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Abstract. We consider random dynamics on the edges of a uniform Cayley tree with n vertices, in which edges are either
flammable, fireproof, or burnt. Every flammable edge is replaced by a fireproof edge at unit rate, while fires start at smaller rate
n−α on each flammable edge, then propagate through the neighboring flammable edges and are only stopped at fireproof edges.
A vertex is called fireproof when all its adjacent edges are fireproof. We show that as n → ∞, the terminal density of fireproof
vertices converges to 1 when α > 1/2, to 0 when α < 1/2, and to some non-degenerate random variable when α = 1/2. We further
study the connectivity of the fireproof forest, in particular the existence of a giant component.

Résumé. On considère la dynamique aléatoire suivante sur un arbre de Cayley uniforme avec n sommets et pour lequel les
arêtes peuvent être inflammables, ignifugées, ou brûlées. Au temps initial, toutes les arêtes sont inflammables, et chaque arête
inflammable est remplacée à taux 1 par une arête ignifugée, indépendamment des autres arêtes. Par ailleurs, une arête inflammable
peut également prendre feu avec un taux n−α , et le feu se propage alors le long des arêtes inflammables voisines et n’est stoppé
que par les arêtes ignifugées. Nous montrons que lorsque n → ∞, la densité terminale des sommets ignifugés converge vers 1 si
α > 1/2, vers 0 si α < 1/2, et vers une variable aléatoire non dégénérée pour α = 1/2. On étudie ensuite la connectivité de la forêt
ignifugée, et plus particulièrement l’existence de composantes géantes.
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1. Introduction

Since their introduction by Drossel and Schwabl [6], forest fire models have generated a lot of attention in the literature
in statistical physics. In this work, we will consider the following variation. Imagine that the edges of some finite graph
can be in either of three states: flammable, fireproof, or burnt. We suppose that initially every edge is flammable, and
that the system evolves randomly as follows when time passes. The only transitions are from flammable to fireproof
or burnt. A flammable edge becomes fireproof at unit rate and independently of the other edges. On the other hand,
a flammable edge can also be set on fire at rate r > 0, called the firing rate. In that case the fire propagates to the
neighboring flammable edges and the propagation only ceases at fireproof edges. After some time, all edges are either
burnt or fireproof.

Our interest in the model above has been triggered by a recent work of Ráth [17] (see also [12]) on so-called mean
field frozen percolation. More precisely, Ráth considers a variant of the Erdős–Rényi random graph on a large set
of vertices in which lightings strike vertices at some small rate. A lighting burns the entire connected component of
the vertex that is hit, and that burnt component is then removed from the graph. Therefore the present model may be
viewed as dual to mean field frozen percolation, without creation of edges but with the introduction of barriers that
stop the propagation of fires.

In this work, we assume that the graph on which the fire dynamics occur is a uniform Cayley tree of size n, tn,
where n is some large integer. This means that tn is picked uniformly at random amongst the nn−2 different trees on a
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set of n labeled vertices, say [n] = {1, . . . , n}. This simple choice is motivated by the fact that clusters in the random
graph model before the phase transition resemble uniform random Cayley trees. We also suppose that the firing rate
is r = n−α where α > 0 is some parameter.

A vertex is called fireproof if all its adjacent edges are fireproof in the final state of the system, and burnt otherwise.
In other words, a vertex is burnt as soon as one of its adjacent edge has burned. We are interested in the subgraph
formed by fireproof vertices, and fireproof edges between fireproof vertices. The fireproof edges having one or two
burnt extremities and burnt edges are discarded. Our first result shows that the system exhibits a phase transition at
α = 1/2. As n → ∞, the density of fireproof vertices converges in distribution to a non-degenerate random variable
when α = 1/2, to 1 for α > 1/2 and to 0 for α < 1/2. We further study the connectivity in the fireproof forest. We
shall prove that in the super critical case α > 1/2, there exists a giant tree-component of size ∼ n with high probability
when n → ∞. In the critical case α = 1/2, for every ε > 0, with high probability there is no giant tree-component of
size at least εn, although one can find tree-components of size greater than n1−ε .

The rest of this paper is organized as follows. We shall start with some preliminaries on a limit theorem in dis-
tribution for the number of random cuts which are needed to isolate a fixed number of vertices in a large uniform
Cayley tree, relying crucially on a recent work by Haas and Miermont [8]. This extends earlier results of Janson
[11] and Panholzer [14] and may be of independent interest. We shall also recall well-known properties of the spinal
decomposition of uniform Cayley trees, which will play an important role in the study. Our main results about the
asymptotic behavior of the density of fireproof vertices will be stated and proved in Section 3. Finally Section 4 is
devoted to connectivity properties of the fireproof forest, in particular the existence of giant components, in the critical
and supercritical cases.

2. Preliminaries on uniform random trees

2.1. Random cuts and isolation of vertices

It is sometime convenient to imagine that fireproof edges correspond to cuts on the graph which stop the propagation
of fires, and vertices are then fireproof when they have been isolated by cuts on the tree before a fire has ever reached
them. Roughly speaking, our first purpose is to estimate for every fixed integer k ≥ 1 the number X(n, k) of random
cuts on a uniform Cayley tree tn which are required to isolate k typical vertices. More precisely, we sample uniformly
at random and with replacement a sequence U1, . . . ,Uk of k vertices in [n], independently of tn, and consider the
following stochastic algorithm.

Imagine that we remove an edge chosen uniformly at random given the preceding variables. This disconnects tn
into two subtrees. If one of these two subtrees contains none of the vertices U1, . . . ,Uk , then we discard it; else
we keep the two subtrees. We iterate the procedure by removing at each step an edge uniformly at random given
the current forest consisting of the subtrees that contain at least one of the k sampled vertices, and then eventually
discarding the new subtree containing none of those vertices. The algorithm terminates after X(n, k) steps when all
the vertices U1, . . . ,Uk have been isolated, that is when the forest reduces to the singletons {Ui} for i = 1, . . . , k.

The study of isolation of a single point by random cuts has been initiated by Meir and Moon [13] who have obtained
the first results about the asymptotic behavior in mean of X(n,1) when n → ∞. The following limit in distribution
has been established in a more general setting by Janson [11] and Panholzer [14]:

lim
n→∞

1√
n
X(n,1) = R in law,

where R denotes a Rayleigh variable, i.e.

P(R ∈ ds) = s exp
(−s2/2

)
ds, s ≥ 0.

Relying on a recent paper by Haas and Miermont [8] on scaling limits of Markov branching trees (see also Haas et al.
[9] for a closely related work), we obtain the following extension.
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Lemma 1. For every integer k ≥ 1, we have

lim
n→∞

1√
n
X(n, k) = χ(2k) in distribution,

where χ(2k) is a chi-variable with 2k degrees of freedom, viz.

P
(
χ(2k) ∈ dx

) = 21−k

(k − 1)!x
2k−1 exp(−x2/2)dx, x ≥ 0.

Remark. The same asymptotic result would also hold if instead, the k vertices were picked without replacement, since
sampling uniformly at random a fixed number of vertices with replacement rather than without replacement makes no
difference when the total number of vertices tends to infinity.

Proof. The proof relies crucially on the article by Haas and Miermont [8] to whom we refer for background on some
terminology and technical details which are not provided here.

We consider the logging process of some tree τ on [n] by removing successively its edges in some given order.
We call a connected component B ⊆ [n] that arises at some stage of this process a block, and view the set of blocks
as another set of vertices. Following Haas and Miermont [7], we represent the logging of τ as a rooted binary tree T

with n leaves on this new set of vertices, where the root of T is given by [n] and the leaves by the singletons {i} for
i ∈ [n]. We draw an edge between a parent block B and two children blocks B ′ and B ′′ whenever the edge-removal
for the subtree on B produces the two subtrees on B ′ and B ′′, respectively. See Fig. 1 for an illustration.

Then select � distinct vertices in [n], say i1, . . . , i�, and denote by R(T ; i1, . . . , i�) the smallest connected subset
of T that contains the root [n] and the leaves {ij } for j = 1, . . . , �. We call R(T ; i1, . . . , i�) the tree T reduced to
those leaves. Observe that the number of cuts in the tree τ which are needed to isolate i1, . . . , i�, in the sense of the
algorithm described at the beginning of this section, coincides with the number of internal nodes (i.e. vertices which
are not leaves) of the reduced tree R(T ; i1, . . . , i�). Because T is binary, this quantity is also given by the length (i.e.
the number of edges) of the reduced tree R(T ; i1, . . . , i�) minus (� − 1).

We now suppose that τ = tn is a uniform random Cayley tree on [n] whose edges have been enumerated uniformly
at random. We denote by Tn the binary tree with n leaves that results as above from the logging of tn. We view
Tn endowed with the graph distance as a finite rooted metric space. Essentially, this means that we only retain the
combinatorial structure of the tree Tn, forgetting the details of vertices except for the root which is distinguishable.

Fig. 1. Tree τ on 9 vertices labelled a, . . . , i; edges are enumerated in order of removal. Right: Binary tree T on the set of blocks describing the
logging of τ .
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We also sample k points in [n] uniformly at random and with replacement (so the number of different points is
� ≤ k), independently of the preceding, and view these points as leaves of Tn. So we have to determine the asymptotic
behavior of the length of the tree Tn reduced to its branches from the root to these leaves, say R(Tn, k).

The answer to this question follows from general results of Haas and Miermont [8]. Indeed, we shall see that
their results imply that the reduced tree R(Tn, k), viewed as a so-called compact rooted real tree and rescaled by a
factor 1/

√
n, converges in law in the sense of Gromov–Hausdorff to R(k), the Brownian Continuous Random Tree

(CRT) reduced to k i.i.d. random leaves chosen according to its mass-measure. More generally, it would follow from
Theorem 1 in [8] that the rescaled real tree n−1/2Tn converges weakly towards the Brownian CRT, but we will not
need this stronger result here. This implies in particular that the total length of R(Tn, k) rescaled by 1/

√
n converges

in distribution to the total length of R(k). As the latter has the chi-distribution with 2k degrees of freedom (this can
be seen for instance from Lemma 21 in [1]), this yields our statement.

Hence all that we need is to check that our setting fulfills the framework of Haas and Miermont [8]. The first point
is that Tn can be viewed as a Markov branching tree with n leaves, which should be plain from the work of Pitman on
fragmentation of random forests; see Theorem 5 in [16]. Next, for every positive integers n and m with n/2 < m < n,
denote by qn(m) the probability that the first cut on tn produces two subtrees with sizes m and n − m, respectively.1

It is well known and due to Pavlov [15] (see also Corollary 5.8 in [5] and Lemma 2 below) that this probability can be
computed using the Borel distribution; specifically we have

qn(m) = mm−1(n − m)n−m−1(n − 2)!
m!(n − m)!nn−3

, n/2 < m < n.

An application of Stirling formula entails that as n → ∞,

n3/2(1 − m/n)qn(m) ∼ 1√
2π(m/n)3(1 − m/n)

, uniformly for n/2 < m < n,

which is the local form of Eq. (3) in [8]. It is immediate to deduce that the basic assumption (H) of Haas and Miermont
holds with γ = 1/2, �(n) ≡ 1 and ν the measure on {s = (s,1 − s),1/2 < s < 1} given by

ν(ds) = 1√
2πs3(1 − s)3

ds.

Their assumption (H′) is then plain, and according to Proposition 12 in [8], the rescaled reduced tree n−1/2 R(Tn, k),
viewed as a compact rooted real tree, converges in distribution in the sense of Gromov–Hausdorff towards the CRT
denoted by T1/2,ν and reduced to k i.i.d. leaves picked according to the mass-measure on T1/2,ν . This completes the
proof since T1/2,ν is the Brownian CRT, as it can be seen e.g. from pp. 339–340 in [4].2 �

2.2. Spinal decomposition

Our next purpose is to recall a useful decomposition of the uniform Cayley tree tn. Sample a pair of vertices U and
U ′ uniformly at random with replacement in [n] and independently of tn; U should be thought of as the root. The
oriented branch from U to U ′ is called the spine and denoted by s, its length, i.e. the distance between U and U ′ in tn,
is denoted by λn. We enumerate the vertices of the spine as V0 = U, . . . ,Vλn = U ′. Removing the edges of the spine
disconnects tn into a sequence of λn + 1 subtrees, say b0, . . . ,bλn which can be naturally rooted at V0, . . . , Vλn . We
refer to the sequence (b0, . . . ,bλn) as the spinal decomposition of tn and to each bi as a bush.

The following description of the spinal decomposition belongs to the folklore of random trees. It follows for in-
stance from Corollary 30 of Aldous and Pitman [2] and the observation due to Aldous [1] that a uniform rooted Cayley
tree with n vertices can be viewed as a Galton–Watson tree with Poissonian offspring distribution and conditioned to
have size n, where the labels are assigned to the vertices uniformly at random (and the parameter of the Poisson law

1The case when n is even an m = n/2 is somewhat special due to symmetry; it can be neglected as its probability is small when n is large.
2Recall that the contour process of the Brownian CRT is twice the standard Brownian excursion; which explains the extra factor 2 in [4].
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irrelevant). See also formula (104) in [2] for the law of the length of the spine. Recall that an integer valued random
variable β has the Borel(1) distribution if

P(β = k) = e−kkk−1

k! , k ≥ 1.

Lemma 2. For every integer n ≥ 1, we have:

(i) The distribution of the length of the spine is given by

P(λn = k) = (k + 1)(n − 1)!
nk+1(n − k − 1)! , k = 0, . . . , n − 1.

(ii) Conditionally on λn = k, the sizes β0, . . . , βk of the bushes b0, . . . ,bk of the spinal decomposition are dis-
tributed as the sequence of k + 1 independent Borel(1) variables conditioned to have sum equal to n.

(iii) Conditionally on λn = k and the set of vertices V0, . . . , Vk of the bushes, b0, . . . ,bk are independent and each
bi has the uniform distribution on the space of rooted Cayley trees on the set of vertices Vi .

3. Density of fireproof vertices

Recall the dynamics on the set of edges of tn which has been described in the Introduction, and consider its terminal
state. For every n ≥ 1, we write Dn for the density of fireproof vertices, i.e.

Dn = n−1 Card
{
i ∈ [n]: all the edges adjacent to i are fireproof

}
.

Theorem 1. We have

(i) For α > 1/2, limn→∞ Dn = 1 in probability.
(ii) For α = 1/2,

lim
n→∞Dn = D∞ in distribution,

where

P(D∞ ∈ dx) = 1√
2πx(1 − x)3

exp

(
− x

2(1 − x)

)
dx, x ∈ (0,1).

(iii) For α < 1/2, limn→∞ Dn = 0 in probability.

Proof. The guiding line consists in reducing the proof to Lemma 1 by viewing fireproof edges as cuts on tn. In this
direction, it is convenient to rephrase slightly the dynamics described in the Introduction, using well-known properties
of independent exponential variables.

We attach to each edge an exponential random variable with parameter (1+n−α) which we view as an alarm clock,
independently of the other edges. When the first alarm clock rings, say it is attached to the edge e, then we toss a coin
with

P(Head) = 1/
(
1 + n−α

)
and P(Tail) = n−α/

(
1 + n−α

)
.

If the outcome is Head, then we remove the edge e, thus disconnecting tn into a pair of subtrees. If the outcome is
Tail, then a fire starts at e and all the edges burn instantaneously. We stress that burned edges will be kept forever.

We iterate in an obvious way. Specifically, assume that the outcome of the first coin-tossing is Head, as otherwise
we have reached the terminal state. Wait until the second alarm clock rings; suppose it is attached to the edge e′ which
belongs to one of the two subtrees, say t′. We then toss again the same coin, removing the edge e′ if the outcome is
Head, and burning all the edges of t′ if the outcome is Tail. We repeat the procedure independently each time a new
alarm clock rings, agreeing that when this alarm clock is attached to an edge that has already burned, we do nothing.
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A vertex i ∈ [n] is fireproof if and only if all the edges adjacent to i have been removed in the procedure above.
Observe that the order on the edges that is induced by the exponential clocks corresponds to a uniform random
enumeration. Further, each time an alarm clock rings on an edge which has not yet burned, there is the same conditional
probability 1/(1 + n−α) to remove that edge given the state of the system. Thus, if we consider arbitrary vertices
i1, . . . , i�, the probability that all these vertices are fireproof is given by

E
((

1 + n−α
)−X(n;i1,...,i�)),

where X(n; i1, . . . , i�) is the number of cuts needed to isolated each and every of the ij ’s when removing successively
the edges of tn in a uniform random order and discarding the subtrees which contain none of the vertices i1, . . . , i�.

Now pick k vertices U1, . . . ,Uk uniformly at random with replacement in [n] and independently of the preceding.
On the one hand we have

P(U1, . . . ,Uk are fireproof) = E
(
Dk

n

)
,

where Dn is the density of fireproof vertices. On the other hand, the discussion above shows that, in the notation of
Section 2.1,

P(U1, . . . ,Uk are fireproof) = E
((

1 + n−α
)−X(n,k))

.

We deduce from Lemma 1 that

lim
n→∞ E

(
Dk

n

) =
{1 if α > 1/2,

E
(
exp

(−χ(2k)
))

if α = 1/2,
0 if α < 1/2,

where χ(2k) is a chi-variable with 2k degrees of freedom.
In particular, this proves (i) and (iii). In the critical case α = 1/2, this also establishes the weak convergence of Dn

towards some random variable D∞ in [0,1] whose law is characterized by its entire moments, specifically

E
(
Dk∞

) = E
(
exp

(−χ(2k)
))

, k ≥ 1.

Lemma 3 below claims that the law of D∞ is then given as in Theorem 1, thus completing its proof. �

We still have to establish the following result.

Lemma 3. Let D∞ be a random variable with entire moments given by

E
(
Dk∞

) = E
(
exp

(−χ(2k)
))

, k ≥ 1,

where χ(2k) is a chi-variable with 2k degrees of freedom. Then

P(D∞ ∈ dx) = 1√
2πx(1 − x)3

exp

(
− x

2(1 − x)

)
dx, x ∈ (0,1).

Proof. The Laplace transform of chi-variables can be expressed in terms of Kummer’s confluent hypergeometric
functions; however this is not really useful to determine explicitly the law of D∞. We rather use the fact that χ(2k)

arises as the total length of the Brownian CRT reduced to its root and k i.i.d. leaves which are picked according to the
mass-measure of the CRT, as it has been pointed out in the proof of Lemma 1.

We now recall the fragmentation of the Brownian CRT introduced by Aldous and Pitman [3]. Consider a Poisson
point process on the skeleton of the Brownian CRT with intensity given by its length measure. We should think of
the atoms of this measure as cuts on the skeleton. Let L0 be the root of the CRT and L1, . . . ,Lk be a sequence of
k i.i.d leaves sampled according to the mass-measure. Introduce the event �k that there is no atom of the Poisson
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point measure on the branches connecting the root L0 to the Lj ’s. In particular, viewing χ(2k) as the length of the
Brownian CRT reduced to L0,L1, . . . ,Lk , we have now

E
(
Dk∞

) = E
(
exp

(−χ(2k)
)) = P(�k).

The right-hand side can also be expressed as E(Y k∗ ), where Y∗ denotes the mass of the connected component of the
root L0 after logging the CRT at the points of the Poisson random measure. As a consequence, D∞ and Y∗ have the
same law. This establishes our claim since, according to Corollary 5 of Aldous and Pitman [3], the distribution of Y∗
is given by

P(Y∗ ∈ dx) = 1√
2πx(1 − x)3

exp

(
− x

2(1 − x)

)
dx, x ∈ (0,1). �

Remark. Slightly more generally, we may consider a critical fire process on a uniform Cayley tree with size n with
firing rate a/

√
n for some positive constant a. The same arguments as in the present section show that the limiting

density of fireproof vertices is given by the size of the connected component of the root of the Brownian CRT in the
fragmentation of Aldous and Pitman, where the rate of cuts on the skeleton is now a times the length measure. The
distribution of this limiting density is then

a√
2πx(1 − x)3

exp

(
− a2x

2(1 − x)

)
dx, x ∈ (0,1).

4. Giant components in the fireproof forest

For every integer n ≥ 1, we denote by Fn the fireproof forest which results from the dynamics on edges of the
uniform Cayley tree tn described in the Introduction. More precisely, the vertices of Fn consists of the subset of
fireproof vertices, and the edges of Fn are the fireproof edges with fireproof end-points (recall that edges of tn with at
least one burnt extremity are discarded).

Our goal in this section is to investigate some connectivity properties of Fn when n is large. We are especially
interested in the existence of giant components in Fn, i.e. trees with size of order n. As we know from Theorem 1 that
in the subcritical case α < 1/2, the total size of Fn is o(n) in probability when n → ∞, we focus on the case α ≥ 1/2.
Observe also that for α > 1, the probability that all the n − 1 edges of tn become fireproof is high when n is large, so
the range of interest for α is [1/2,1].

In order to investigate this problem, we introduce U and U ′, two independent uniform random vertices in [n],
independently of Fn. Our main result provides an asymptotic estimate for the probability that U and U ′ are two
connected vertices in Fn as n → ∞.

Theorem 2. The probability that U and U ′ belong to the same tree-component of the fireproof forest Fn converges
when n → ∞ to 1 in the supercritical case α > 1/2, and to 0 in the critical case α = 1/2.

Before tackling the proof of Theorem 2, we present an immediate consequence in terms of the existence of giant
tree-components.

Corollary 1. Fix ε ∈ (0,1).

(i) In the supercritical case α > 1/2, the probability that there exists a tree-component with size greater than
(1 − ε)n in the fireproof forest Fn converges to 1 as n → ∞.

(ii) In the critical case α = 1/2, the probability that there exists a tree-component with size greater than εn in the
fireproof forest Fn converges to 0 as n → ∞.
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Proof. (i) Let κ denote the number of tree-components of Fn and f1,n ≥ · · · ≥ fκ,n the ranked sequence of their sizes.
As U and U ′ are picked uniformly in [n] and independently of Fn, and

∑κ
i=1 fi,n ≤ n, we have

P
(
U and U ′ are connected in Fn

) = n−2
E

(
κ∑

i=1

f 2
i,n

)
≤ E

(
n−1f1,n

)
.

We deduce from Theorem 2 that limn→∞ E(n−1f1,n) = 1 in the supercritical case, and therefore n−1f1,n converges
in probability to 1.

(ii) Clearly there is the lower bound

P
(
U and U ′ are connected in Fn

) ≥ ε2
P(f1,n ≥ εn),

and we conclude again from Theorem 2 that the right-hand side converges to 0 for α = 1/2. �

In the critical case, we point out that despite the absence of giant components, there exists nearly giant tree-
components.

Proposition 1. In the critical case α = 1/2, for every ε > 0, the probability that there exist tree-components of Fn

with size greater than n1−ε converges to 1 as n → ∞.

The rest of this section is devoted first to the proof of Theorem 2, and then to that of Proposition 1. In this direction,
we denote for every n ∈ N by X(n) = X(n,1) the number of random cuts which are needed to isolate a typical vertex
in a uniform Cayley tree of size n, using the algorithm of Section 2.1. Let also β stand for a Borel(1) variable wich
we assume to be independent of the X(n)’s; we shall need an estimate for the Laplace transform of the mixture X(β).

Lemma 4. There exist numerical constants c, c′ > 0 such that for all sufficiently small q > 0

cq ln(1/q) ≤ E
(
1 − exp

(−qX(β)
)) ≤ c′q ln2(1/q).

Proof. To ease the notation, c will be used to denote some unimportant numerical constants which are positive and
finite, and may be different in different expressions.

First, for every k ≥ 1, there is the upperbound for the tail of X(β)

P
(
X(β) > k

) ≤ P
(
β > k2) +

k2∑
n=k+1

P(β = n)P
(
X(n) > k

)
.

On the one hand, it is well known from Stirling’s formula that

P(β = n) ∼ 1√
2πn3

.

On the other hand, Markov inequality yields P(X(n) > k) ≤ k−1
E(X(n)) and since E(X(n)) ≤ c

√
n (cf. Meir and

Moon [13], or Janson [11]), we conclude that

P
(
X(β) > k

) ≤ ck−1

(
1 +

k2∑
n=k+1

1

n

)
≤ c

1 + ln k

k
.

It follows that for k ≥ 2

E
(
X(β) ∧ k

) =
k−1∑
n=0

P
(
X(β) > n

) ≤ c ln2 k,
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and therefore for every 0 < q ≤ 1/2

E
(
1 − exp

(−qX(β)
)) ≤ E

((
qX(β)

) ∧ 1
) = qE

(
X(β) ∧ q−1) ≤ cq ln2(1/q).

Second, there is the lowerbound for the tail of X(β)

P
(
X(β) > k

) ≥ P
(
β > k2) × inf

n>k2
P
(
X(n) > k

)
.

On the one hand, P(β > k2) ∼ √
2/πk−1, and on the other hand, since we know from Janson [11] and Panholzer [14]

that X(n)/
√

n converges weakly to a Rayleigh variable as n → ∞, we also have infn>k2 P(X(n) > k) ≥ c. Hence

P
(
X(β) > k

) ≥ c/k, k ≥ 1.

Now it suffices to write

E
(
1 − exp

(−qX(β)
)) = q

∫ ∞

0
e−qx

P
(
X(β) > x

)
dx

≥ e−1q

∫ 1/q

0
P
(
X(β) > x

)
dx,

so the preceding inequality enables us to conclude that

E
(
1 − exp

(−qX(β)
)) ≥ cq ln(1/q),

which completes the proof. �

Lemma 4 yields a rough asymptotic estimate for partial sums of i.i.d. copies of X(β) properly conditioned, which
will suffice for our purpose. Specifically, we consider a sequence (Xi(n), n ≥ 1)i∈N of i.i.d. copies of (X(n),n ≥ 1)

and a sequence (βi)i∈N of i.i.d. Borel(1) variables which is independent of the preceding. We now state the following
technical result.

Corollary 2. We have for every 0 < ε < 1 and a > 0 that:

(i) if α > 1/2, then as n → ∞,

max√
εn≤k≤√

n/ε
P

(
n−α

k∑
i=1

Xi(βi) > a

∣∣∣∣
k∑

i=1

βi = n

)
→ 0,

(ii) if α = 1/2, then as n → ∞,

max√
εn≤k≤√

n/ε
P

(
n−1/2

k∑
i=1

Xi(βi) ≤ a

∣∣∣∣
k∑

i=1

βi = n

)
→ 0.

Proof. (i) The unconditional version is easy; namely we claim that for α > 1/2

lim
n→∞n−α

�√n�∑
i=1

Xi(βi) = 0 in probability. (1)

Indeed, take q > 0 and write

E

(
exp

(
−qn−α

�√n�∑
i=1

Xi(βi)

))
= (

1 − E
(
1 − exp

(
qn−αX(β)

)))�√n�
.
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It follows from Lemma 4 that when n → ∞, the quantity above converges to 1, which establishes (1).
The conditional version now follows from a standard argument based on the local limit theorem. Specifically,

write τk = β1 + · · · + βk for the partial sum of i.i.d. Borel variables, so τk has the Borel–Tanner distribution with
parameter k. It is well known that k−2τk converges in law as k → ∞ to a stable(1/2) random variable. If we denote
by g the continuous density of the latter, then Gnedenko’s Local Limit Theorem (see, for instance, Theorem 4.2.1. in
[10]) states that

lim
k→∞ sup

�≥1

∣∣k2
P(τk = �) − g

(
�/k2)∣∣ = 0. (2)

Under the conditional probability given τk = n, the k-tuple (X1(β1), . . . ,Xk(βk)) is exchangeable, and we have

P

(
n−α

k∑
i=1

Xi(βi) > a

∣∣∣τk = n

)
≤ 2P

(
n−α

�k/2�∑
i=1

Xi(βi) > a/2
∣∣∣τk = n

)

≤ 2P

(
n−α

�k/2�∑
i=1

Xi(βi) > a/2

)
× sup

�≥1

P(τ�k/2� = �)

P(τk = n)
.

On the one hand, we know from (1) that the first term in the product above converges to 0 when n → ∞, uniformly
for

√
εn ≤ k ≤ √

n/ε. On the other hand, (2) yields the bounds

max√
εn≤k≤√

n/ε
sup
�≥1

k2
P(τ�k/2� = �) ≤ c(ε)

and (since the stable density g remains bounded away from 0 on [ε,1/ε])
min√

εn≤k≤√
n/ε

k2
P(τk = n) ≥ c′(ε),

where c(ε) and c′(ε) are two positive constants depending only on ε, which completes the proof.
(ii) The argument is similar for α = 1/2, except that the unconditional version is now

lim
n→∞n−1/2

�√n�∑
i=1

Xi(βi) = ∞ in probability.

The conditional version then follows as for (i). �

We are now able to proceed to the proof of Theorem 2.

Proof of Theorem 2. Recall the spinal decomposition of the uniform random Cayley tree tn in Section 2.2, and in
particular Lemma 2. We consider the dynamics with fires described in the Introduction separately on the spine s and
each bush b0, . . . ,bλn , where λn is the length of the spine.

Plainly, U and U ′ are connected in the fireproof forest Fn if and only if

• the entire spine s is fireproof in the dynamics restricted to s,
• the root Vi of the bush bi is fireproof in the dynamics restricted to bi , for every i = 0, . . . , λn.

We now invoke Lemma 2 and work conditionally on λn = k and on the set of vertices V0, . . . , Vk of the k + 1
bushes. Recall that each bush bi rooted at Vi is a uniform rooted Cayley tree on Vi , independently of the other bushes.
In particular, we know from the proof of Theorem 1 that the conditional probability that Vi is fireproof in the dynamics
restricted to bi is

E
(
(1 + n−α)−X(ni)

)
,
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where ni = Card(Vi ) is the size of bi and X(m) stands for the variable that gives the number of random cuts needed
to isolate the root of a uniform rooted Cayley tree of size m. Further, the conditional probability that all the k edges of
the spine are fireproof in the dynamics restricted to s is (1 +n−α)−k . We conclude that the (unconditional) probability
that U and U ′ are connected in Fn equals

∞∑
k=0

P(λn = k)
(
1 + n−α

)−k
E

(
exp

(
− ln

(
1 + n−α

) k∑
i=0

Xi(βi)

))
,

where βi = Card(Vi ) is the size of the bush bi , and we used the same notation as for Corollary 2.
It is well known, and also easy to check from Lemma 2(i) that n−1/2λn converges in distribution to a Rayleigh

variable as n → ∞. It now follows from Lemma 2(ii) and Corollary 2 that the quantity above converges as n → ∞ to
1 if α > 1/2, and to 0 if α = 1/2. �

We now turn our attention to the proof of Proposition 1, which will follow easily from the two following facts.
First, for 1 ≤ k ≤ n, disconnect a uniform random Cayley tree tn by removing k − 1 of its edges uniformly at random.
This yields a partition of [n] into k subsets of vertices, say V1, . . . , Vk , where the labeling is made uniformly at random
given the preceding. Denote by t(i)n the restriction of tn to Vi for i = 1, . . . , k.

Lemma 5. (i) Conditionally on the induced partition [n] = ⊔k
i=1 Vi , the t(i)n ’s are independent uniform Cayley trees

on their respective sets of vertices.
(ii) The k-tuple (#V1, . . . ,#Vk) of the sizes of the induced partition is distributed as k independent Borel(1) vari-

ables conditioned to have sum n.

Proof. For k = 2, the first claim reduces to Lemma 2(iii), and the general case follows by induction. The second
assertion is known from Pavlov [15] and Pitman [16]; see also Corollary 5.8 in [5]. �

We next recall informally a well-known property of increasing random walks with a step distribution which has a
regularly varying tail of exponent > −1. Conditioning such a random walk to be abnormally large after k steps where
k is large, essentially amounts to conditioning the random walk on having one of its steps abnormally large. Here is a
consequence tailored for our need.

Lemma 6. Let β1, . . . be a sequence of i.i.d. Borel(1) variables and set τk = β1 + · · · + βk . Fix ε > 0; let k(n) =
�n(1−ε)/2� and denote by β∗

2 the second largest value amongst β1, . . . , βk(n). Then

lim
n→∞ P

(
β∗

2 ∈ [
n1−2ε, n1−ε/2]|τk(n) = n

) = 1.

Proof. We first recall that τk(n) has the Borel–Tanner distribution with parameter k(n), so that an application of
Stirling formula readily yields

P(τk(n) = n) = k(n)

(n − k(n))!e−nnn−k(n)−1 ∼ (
2πn2+ε

)−1/2 ∼ k(n)P(β = n).

Next, note that

ln P

(
max

i=1,...,k(n)−1
βi ≤ n1−2ε

)
∼ (

k(n) − 1
)

ln
(
1 − (

2πn1−2ε
)−1/2) ∼ −nε/2/

√
2π,

which entails

P
(
β∗

2 ≤ n1−2ε
) ≤ k(n)P

(
max

i=1,...,k(n)−1
βi ≤ n1−2ε

)
= o

(
P(τk(n) = n)

)
.

As a consequence

lim
n→∞ P

(
β∗

2 ≤ n1−2ε|τk(n) = n
) = 0.
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Then we write

P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2, τk(n)−1 ≤ k2(n) lnn, τk(n) = n

)

=
k2(n) lnn∑
j=k(n)−1

P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2, τk(n)−1 = j

)
P(β = n − j)

∼ 1√
2πn3

P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2, τk(n)−1 ≤ k2(n) lnn

)
,

where at the second line we used that

P(β = n − j) ∼ (2πn3)−1/2 uniformly for k(n) − 1 ≤ j ≤ k2(n) lnn.

It is immediately checked that

P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2

)
∼ 1,

and, because k(n)−2τk(n)−1 converges in distribution to a stable (1/2) variable, we also have P(τk(n)−1 ≤
k2(n) lnn) ∼ 1. Putting the pieces together, we get

P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2, τk(n)−1 ≤ k2(n) lnn, τk(n) = n

)
∼ 1√

2πn3
.

We conclude from an argument of symmetry that

P
(
β∗

2 ≤ n1−ε/2, τk(n) = n
) ≥ k(n)P

(
max

i=1,...,k(n)−1
βi ≤ n1−ε/2, τk(n)−1 ≤ k2(n) lnn, τk(n) = n

)

and then

lim inf
n→∞ P

(
β∗

2 ≤ n1−ε/2|τk(n) = n
) ≥ lim inf

n→∞
k(n)√

2πn3P(τk(n) = n)
∼ 1;

which completes the proof. �

We have now all the ingredients to establish Proposition 1.

Proof of Proposition 1. We shall establish the claim with n1−3ε replacing n1−ε in the statement, which makes no
difference as ε > 0 can be chosen arbitrarily small.

Recall that α = 1/2 and take the same notation as in Lemma 6. We start by considering the dynamics with fires
described in the Introduction until the instant when the k(n)th flammable edge of tn is replaced by a fireproof one.
Because k(n) � √

n, the probability that a fire has occurred before that instant is small when n is large, and we
implicitly work conditionally on the complementary event in the sequel.

Let us now remove these k(n) first fireproof edges, and focus on V ∗
2 , the second largest set of vertices in the induced

partition. According to Lemma 5(i), conditionally on #V ∗
2 = m, the restriction of tn to V ∗

2 is a uniform Cayley tree on
a set of m vertices.

Because the edges connecting V ∗
2 to tn\V ∗

2 are fireproof, no fire started outside V ∗
2 can burn edges between vertices

of V ∗
2 . We also make the following elementary observation of monotonicity. One can couple two fire-dynamics on the

same tree with different firing rates such that every edge which is burnt for the dynamics with the smallest firing rate
is also burnt for the dynamics with the highest firing rate. As a consequence, a tree-component in the fireproof forest
for the dynamics with the highest firing rate is always contained into a tree-component of the fireproof forest for the
dynamics with the smallest firing rate.
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Thanks to Lemmas 5(ii) and 6, we may focus on the case when the size of V ∗
2 belongs to [n1−2ε, n1−ε/2]. Now

conditionally on #V ∗
2 = m, we run the fire dynamics restricted to V ∗

2 with firing rate m−1/(2−ε) ≥ n−1/2. Since
1/(2 − ε) > 1/2, we deduce from Corollary 1(i) and the monotonicity property observed above that the conditional
probability given #V ∗

2 that the fireproof forest Fn restricted to V ∗
2 contains a tree-component of size at least 1

2 #V ∗
2 ,

converges in probability to 1. A fortiori, the conditional probability given #V ∗
2 that the fireproof forest restricted to

V ∗
2 contains a tree-component of size at least n1−3ε , converges in probability to 1, which completes the proof of our

statement. �
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