(log2 t)−1/β . (5.8)

Similarly

qBD
t (0,0) ≤ c′′t−1/2(log(c2

√
t)

)−1/β
.

We have that pBD
t (y, x) = qBD

t (y, x)2n(x). So by Cauchy–Schwarz we get that pBD
t (y, x) ≤ 2n(x)

√
qBD
t (y, y)×√

qBD
t (x, x) and thus using (5.8) we obtain that pBD

t (y, x) ≤ c(logx)1/β√
t(log t)1/β ,

(b) We write

pBD
t (0, x) = P0(Tx < t,Xt = x) ≥ P0(Tx < t) min

2s≤t
p2s(x, x)

≥ P0(Tx < t)
(
pBD

t (x, x) + pBD
t−1(x, x)

)
,

since p2s(x, x) is a decreasing function of s. Let Qt = {y ∈ Z+: y ≤ x + c
√

t}. Then by Cauchy–Schwarz we have

pBD
2t (x, x) =

∑
y

pBD
t (x, y)pBD

t (y, x) =
∑
y

pBD
t (x, y)2 n(x)

n(y)

≥
∑
y∈Qt

pBD
t (x, y)2 n(x)

n(y)
≥ n(x)

|Qt |
( ∑

y∈Qt

pBD
t (x, y)√

n(y)

)2

.
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For y ∈ Qt we have n(y) ≤ (log(x + c
√

t))1/β . Also |Qt | = x + c
√

t ≤ c1
√

t , so

pBD
2t (x, x) ≥ (logx)1/β

c1
√

t(log(c1
√

t))1/β
Px(Xt ∈ Qt)

2

and Px(Xt ∈ Qt) > c′ > 0 by the same argument we used in part (a) of the proof, i.e. by bounding it a by simple
random walk on the last segment with no branch points. Also P0(Tx < t) ≥ 1

2 , since t > 2x2 and we can bound the
birth and death chain from below by a simple random walk on Z+.

(c) Let z and y be two points on Z+ which are at even distance apart and such that y ≤ z. Suppose that we start
two birth and death chains X from z and Y from y and we couple them in such a way that Xt ≥ Yt for all t before the
first time that they meet and after that time Xt = Yt . From this coupling it follows immediately that

pBD
t (z,0) ≤ pBD

t (y,0).

If there is no branch point between z and y, then we get the same inequality, i.e. pBD
t (0, z) ≤ pBD

t (0, y). If there is
one branch point between them, then we get pBD

t (0, z) ≤ 2pBD
t (0, y).

For any x ∈ (2�an,2�+1an) we have that

pBD
t (0, x) ≤ 2pBD

t (0, y), for all y ∈ (
2�−1an,2�an

)
s.t. |y − x| = even.

Averaging over y ∈ (2�−1an,2�an) and using the fact that
∑

y pBD
t (0, y) ≤ 1 gives that

pBD
t (0, x) ≤ c

2�an

. �

Lemma 5.3. For t ≥ 0 we have that

pt(o, o) ≤ c√
t(log t)1/β

(5.9)

and for x ∈ Jn

pt (o, x) ≤ c1√
t(log t)1/β

. (5.10)

Also for x ∈ Jn,� and t > (2�an)
2

pt(o, x) ≥ 1

2n

c2√
t
. (5.11)

Proof. Using that 2n(x) � (log2 |x|)1/β , Lemma 5.2 and (5.3) concludes the proof of the lemma. �

Proof of Theorem 1.10(b). Transience of the product chain is equivalent to the sum
∑

t pt (o, o)2 being finite. Using
the upper bound (5.9) we get that∑

t

pt (o, o)2 ≤
∑

t

c

t (log t)2/β
, (5.12)

which is finite since β < 2. �

Proof of Theorem 1.10(c). Let X and Y be two independent discrete time simple random walks on the tree T . We
are going to count the number of collisions that occur at level n, i.e. on all the segments of length bn = 22βn

.
We are going to divide the proof into two parts: for β ≥ 1 and 1

2 ≤ β < 1, because the relevant times that contribute
to the number of collisions are of different orders.
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Case β ≥ 1. We define

Zn,� =
2(2�an)2∑
t=(2�an)2

1(Xt = Yt ∈ Jn,�). (5.13)

Thus Zn,� counts the number of collisions that happen on the set Jn,� and at times that are of order (2�an)
2. We want

to lower bound Po(Zn,� > 0). To do so, we are going to lower bound Eo[Zn,�], upper bound Eo[Zn,�|Zn,� > 0] and
then use the obvious equality

Po(Zn,� > 0) = Eo[Zn,�]
Eo[Zn,�|Zn,� > 0] . (5.14)

Claim 5.1. Eo[Zn,�] ≥ c′ 2�an

2n .

Proof. For all i and all t ∈ ((2�an)
2,2(2�an)

2) we have that there exists a constant c such that

Po

(
Xt ∈ I i

n,�

) ≥ c

2n
,

which follows from (5.11). Writing In,� for one of the 2n subintervals, I i
n,�, for i = 1, . . . ,2n, by symmetry we have

Eo[Zn,�] = 2n
∑

x∈In,�

2(2�an)2∑
t=(2�an)2

pt(o, x)2 ≥ 2n

2(2�an)2∑
t=(2�an)2

1

|In,�|
( ∑

x∈In,�

pt (o, x)

)2

= 2n

2(2�an)2∑
t=(2�an)2

1

|In,�|Po(Xt ∈ In,�)
2 ≥ c′ 2�an

2n
,

where for the first inequality we used Cauchy–Schwarz. �

Claim 5.2. Eo[Zn,�|Zn,� > 0] ≤ c′′2�an.

Proof. Since we are conditioning on the event {Zn,� > 0}, there is a collision on one of the subintervals of Jn,�. We
write In,� for this subinterval. Starting from the point of the collision, we are counting all the collisions that happen
for times (2�an)

2 ≤ t ≤ 2(2�an)
2.

We first count the number of collisions that occur before the first time that one of the random walks exits the set
An,� = In,�−1 ∪ In,� ∪ In,�+1. By Lemma 3.2 this number is bounded by the effective resistance from the starting point
to Ac

n,�, which is bounded by 2�+1an, no matter where in the interval In,� the random walks started. We then wait until
the next time that both of the random walks have a collision in one of the intervals of Jn,�. Starting from there we
again wait for one of them to exit the set An,�, and then we upper bound the number of collisions by 2�−1an. The total
number of rounds that we can have has expectation bounded by a constant. This is because, once a random walk is in
the interval In,� it has to travel distance at least 2�−1an in order to exit An,�. Thus the time it takes has expectation at
least (2�−1an)

2. Since we are interested only in collisions that happen in a time interval of length (2�an)
2 we deduce

that the total number of rounds has bounded expectation.
Hence we conclude that

Eo[Zn,�|Zn,� > 0] ≤ c2�an. �

Using (5.14) we obtain

Po(Zn,� > 0) ≥ c

2n
. (5.15)
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Let Zn = ∑α2β(n−1)−1
�=1 1(Zn,� > 0), i.e. Zn counts the number of subintervals of bn except the first and last one,

where there is at least one collision. Using (5.15), we get that Eo[Zn] ≥ c2(β−1)n. We want to lower bound Po(Zn > 0)

and we will use the second moment estimate

Po(Zn > 0) ≥ (Eo[Zn])2

Eo[Z2
n]

. (5.16)

Claim 5.3. Eo[Z2
n] ≤ c′22(β−1)n.

Proof. We have that

Eo

[
Z2

n

] ≤ 2
α2β(n−1)−1∑

�=1

Po(Zn,� > 0) +
α2β(n−1)−1∑

l=1

α2β(n−1)−1−�∑
k=2

Po(Zn,� > 0,Zn,�+k > 0). (5.17)

Write Ai
n,� for the event that I i

n,� is visited by one simple random walk in the time interval we are interested in. Let

N =
2n∑
i=1

1
(
Ai

n,�

)
.

Then E[N ] ≤ c, for a positive finite constant c, since once such an interval is visited then the walk has to travel
distance of order 2�an in order to reach a branch point and then visit another interval and that time has expectation
greater than c′(2�an)

2. Thus, using the symmetry of the tree, we have that for any i,

Po

(
Ai

n,�

) ≤ c

2n
. (5.18)

Hence,

Po(Zn,� > 0) ≤
2n∑
i=1

Po

(
Ai

n,�

)2 ≤ c

2n
,

and thus the first term on the right-hand side of (5.17) is upper bounded by 2(β−1)n.
For the second term we have Po(Zn,� > 0,Zn,�+k > 0) = Po(Zn,�+k > 0|Zn,� > 0)Po(Zn,� > 0) and

Po(Zn,�+k > 0|Zn,� > 0)

= Po(Zn,�+k > 0, at least 1 of the RWs hits Jn,�+k before o|Zn,� > 0)

+ Po(Zn,�+k > 0, both hit o before Jn,�+k |Zn,� > 0).

To upper bound the first term, we will upper bound the probability that the birth and death chain started from Jn,�

hits Jn,�+k before hitting o. By employing a resistance argument, namely that for a birth and death chain if 0 ≤ x ≤ y

Px(hit y before 0) = RBD
eff (0, x)

RBD
eff (0, y)

, (5.19)

we get an upper bound c/2k .
For the second term we have, using (5.18),

Po(Zn,�+k > 0, both hit o before Jn,�+k |Zn,� > 0) ≤
2n∑
i=1

Po

(
Ai

n,�+k

)2 ≤ c

2n
.
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So putting these estimates together we get

Po(Zn,� > 0,Zn,�+k > 0) ≤ c

2n

(
c′

2k
+ c′′

2n

)
.

Hence Eo[Z2
n] ≤ c′22(β−1)n, since β > 1. �

Using (5.16) we obtain that

Po(Zn > 0) ≥ c > 0.

Hence by Corollary 2.3 we have P(Z = ∞) = 1; this completes the proof of Theorem 1.10(c) in the case β ≥ 1.
Case 1

2 ≤ β < 1. We now define

Zn,� =
(2�an)4∑

t=(2�an)2

1(Xt = Yt ∈ Jn,�),

i.e. we are now looking at much longer time intervals. We want to upper bound the probability that there is a collision
in the set Jn,�, i.e. Po(Zn,� > 0). To do so we are going to use again the equality

Po(Zn,� > 0) = Eo[Zn,�]
Eo[Zn,�|Zn,� > 0] , (5.20)

so we need to upper bound Eo[Zn,�] and lower bound Eo[Zn,�|Zn,� > 0]. To do so, we are going to obtain upper and
lower bounds for the transition probabilities in t steps.

Claim 5.4. Eo[Zn,�] ≥ c
|In,�| log |In,�|

2n .

Proof. Using (5.11) we get

Eo[Zn,�] ≥ 2n

|In,�|4∑
t=2|In,�|2

∑
x∈In,�

pt (o, x)2 ≥ 2n

|In,�|4∑
t=2|In,�|2

∑
x∈In,�

c1

22nt
≥ c

|In,�| log |In,�|
2n

.

�

Claim 5.5. Eo[Zn,�|Zn,� > 0] ≤ c|In,�|.

Proof. Since we are conditioning on the event {Zn,� > 0}, there is a collision on one of the subintervals In,�. Starting
from this point, we are counting all the collisions that happen for times 2(2�an)

2 ≤ t ≤ (2�an)
4.

We first count the expected number of collisions that occur before the first time that one of the random walks
exits the set An,� = Jn,�−1 ∪ Jn,� ∪ Jn,�+1, for � ≥ 1. This expected number is up to constants equal to the effective
resistance from the starting point to Ac

n,�, which is bounded by a constant times 2�an = |In,�|, no matter where in the
interval In,� they started from.

We define a round as follows: it starts when there is a collision and it ends when one of the walks exits the set
An,�. The number of rounds we have before either of the two random walks hits zero has bounded expectation. This
is because, starting from In,� the probability that after exiting An,� we visit the root before returning to the set Jn,� is
greater than a constant. This follows by the effective resistance argument for the birth and death chain, (5.19). Hence
the number of rounds before hitting the root has a Geometric distribution, so it has bounded expectation. The number
of collisions per such round is bounded from above by c|In,�| as we argued above.

Hence so far we have considered only those rounds where none of the walks hits the root before returning to Jn,�.
For the total number of collisions though we have to consider also those that occur after one of the walks hits the root.
But this number will be bounded by the total number of collisions that occur in Jn,� in the time interval of interest.
Since one of the walks starts from the root, if we count the total number of collisions that happen in Jn,� for the birth
and death chain, then by uniformity we have to divide through by 2n to get the total number of collisions on the tree.
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For the birth and death chain the number of collisions when one walk starts from 0 and the other one from y will
be bounded by

(2�an)4∑
t=(2�an)2

∑
x∈In,�

pBD
t (0, |x|)pBD

t (y, |x|). (5.21)

Using (5.5) we upper bound this sum by |In,l | log |In,l |, and hence transferring back to the tree we get that

Eo[Zn,�|Zn,� > 0] ≤ c|In,�| + |In,�| log |In,�|
2n

= c|In,�| + |In,�|(� + 2β(n−1))

2n
≤ c′|In,l |,

since β < 1 and � < 2β(n−1). �

Hence using (5.20) we get that

Po(Zn,� > 0) ≥ c
2β(n−1)

2n
. (5.22)

Let Zn = ∑α2β(n−1)−1
�=1 1(Zn,� > 0), i.e. Zn counts the number of subintervals of bn except the first and last

one, where there is at least one collision. Using (5.22), we get that Eo[Zn] ≥ c2(2β−1)n. We want to lower bound
Po(Zn > 0). To this end we are going to use the second moment method, i.e.

Po(Zn > 0) ≥ (Eo[Zn])2

Eo[Z2
n]

. (5.23)

Claim 5.6. Eo[Z2
n] ≤ c′22(2β−1)n.

Proof. For the second moment we have that

Eo

[
Z2

n

] ≤ 2
α2β(n−1)−1∑

�=1

Po(Zn,� > 0) +
α2β(n−1)−1∑

�=1

α2β(n−1)−1−l∑
k=2

Po(Zn,� > 0,Zn,�+k > 0). (5.24)

We let An,� = Jn,�−1 ∪Jn,� ∪Jn,�+1, for � = 1, . . . , α2β(n−1) −1 and for � = 0 we define An,0 = Jn−1,α2β(n−2) ∪Jn,0 ∪
Jn,1 and for � = α2β(n−1) we let An,� = Jn,�−1 ∪ Jn,� ∪ Jn+1,0. We now define Z̃n,� = ∑(2�an)4

t=(2�an)2 1(Xt = Yt ∈ An,�)

and we have that

Po(Zn,� > 0) ≤ Eo[Z̃n,�]
Eo[Z̃n,�|Zn,� > 0] . (5.25)

Using the upper bounds for the transition probabilities we get that

Eo[Z̃n,�] ≤ c
|In,�| log |In,�|

2n

and for the conditional expectation we get a lower bound given by the resistance estimate, i.e. Eo[Z̃n,�|Zn,� > 0] ≥
c′|In,�|, hence

Po(Zn,� > 0) ≤ c

2(1−β)n
(5.26)

and thus the first sum on the right-hand side of (5.24) is upper bounded by c2(2β−1)n.
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For the terms appearing in the second sum on the right-hand side of (5.24) we have Po(Zn,� > 0,Zn,�+k > 0) =
Po(Zn,�+k > 0|Zn,� > 0)Po(Zn,� > 0) and

Po(Zn,�+k > 0|Zn,� > 0)

= Po(Zn,�+k > 0, at least 1 of the RWs hits Jn,�+k before o |Zn,� > 0)

+ Po(Zn,�+k > 0, both hit o before Jn,�+k |Zn,� > 0).

The first term is bounded by c
2k using (5.19) again. For the second term we have

Po(Zn,�+k > 0, both hit o before Jn,�+k |Zn,� > 0) ≤ max
y

P(o,y)(Zn,�+k > 0)

≤ max
y

E(o,y)[Z̃n,�+k]
E(o,y)[Z̃n,�+k|Zn,�+k > 0] .

The numerator can be bounded in the same way as we did in (5.21) and the denominator is lower bounded by the
effective resistance. So now we get that

Po(Zn,�+k > 0, both hit o before Jn,�+k |Zn,� > 0) ≤ c2(β−1)n.

Hence putting all things together we get

Po(Zn,� > 0,Zn,�+k > 0) ≤ c

2(1−β)n

(
1

2k
+ 1

2(1−β)n

)
.

Hence Eo[Z2
n] ≤ c′22(2β−1)n, since β > 1

2 . �

Thus we have shown that Po(Zn > 0) ≥ c > 0. Hence by Corollary 2.3 we obtain P(Z = ∞) = 1, which completes
the proof of Theorem 1.10(c) for 1

2 ≤ β ≤ 1. �

Proof of Theorem 1.10(d). Let Zn,� count the total number of collisions that happen on the set Jn,� and let Z̃n,� be
as in the proof of Claim 5.6, but with the only modification that the time ranges over all t ∈ Z+. We then have

Po(Zn,� > 0) ≤ Eo[Z̃n,�]
Eo[Z̃n,�|Zn,� > 0] .

For times t greater than (2�an)
2 we get that the expected number of collisions is bounded from above by c

|In,�| log |In,�|
2n ,

which follows by using the upper bounds for the transition probabilities in t steps. For times t ≤ (2�an)
2 we are going

to use the upper bound on pBD
t (0, x) from (5.7). We will thus find the number of collisions for the birth and death

chain and then divide through by 2n. Therefore we deduce that

Eo[Z̃n,�] ≤ c
|In,�| log |In,�|

2n
+ 1

2n

(2�an)2∑
t=1

1

(2�an)2
≤ c′ |In,�| log |In,�|

2n
.

Using resistances we get that Eo[Z̃n,�|Zn,� > 0] ≥ c|In,�|, so

Po(Zn,� > 0) ≤ c

2(1−β)n
.

Summing this over all � = 1, . . . ,2β(n−1) and over all n we get a finite sum, since β < 1
2 , hence by Borel–Cantelli 1

we get that only finitely many of these events occur, so there are only finitely many collisions. �
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6. Concluding remarks and questions

1. In this paper we have dealt only with collisions of two independent random walks. A natural question to ask is
what happens if we have more than two. An easy calculation shows that in Z the expected number of collisions of
three independent random walks is infinite. In fact,

E[Z] = E

( ∞∑
t=0

1(Xt = Yt = Wt)

)
≥ E

( ∞∑
t=0

∑
x:|x|≤√

t

1(Xt = Yt = Wt = x)

)

�
∞∑
t=0

∑
x:|x|≤√

t

1

(
√

t)3
= ∞.

Since Z is a transitive graph, the number of collisions of the three random walks follows a Geometric distribu-
tion. Since the expectation of this number is infinite, it follows that there is an infinite number of collisions with
probability 1.

In Comb(Z, α) for all α, the bounds in Lemma 4.1 for the transition probabilities imply that the expected
number of collisions of three independent random walks is finite.

2. An application of the infinite collision property of the percolation cluster in Z
2 to a problem in particle systems is

given in [6].
3. We have proved that the incipient infinite cluster in high dimensions has the infinite collision property. For the

incipient infinite cluster in two dimensions though, the question from [16] still remains open.
4. In [4] it is proved that the edges crossed by a random walk in a transient network G form a recurrent graph a.s.

For which G does the resulting graph have the infinite collision property? This question was asked by Nathanaël
Berestycki.

5. Let Comb(Z2, f ) be a comb with variable lengths over Z
2 defined analogously to Comb(Z, f ), Definition 1.5.

For which f does Comb(Z2, f ) have the finite collision property? The Green kernel criterion implies that if f has
logarithmic growth, then this graph has the infinite collision property.

6. Suppose that {f (n)}n∈Z are i.i.d. random variables with law μ supported on (1,∞). For which μ does (Comb Z, f )

have the infinite collision property? This question was raised in [9]. If μ has finite mean, then f (n) = o(n), so the
infinite collision property follows from the Green kernel criterion, Theorem 3.1.

7. Let G be a graph and let G′ be a graph obtained by adding a finite number of vertices and edges. Do G and G′
have the same collision property? This question was asked by Zhen-Qing Chen.
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