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Abstract. We consider the autoregressive model on R
d defined by the stochastic recursion Xn = AnXn−1 +Bn, where {(Bn,An)}

are i.i.d. random variables valued in R
d × R

+. The critical case, when E[logA1] = 0, was studied by Babillot, Bougerol and Elie,
who proved that there exists a unique invariant Radon measure ν for the Markov chain {Xn}. In the present paper we prove that the
weak limit of properly dilated measure ν exists and defines a homogeneous measure on R

d \ {0}.

Résumé. Nous considérons le modèle autorégressif sur R
d défini par récurrence par l’équation stochastique Xn = AnXn−1 +Bn,

où {(Bn,An)} sont des variables aléatoires à valeurs dans R
d × R

+, indépendantes et de même loi. Le cas critique, c’est-à-dire
lorsque E[logA1] = 0, a été étudié par Babillot, Bougerol et Elie, qui ont montré qu’il existe une et une seule mesure de Radon
ν invariante pour la chaîne de Markov {Xn}. Dans ce papier nous démontrons que la mesure ν, convenablement dilatée, converge
faiblement vers une mesure homogène sur R

d \ {0}.
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1. Introduction and the main result

We consider the autoregressive process on R
d :

Xx
0 = x,

(1.1)
Xx

n = AnX
x
n−1 + Bn,

where the random pairs {(Bn,An)}n∈N valued in R
d ×R

+ are independent, identically distributed (i.i.d.) according to
a given probability measure μ. The Markov chain {Xx

n} occurs in various applications e.g. in biology and economics,
see [1] and the comprehensive bibliography there.

It is convenient to define Xn in the group language. Let G be the “ax + b” group, i.e. G = R
d

� R
+, with mul-

tiplication by (b, a) · (b′, a′) = (b + ab′, aa′). The group G acts on R
d by (b, a) · x = ax + b, for (b, a) ∈ G and
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x ∈ R
d . For each n, we sample the random variables (Bn,An) ∈ G independently with respect to the measure μ, then

Xx
n = (Bn,An) · · · · · (B1,A1) · x.
The Markov chain Xx

n is usually studied under the assumption E[logA1] < 0. Then, if additionally E[log+ |B1|] <

∞, there is a unique stationary measure ν [16], i.e. the probability measure ν on R
d satisfying

μ ∗G ν(f ) = ν(f ) (1.2)

for every positive measurable function f . Here

μ ∗G ν(f ) =
∫

G

∫
Rd

f (ax + b)ν(dx)μ(db da).

One of the main results concerning the stationary measure ν is Kesten’s theorem [16] (see also [13,15]) saying that if
E[Aα

1 ] = 1 (and some other assumptions are satisfied), then

ν
(
u: |u| > z

) ∼ Cz−α as z → +∞
for a positive constant C.

Here we study the critical case, when E[logA1] = 0. Then Xn has no invariant probability measure. However, it
was proved by Babillot, Bougerol and Elie [1] that if

• P[A1 = 1] < 1 and P[A1x + B1 = x] < 1 for all x ∈ R
d ,

• E[(| logA1| + log+ |B1|)2+ε] < ∞, for some ε > 0,
• E[logA1] = 0.

Then there exists a unique (up to a constant factor) invariant Radon measure ν, i.e. a measure satisfying (1.2) (see also
[2,3]). We will say that μ satisfies hypothesis (H) if all the assumptions above are satisfied. For our purpose we will
need an additional assumption, which will be called hypothesis M(δ):

• there exists δ > 0 such that E[Aδ
1 + A−δ

1 + |B1|δ] < ∞.

The measure ν appears in a natural way when problems related to the process Xx
n or to random walks on the group

G in the critical case are investigated. Let us mention two examples. Le Page and Peigné [17] proved the local limit
theorem for Xx

n , saying that under some further assumptions,
√

nE[f (Xx
n)] converges to ν(f ) for any compactly

supported function f . Elie [10] described the Martin boundary for the left random walk on the affine group with the
measure ν playing the central role. Therefore, it is natural to ask about a quantified description of the measure ν and
the aim of this paper is to answer this question. Our main result is an analogue of Kesten’s theorem in the critical case.

Theorem 1.1. Assume that hypotheses (H), M(δ) are satisfied and the law μA of A1 is aperiodic. Then there exists
a probability measure Σ on the unit ball Sd−1 ⊂ R

d and a strictly positive number C+ such that the measures
δ(0,z−1) ∗G ν converge weakly on R

d \ {0} to C+Σ ⊗ da
a

as z → +∞, that is

lim
z→+∞

∫
Rd

φ
(
z−1u

)
ν(du) = C+

∫
R+

∫
Sd−1

φ(aw)Σ(dw)
da

a

for every function φ ∈ Cc(R
d \ {0}).

In particular, for every α < β

lim
z→∞ν

(
u: αz < |u| < βz

) = C+ log
β

α
. (1.3)

The first estimate of the behavior of the measure ν at infinity was given by Babillot, Bougerol and Elie [1], who
proved, for d = 1 and under some nondegeneracy hypotheses, that for every α < β

ν
(
(αz,βz]) ∼ log(β/α) · L(z) as z → +∞,
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where L is a slowly varying function.
The second author recently proved [4] that the function L(z) is in fact constant, but in a more restrictive setting:

besides the hypotheses stated above, one assumes in [4] that d = 1, the closed semigroup generated by the support of
μ is the whole group G and the measure μA is spread-out. Moreover nondegeneracy of the limiting constant C+ was
proved there only in the particular case when B1 ≥ ε a.s.

When the measure μ is related to a differential operator, stronger results have been obtained recently in [6,8].
Namely, let {μt } be the one parameter semigroup of probability measures, whose infinitesimal generator is a second-
order elliptic differential operator on R

d × R
+. Then there exists a unique Radon measure ν that is μt -invariant, for

any t . Moreover, ν has a smooth density m such that

m(zu) ∼ C(u)z−d as z → +∞
for some continuous nonzero function C on R

d \ {0}.
In this paper we also describe the behavior of the measure ν in the case when the measure μA is periodic. This

situation has been quite neglected up to now, also in the contracting case. Even if we cannot obtain the convergence
of the measure ν at infinity, we still have a good estimation of the asymptotic of the measure of the ball of radius z.

Theorem 1.2. Suppose that hypotheses (H) and M(δ) are satisfied. If the measure μA is periodic of period p, i.e.
〈suppμA〉 = {enp}n∈Z, then the family of measures δ(0,z−1) ∗G ν is weakly compact and there exists a positive constant
C+ such that

lim
z→∞

∫
Rd

φ
(
z−1u

)
ν(du) = C+

∑
k∈Z

φ
(
epk

)
for any function φ belonging to T , the subset of CC(Rd \{0}) consisting of radial functions such that

∑
k∈Z

φ(aepk) =∑
k∈Z

φ(epk) for all a ∈ R
+. In particular

ν
(
u: |u| ≤ z

) ∼ C+
p

log z as z → +∞.

The case when B1 is positive is also of a particular interest in applications and generally allows to use more
powerful techniques. It will be the subject of a forthcoming paper, where we prove that the moment hypothesis of
Theorem 1.1 can be weakened.

Let us mention that Theorems 1.1 and 1.2 have been applied recently to study tails of fixed points of the so-called
smoothing transform in a boundary case. However in this context ‘boundary case’ concerns probability measures
having infinite mean. See [5] for more details.

The structure of the paper is the following. First we estimate the behavior of ν at infinity in Section 2 under the
very mild hypothesis (H). In Theorem 2.1, we show that δ(0,z−1) ∗G ν(K) is smaller than CKL(z), for all compact sets
K and a slowly varying function L, i.e. the family of measures δ(0,z−1) ∗G ν/L(z) is weakly compact. We also prove
that

∫
Rd (1 + |u|)−γ ν(du) < ∞ for any γ > 0 and we obtain some invariance properties of the accumulation points of

δ(0,z−1) ∗G ν/L(z).
Next, as in [4], we reduce the problem to study asymptotic behavior of positive solutions of the Poisson equation.

More precisely, let μ be the law of − logA1. The mean of μ is equal to 0 and given a positive φ ∈ Cc(R
d \ {0}) we

define the function on R:

fφ(x) = δ(0,e−x) ∗G ν(φ) =
∫

Rd

φ
(
e−xu

)
ν(du). (1.4)

Then fφ can be considered as a solution of the Poisson equation

μ ∗R fφ(x) = fφ(x) + ψφ(x), x ∈ R, (1.5)

for a specific function ψφ . The function ψφ possesses some regularity properties and it is easier to study than fφ .
The main problem can be formulated as follows: given a function ψφ describe the behavior at infinity of positive
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solutions of the Poisson equation. An answer to this rather classical question was given by Port and Stone [19], under
the hypothesis that μ is spread out. However, their methods, slightly developed, work for general centered measure μ

on R. Namely we can construct a class F (μ) of functions ψ , with well defined potential that can be used to describe
solutions of the corresponding Poisson equation. All the details will be figured out in Section 3.

The next step is to prove that the function ψφ belongs to F (μ). A priori, this is not true for all function φ.
However we are able to construct special functions that have the good properties and allow to deduce our main results
(Section 4).

Finally in Section 5 we prove that the limit of ν(αz < |u| < βz) is strictly positive and the only hypothesis needed
for this result is condition (H).

2. The upper bound

The goal of this section is to prove a preliminary estimate of the measure ν at infinity. We prove that, under the very
mild hypothesis (H) on the measure μ, the tail measure of a compact set δ(0,z−1) ∗ν(K) is bounded by a slowly varying
function L(z), that is a function on R

+ such that limz→+∞ L(az)/L(z) = 1 for all a > 0. Such functions grow very
slowly, namely they are smaller than zγ for any γ > 0, in a neighborhood of +∞.

Theorem 2.1. If hypothesis (H) is fulfilled, there exists a positive slowly varying function L on R
∗+ such that the

normalized family of measures on R
d \ {0}

δ(0,z−1) ∗G ν

L(z)
(2.1)

is weakly compact for z ≥ 1. Thus (1 + |x|)−γ ∈ L1(ν) for any γ > 0. Furthermore, all limit measures η are nonnull
and invariant under the action of G(μA), the closed sub-group of R

∗+ generated by the support of μA, that is

δ(0,a) ∗G η = η ∀a ∈ G(μA).

This theorem is a partial generalization of Proposition 5.2 in [1].
We first prove that the μ-invariance of ν implies that the accumulation points of the tail are invariant under the

action of G(μA), namely we have

Lemma 2.2. Suppose that there exists a function L(z) such that the family (2.1) is weakly compact when z goes to
+∞, then the accumulation points η are invariant under the action of G(μA).

Proof. Let η be a limit measure along a sequence {zn} and fix a function φ ∈ C1
c (Rd \ {0}). We claim that the function

h(y) = δ(0,y) ∗G η(φ) = lim
n→∞

δ
(0,z−1

n y)
∗G ν(φ)

L(zn)

on R
+ is μA-superharmonic. Indeed, observe that for all (b, a) ∈ G there is a compact set K = K(b) and a constant

C such that∣∣φ(
z−1(au + b)

) − φ
(
z−1(au)

)∣∣ < C
∣∣z−1b

∣∣1K

(
z−1(au)

)
for all z > 1 and u ∈ R

d . Then

lim
n→∞

|δ
(0,z−1

n )
∗G δ(b,a) ∗G ν(φ) − δ

(0,z−1
n )

∗G δ(0,a) ∗G ν(φ)|
L(zn)

≤ lim
n→∞

C|z−1
n b|ν(a−1znK)

L(zn)

≤ Cη
(
a−1K

) · lim
n→∞

∣∣z−1
n b

∣∣ = 0,
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hence∫
G

h(ay)μA(da) =
∫

G

lim
n→∞

δ
(0,z−1

n y)
∗G δ(0,a) ∗G ν(φ)

L(zn)
μ(db da)

=
∫

G

lim
n→∞

δ
(0,z−1

n y)
∗G δ(b,a) ∗G ν(φ)

L(zn)
μ(db da)

≤ lim
n→∞

δ
(0,z−1

n y)
∗G μ ∗G ν(φ)

L(zn)
by Fatou’s Lemma

= lim
n→∞

δ
(0,z−1

n y)
∗G ν(φ)

L(zn)
= h(y).

Since h is positive and continuous, then by the Choquet–Deny theorem h(ay) = h(y) for every a ∈ G(μA), that is
δ(0,a) ∗G η(φ) = η(φ). �

Proof of Theorem 2.1. Step 1. The first step is to prove that the tail of the measure ν satisfies a quotient theorem.
Namely that there exists a family of bounded compactly supported functions s such that δ(0,z−1) ∗G ν(s) is strictly
positive for all z ≥ 1 and that for every compact set K there is a positive constant CK such that

δ(0,z−1) ∗G ν(K) ≤ CKδ(0,z−1) ∗G ν(s) ∀z ≥ 1. (2.2)

In other words we show the quotient family
δ
(0,z−1)

∗Gν

δ
(0,z−1)

∗Gν(s)
is weakly compact.

The proof of this property relies only on the fact that, by hypothesis (H), the support of μ contains at least two ele-
ments, one contracting and the other delating R

d . Let call them g+ = (b+, a+) and g− = (b−, a−) with a+ > 1 > a−.
Given two real numbers α and β we consider the annulus

C(α,β) = {
u ∈ R

d | α ≤ |u| ≤ β
}
.

Observe that for all (b, a) ∈ G the following implication holds

u ∈ C

(
α + |b|

a
,
β − |b|

a

)
⇒ au + b ∈ C(α,β).

Using this remark and the fact that ν is invariant with respect to μ∗n, one can verify that

δ(0,z−1) ∗G ν
(
C(α,β)

) ≥ μ∗n(U)ν

(
C

(
max

(b,a)∈U

αz + |b|
a

, min
(b,a)∈U

βz − |b|
a

))
(2.3)

for any U subset of G and n ∈ N.
First we prove that there exists a sufficiently large R > 0 such that δ(0,z−1) ∗G ν(C(1/R,R)) is strictly positive for

all z ≥ 1.
Fix z ≥ 1 and take n ∈ N such that an−1+ ≤ z ≤ an+. Clearly, if gn = (b(gn), a(gn)) is the nth power of an element

g = (b, a) ∈ G then

a
(
gn

) = an and b
(
gn

) =
n−1∑
i=0

aib = an − 1

a − 1
b.

Consider the δ-neighborhood of gn

Uδ

(
gn

) = {
(b, a) ∈ G | e−δ < a−1a

(
gn

)
< eδ and

∣∣b − b
(
gn

)∣∣ < δ
}
.
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Observe that μ∗n(Uδ(g
n+)) > 0 for all δ > 0 and for (b, a) ∈ Uδ(g

n+)

z/R + |b|
a

≤ an+/R + |b(gn+)| + δ

e−δan+
≤ eδ

(
1

R
+ |b+|

a+ − 1
+ δ

)
=: αR,

Rz − |b|
a

≥ Ran−1+ − |b(gn+)| − δ

eδan+
≥ e−δ

(
R

a+
− |b+|

a+ − 1
− δ

)
=: βR.

Since ν is a Radon measure with the infinite mass, its support cannot be compact. Thus, for a fixed δ, there exits a
sufficiently large R such that: ν(C(αR,βR)) > 0. Then by (2.3):

δ(0,z−1) ∗G ν
(
C(1/R,R)

) ≥ μ∗n
(
Uδ

(
gn+

))
ν
(
C(αR,βR)

)
> 0 (2.4)

for all z ≥ 1.
For R > 2 consider the compact sets Kn± = C(2a−n± /R,a−n± R/2). Notice that for δ < log(4/3), (b, a) ∈ Uδ(g

n±)

and z > zn± := 2R(|b(gn±)| + δ):

z/R + |b|
a

≤ zeδ 1/R + z−1(|b(gn±)| + δ)

an±
≤ z

2a−n±
R

(
eδ 1 + z−1R(|b(gn±)| + δ)

2

)
≤ z

2a−n±
R

,

zR − |b|
a

≥ ze−δ R − z−1(|b(gn±)| + δ)

an±
≥ z

a−n± R

2
· 2e−δ

(
1 − z−1 |b(gn±)| + δ

R

)
≥ z

a−n± R

2
.

Thus by (2.3):

δ(0,z−1) ∗G ν
(
C(1/R,R)

) ≥ μ∗n
(
Uδ

(
gn±

))
ν
(
C

(
z2a−n± /R, za−n± R/2

)) = C−1
Kn±

δ(0,z−1) ∗G ν
(
Kn±

)
for all z > zn±. Since δ(0,z−1) ∗G ν(C(1/R,R)) > 0, the above inequality holds in fact for all z ≥ 1, possibly with a
bigger constant CK and sufficiently large R. We may assume that R > 2 max{a+,1/a−}, then the family of sets Kn±
covers R

d \ {0}.
Finally notice, that every function s ∈ Cc(R

d \ {0}) and such that s(u) ≥ 1C(1/R,R)(u) satisfies (2.2). Indeed, let K

be a generic compact set in R
d \ {0} covered by a finite number of compacts {Ki}i∈I of the type Kn±, then

δ(0,z−1) ∗G ν(K) ≤
∑
i∈I

δ(0,z−1) ∗ ν(Ki) ≤
(
|I |max

i∈I
CKi

)
δ(0,z−1) ∗G ν(s)

for all z ≥ 1.
Step 2. Let L(z) = δ(0,z−1) ∗G ν(s), so that δ(0,z−1) ∗G ν/L(z) is weakly compact when z goes to +∞. It remains

to prove that L is a slowly varying function. Fix a ∈ G(μA) and observe that

L(az)

L(z)
= δ(0,a−1) ∗G δ(0,z−1) ∗G ν(s)

L(z)
.

Let {zn}n∈N be a sequence such that δ(0, z−1
n ) ∗G ν/L(zn) converges to some limit measure η. Then by invariance of

the limit measure

lim
n→∞

L(azn)

L(zn)
= δ(0,a−1) ∗G η(s) = η(s) = 1.

Since for any sequence, there exists a subsequence such that the conclusion above holds, if μA aperiodic, L is slowly
varying and the proof is completed.

If μA is periodic, that is G(μA) = 〈ep〉, take any continuous compactly supported function s0 ≥ 1C(1/R,R), i.e. a
function satisfying (2.2), and define

s(u) =
∫

R
∗+

1[e−p,ep)(t)s0(u/t)
dt

t
. (2.5)
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An easy argument shows that also s is in Cc(R
d \ {0}) and it is bigger than some multiple of 1C(1/R,R). We claim

that δ(0,a−1) ∗G η(s) = η(s) for all a ∈ R
∗+ and not only for a ∈ G(μA) (and thus L(z) is slowly varying). In fact, let

eKp ∈ G(μA) such that eKp > aep then

δ(0,a−1) ∗G η(s) =
∫

Rd

∫
R

∗+
1[ae−p,aep)(t)s0(u/t)

dt

t
η(du)

=
∫

Rd

∫
R

∗+

(
1[ae−p,eKp)(t) − 1[aep,eKp)(t)

)
s0(u/t)

dt

t
η(du)

=
∫

Rd

∫
R

∗+

(
1[ae−Kp,ep)(t)s0(u/t) − 1[ae−Kp,e−p)(t)s0(u/t)

)
η(du)

dt

t

=
∫

Rd

∫
R

∗+
1[e−p,ep)(t)s0(u/t)

dt

t
η(du) = η(s),

since η is G(μA)-invariant. �

3. Recurrent potential kernel and solutions of the Poisson equation for general probability measures

As it has been observed in the Introduction, to understand the asymptotic behavior of the measure ν one has to consider
the function

fφ(x) =
∫

Rd

φ
(
ue−x

)
ν(du)

that is a solution of the Poisson equation

μ ∗R f = f + ψ (3.1)

for a peculiar choice of the function ψ = ψφ = μ ∗R fφ − fφ .
Studying solutions of such equation for a centered probability measure on R is a classical problem. Port and Stone

in their papers [18,19] give an explicit formula describing all bounded from below solutions of (3.1) in terms of the
recurrent potential kernel A of the function ψ . However, they suppose either that the measure is spread-out or, if not,
that the Fourier transform of ψ is compactly supported. This second condition is too restrictive in our setting: such
functions decay too slowly and the corresponding function φ would not be a ν-integrable. For this reason, the results
of the previous paper [4] on the decay of the measure ν were obtained under the hypothesis that μ is spread out. To
avoid this restriction we need to generalize the technics used by Port and Stone [18] to a larger class of functions
F (μ) associated to an arbitrary measure μ.

Let μ be a centered probability measure on R with finite second moment σ 2 = ∫
R

x2μ(dx). We denote by
μ̂(θ) = ∫

R
eixθμ(dx) its Fourier transform and given a function ψ ∈ L1(R) we define its Fourier transform by

ψ̂(θ) = ∫
R

eixθψ(x)dx.
Let F (μ) be the class of functions ψ , such that

(1) ψ , x2ψ and ψ̂ are elements of L1(R),

(2) the function ψ̂(−θ)

1−μ̂(θ)
is dθ -integrable outside any neighborhood of zero.

The second condition is satisfied e.g. when the measure μ is aperiodic and ψ̂ has a compact support or when the
measure μ is spread-out (since is this case sup|θ |>a |μ̂(θ)| < 1). Thus, the set F (μ) contains the set of functions
on which Port and Stone define the recurrent potential but it is, in many cases, bigger. In particular we will see in
Lemma 3.3, that if the measure has an exponential moment, then F (μ) always contains some functions that decay
exponentially. That will be sufficient to prove our main theorem in the next section.

Let J (ψ) = ∫
R

ψ(x)dx and K(ψ) = ∫
R

xψ(x)dx, then we have:
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Theorem 3.1. Assume that ψ,g ∈ F (μ), g is positive and such that J (g) = 1. Then:

• The recurrent potential

Aψ(x) := lim
λ↗1

[
J (ψ)

∞∑
n=0

λnμ∗n ∗ g(0) −
∞∑

n=0

λnμ∗n ∗ ψ(x)

]

is a well defined continuous function.
• Aψ is a solution of the Poisson equation (3.1).
• If J (ψ) ≥ 0, then Aψ is bounded from below and

lim
x→±∞

Aψ(x)

x
= ±σ−2J (ψ). (3.2)

• If J (ψ) = 0, then Aψ is bounded and has a limit at infinity

lim
x→±∞Aψ(x) = ∓σ−2K(ψ). (3.3)

The proof of this result is rather technical and follows the ideas of [18] and [19]. A sketch of the proof is proposed
in the Appendix for reader convenience.

A direct consequence of the previous theorem, is the following characterization of the bounded solutions of the
Poisson equation:

Corollary 3.2. If J (ψ) = 0, then every continuous solution of the Poisson equation bounded from below is of the
form

f = Aψ + h,

where h is constant if μ is aperiodic, and it is periodic of period p if the support of μ is contained in pZ. Thus every
continuous solution of the Poisson equation is bounded and the limit of f (x) exists when x goes to +∞ and x ∈ G(μ).

Conversely if there exists a bounded solution of the Poisson equation, then Aψ is bounded and J (ψ) = 0. In
particular the first part of corollary is valid.

Proof. Let J (ψ) = 0 and assume that f is a continuous solution of the Poisson equation. Since

μ ∗ f = f + ψ and μ ∗ Aψ = Aψ + ψ,

the function h = f − Aψ is μ-harmonic. It is bounded from below because both −Aψ and f are bounded from
below. Therefore by the Choquet–Deny theorem [9], h(x + y) = h(x) for all y in the closed subgroup generated by
the support of μ.

Conversely, suppose that there exists a bounded solution f0 of the Poisson equation. Then Aψ − f0 is μ-harmonic
and bounded from below, and so the Choquet–Deny theorem implies that Aψ is bounded. Thus

lim
x→∞

Aψ(x)

x
= 0

and by (3.2), we deduce J (ψ) = 0. �

As announced we need to construct a class of functions in F (μ) that will be used later on and that have the same
type of decay at infinity as μ:

Lemma 3.3. Let Y be a random variable with the law μ, then the function

r(x) = E
[|Y + x| − |x|]
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is nonnegative and

r̂(θ) = C · μ̂(−θ) − 1

θ2

for θ �= 0. Moreover if E[eδY + e−δY ] < ∞, then r(x) ≤ Ce−δ1|x| for δ1 < δ.
Hence r belongs to F (μ) and for every function ζ ∈ L1(R) such that x2ζ is integrable the convolution r ∗R ζ

belongs to F (μ).

Proof. Observe that, since EY = 0, for x ≥ 0 we can write

r(x) = E
[
(Y + x) − 2(Y + x)1Y+x≤0 − x

] = −2E
[
(Y + x)1Y+x≤0

]
.

Proceeding analogously for x < 0, we obtain

r(x) =
{

−2E
[
(Y + x)1Y+x≤0

]
for x ≥ 0,

E
[
(Y + x)1Y+x>0

]
for x < 0.

(3.4)

Thus the function r is nonnegative.
The Fourier transform of x can be computed in the sense of distributions. Let a(x) = |x| and observe that r =

(μ − δ0) ∗ a. Then â(θ) = C

θ2 , hence r̂(θ) = C · μ̂(−θ)−1
θ2 .

To estimate the decay of r we use (3.4). For x ≥ 0, we write

∣∣r(x)
∣∣ = 2E

[|Y + x|1Y+x≤0
] = 2

∫
x+y≤0

|x + y|μ(dy) ≤ 2
∫

R

|x + y|e−δ0(x+y)μ(dy) ≤ Ce−δ1x

for some constants δ1 < δ0 < δ.
Finally, if ψ = r ∗ ζ with ζ and x2ζ in L1(R), then it is easily checked that both ψ and x2ψ are integrable. Since

ψ̂(θ) = r̂(θ )̂ζ (θ) = C
μ̂(−θ)−1

θ2 ζ̂ (θ) and ζ̂ vanishes at infinity, ψ ∈ F (μ). �

4. Proofs of Theorems 1.1 and 1.2 – Existence of the limit

Our aim is to apply the results of Section 3 and for this purpose we need to show that ψφ is sufficiently integrable.
The upper bound of the tail of ν given in Section 2 will guarantee integrability for positive x. To control the function
for x negative we need to perturb slightly the measures μ and ν in order to have more integrability near 0. This is
included in the following lemma proved in [4] (Lemma 4.1).

Lemma 4.1. For all x0 ∈ R
d the translated measure ν0 = δx0 ∗Rd ν is the unique invariant measure of μ0 = δ(x0,1) ∗G

μ ∗G δ(−x0,1) and it has the same behavior as ν at infinity, that is:

lim
x→+∞

(∫
Rd

φ
(
ue−x

)
ν(du) −

∫
Rd

φ
(
ue−x

)
ν0(du)

)
= 0

for every function φ ∈ C1
c (Rd \ {0}). Furthermore there is x0 ∈ R

d such that the measure ν0 satisfies∫
Rd

1

|u|γ ν0(du) < ∞ for all γ ∈ (0,1). (4.1)

Using (4.1) we can guarantee that the function ψφ decays quickly at infinity, as it is proved in the following lemma.
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Lemma 4.2. Assume that hypotheses (H) and M(δ) are satisfied. Furthermore assume that the function |u|−γ is
ν(du)-integrable for all γ ∈ (0,1). Let φ be a continuous function on R

d such that |φ(u)| ≤ C(1 + |u|)−β for some
β,C > 0. Then fφ and μ ∗ fφ are well defined and continuous. Furthermore if φ is Lipschitz, then∫

R

∫
G

∫
Rd

∣∣φ(
e−x(au + b)

) − φ
(
e−xau

)∣∣ν(du)μ(db da)dx < ∞ (4.2)

and ∣∣ψφ(x)
∣∣ ≤ Ce−ζ |x|

for ζ < min{δ/4, β,1}.

Proof. If ζ < min{β,1}, then

∣∣fφ(x)
∣∣ ≤

∫
Rd

∣∣φ(
e−xu

)∣∣ν(du) ≤
∫

Rd

C

e−ζx |u|ζ ν(du) ≤ Ceζx .

If we suppose also ζ ≤ δ, we have that

∣∣μ ∗ fφ(x)
∣∣ ≤

∫
R

∣∣fφ(x + y)
∣∣μ(dy) ≤ Ceζx

∫
R+

a−ζ μA(da) ≤ Ceζx .

Thus ψφ = μ ∗R fφ − fφ is well defined, continuous and |ψφ(x)| ≤ Ceζx , that gives the required estimates for
negative x. In order to prove (4.2) we divide the integral into two parts. For negative x we use the estimates given
above:∫ 0

−∞

∫
G

∫
Rd

∣∣φ(
e−x(au + b)

) − φ
(
e−xau

)∣∣ν(du)μ(db da)dx

≤
∫ 0

−∞

∫
Rd

∣∣φ(
e−xu

)∣∣ν(du)dx +
∫ 0

−∞

∫
G

∫
Rd

∣∣φ(
e−xau

)∣∣ν(du)μ(db da)dx

≤
∫ 0

−∞
∣∣f|φ|(x)

∣∣dx +
∫ 0

−∞
∣∣μ ∗ f|φ|(x)

∣∣dx < ∞.

To estimate the integral of |φ(e−xau) − φ(e−x(au + b))| for x positive, we use the Lipschitz property of φ to obtain
the following inequality for 0 ≤ θ ≤ 1

∣∣φ(s) − φ(r)
∣∣ ≤ C|s − r|θ max

ξ∈{|s|,|r|}
1

(1 + ξ)β(1−θ)
.

Again we divide the integral into two parts. First we consider the integral over the set where |au + b| ≥ 1
2a|u|. We

choose θ < min{δ/2,1}, γ < min{θ/2, β(1 − θ)}. Then, in view of M(δ), we have∫ ∫
|au+b|≥(1/2)|au|

∣∣φ(
e−xau

) − φ
(
e−x(au + b)

)∣∣μ(db da)ν(du)

≤
∫

G

∫
Rd

C|e−xb|θ
(1 + |e−xau|)β(1−θ)

ν(du)μ(db da) ≤
∫

G

∫
Rd

C|e−xb|θ
|e−xau|γ ν(du)μ(db da)

≤ Ce−(θ−γ )x

∫
G

|b|θ |a|−γ μ(db da)

∫
Rd

|u|−γ ν(du)

≤ Ce−(θ−γ )x

∫
G

(|b|2θ + |a|−2γ
)
μ(db da) ≤ Ce−γ x.
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If |au + b| < 1
2a|u| then |u| ≤ 2|b|

a
. Therefore choosing θ as above and γ < δ

2 − θ , in view of Proposition 2.1, for the
remaining part of the integral, applying again M(δ), we have∫ ∫

|au+b|≤(1/2)|au|
∣∣φ(

e−xau
) − φ

(
e−x(au + b)

)∣∣μ(db da)ν(du)

≤
∫ ∫

|u|≤2|b|/a
∣∣e−xb

∣∣θ ν(du)μ(db da)

≤ C

∫
G

∣∣e−xb
∣∣θ(1 + 2|b|

a

)γ

μ(db da) ≤ Ce−θx

∫
G

|b|θ
(

1 + 2|b|
a

)γ

μ(db da)

≤ Ce−θx

∫
G

(|b|θ + |b|2(θ+γ ) + a−2γ
)
μ(db da) ≤ Ce−θx .

That proves (4.2) and finally

∣∣ψφ(x)
∣∣ ≤

∫
G

∫
Rd

∣∣φ(
e−xau

) − φ
(
e−x(au + b)

)∣∣ν(du)μ(db da) < Ce−ζ |x|

for ζ < min{δ/4, β,1}. �

The following proposition contains key arguments of the proof of our main results.

Proposition 4.3. Assume that hypothesis (H) and M(δ) are satisfied. The family of measures δ(0,e−x) ∗G ν is relatively
compact in the weak topology on R

d \ {0}.
Suppose that r belongs to F (μ) and has an exponential decay. Let ζ be a nonnegative Lipschitz function on R

d \{0}
such that ζ(u) ≤ e−γ | log |u|| for γ > 0 and set

φ(u) :=
∫

R

r(t)ζ
(
et u

)
dt. (4.3)

Then, the limit

lim
x→+∞

∫
Rd

φ
(
ue−x

)
ν(du)

exists, it is finite and equal to η(φ) for any limit measure η.

Proof. Step 1. First we suppose that μ satisfies (4.1). We are going to show that for functions of type (4.3) the limit

lim
x→+∞

∫
Rd

φ
(
ue−x

)
ν(du) = T (φ) := −2σ−2K(ψφ)

exists and it is finite. To do this we will prove that ψφ is an element of F (μ) and J (ψφ) = 0. Thus, by Corollary 3.2,
the function fφ(x) = ∫

Rd φ(ue−x)ν(du) is the solution of the corresponding Poisson equation, it is bounded and it
has a limit when x converge to +∞.

First observe that by Lemma 3.3 (in view of M(δ) its assumptions are satisfied), for β < min{δ, γ }, we have

∣∣φ(u)
∣∣ ≤ C

∫
R

e−β|t |e−γ |t+log |u|| dt ≤ C

∫
R

e−β(|t−log |u||)e−γ |t | dt

≤ C

∫
R

e−β(−|t |+| log |u||)e−γ |t | dt = Ce−β| log |u||.
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Thus by Lemma 4.2, fφ , fζ , μ ∗fφ and μ ∗fζ are well defined. Furthermore, since ζ is Lipschitz ψζ is bounded, and
x2ψζ (x) is integrable on R. We cannot guarantee that φ is Lipschitz, but we can observe that

fφ(x) =
∫

Rd

∫
R

r(t)ζ
(
e−x+t u

)
dtν(du) =

∫
R

r(t + x)fζ (−t)dt = r ∗R fζ (x)

and

μ ∗ fφ(x) = r ∗R (μ ∗ fζ )(x).

Hence

ψφ = fφ − μ ∗ fφ = r ∗ (fζ − μ ∗ fζ ) = r ∗R ψζ

and, by Lemma 3.3, ψφ ∈ F (μ).
Furthermore if ζ is radial then J (ψφ) = 0. In fact, let ζr be the radial part of ζ , i.e. ζr (|u|) = ζ(u), then∫

R

ψζ (x)dx =
∫

R

∫
G

∫
Rd

[
ζ
(
aue−x

) − ζ
(
e−x(au + b)

)]
ν(du)μ(db da)dx

=
∫

G

∫
Rd

∫
R

[
ζr

(
e−x+log(|au|)) − ζr

(
e−x+log |au+b|)]dx ν(du)μ(db da)

=
∫

G

∫
Rd

(∫
R

ζr

(
e−x

)
dx −

∫
R

ζr

(
e−x

)
dx

)
ν(du)μ(db da) = 0.

Observe that we can apply the Fubini theorem since ζ is Lipschitz and, by Lemma 4.2, the absolute value of the
integrand in the second line above is integrable. Hence

J (ψφ) =
∫

R

ψφ(x)dx =
∫

R

r ∗ ψζ (x)dx =
∫

R

r(x)dx ·
∫

R

ψζ (x)dx = 0.

If ζ is radial, then by Corollary 3.2, we have

fφ = Aψφ + hφ, (4.4)

where hφ is a constant if μA is aperiodic and a continuous periodic function if μA is periodic. In any case fφ is a
bounded function.

In particular the same holds for fΦγ , where

Φγ (u) =
∫

R

r(t)e−γ |t+log |u|| dt.

For an arbitrary nonradial function φ of the type (4.3), there exists γ > 0 such that φ ≤ Φγ . Hence fφ ≤ fΦγ and
fφ is a bounded solution of the Poisson equation associated to ψφ . Therefore, by Corollary 3.2, J (ψφ) = 0 and
fφ = Aψφ + hφ . Since the measure ν has no mass at zero, limx→−∞ fφ(x) = 0 and by Theorem 3.1

lim
x→−∞Aψφ(x) = σ−2K(ψφ).

Thus when x goes to −∞ the limit of hφ exists which is possible only if hφ is constant and equal to −σ−2K(ψφ).
Finally

lim
x→+∞fφ(x) = lim

x→+∞Aψφ(x) − σ−2K(ψφ) = −2σ−2K(ψφ) =: T (φ).

Step 2. The result of step 1 implies, in particular, that the family δ(0,e−x) ∗G ν of measures on R
d \ {0} is bounded

on compact sets, hence it is relatively compact in the weak topology. Let η be a limit measure along the sequence
{xn}. We are going to show that T (φ) = η(φ) for all functions φ of type (4.3).
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If φ is compactly supported then

δ(0,e−xn ) ∗G ν(φ) = fφ(xn) → η(φ).

We need now to generalize the above convergence to any function φ such that φ(u) ≤ e−γ | log |u||. Since

sup
x∈R

ν
(
ex < |u| ≤ ex+1) = K < ∞,

then, for any M > 1, we have

sup
x∈R

∫
Rd

e−γ | log |e−xu||1[1/M,M]c
(∣∣e−xu

∣∣)ν(du) ≤ K

(∫ ∞

M/e
e−γ | log(a)| da

a
+

∫ e/M

0
e−γ | log(a)| da

a

)
.

Letting M go to infinity, the right-hand side of the inequality goes to zero. Thus the family of bounded measures

ρn(g) = δ(0,e−xn ) ∗G ν(gΦγ )

is tight and it converges for all continuous bounded functions g. Take g = φ/Φγ to conclude.
Step 3. Now we return to the general case when the condition (4.1) does not necessarily hold. Then by Lemma 4.1

there exists ν0 = δx0 ∗Rd ν for which (4.1) holds and δ(0,e−x) ∗G ν and δ(0,e−x) ∗G ν0 have the same behavior on
compactly supported functions when x go to +∞. Since

sup
x∈R

δ(0,e−x) ∗ ν
(
1 ≤ |u| ≤ e

) = K < ∞, sup
x∈R

δ(0,e−x) ∗ ν0
(
1 ≤ |u| ≤ e

) = K0 < ∞,

reasoning as in the previous step, we prove that the families of measures ρx(·) = δ(0,e−x) ∗ν(·Φγ ) and ρ0
x(·) = δ(0,e−x) ∗

ν0(·Φγ ) are tight, thus have the same limit on bounded functions. Then, for all functions φ of type (4.3),

lim
x→∞ δ(0,e−x) ∗G ν(φ) = lim

x→∞ δ(0,e−x) ∗G ν0(φ)

and the proof is finished. �

Proof of Theorem 1.1 – Existence of the limit. We assume that μA is aperiodic. In view of Proposition 4.3 the
family of measures δ(0,e−x) ∗G ν is relatively compact in the weak topology and if η is an accumulation point, then it
is R

+ invariant. Therefore, there exists a probability measure Ση on Sd−1 and a constant Cη such that η = Cη
da
a

⊗Ση

(see [12], Proposition 1.15). It remains to prove that Cη and Ση do not depend on η. We have proved in Proposition 4.3
that for any function φ of type (4.3), the limit exists (that is it does not depend on the subsequence along which one
tends to η)

lim
x→+∞

∫
Rd

φ
(
e−xu

)
ν(du) = η(φ) = T (φ).

Consider the radial function Φγ (u) = ∫
R

r(t)e−γ |t+log |u|| dt , since η(Φγ ) = Cη

∫
R+ Φγ (a) da

a
. Then:

Cη = T (Φγ )∫
R+ Φγ (a)(da/a)

does not depend on η. Set C+ = Cη .
For any Lipschitz function ζ0 of Sd−1 consider the function ζ(u) = e−γ | log |u||ζ0(u/|u|) and

φ(u) =
∫

R

r(t)ζ
(
et u

)
dt = Φγ (u) =

∫
R

r(t)e−γ |t+log |u||ζ0
(
e−t u/

∣∣e−t u
∣∣)dt = Φγ (u)ζ0

(
u/|u|).

Then

η(φ) = C+Ση(ζ0) ·
∫

R+
Φγ (a)

da

a
= T (φ)
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thus Ση(ζ0) does not depend on η. �

Proof of Theorem 1.2 – Existence of the limit. Assume that μA is periodic and G(μA) = 〈ep〉. Let D = {w ∈
R

d \ {0}: 1 ≤ |w| < ep} be the fundamental domain for the action of G(μA) on R
d \ {0}. Then every z ∈ R

d \ {0}
can be uniquely written as z = aw, where a ∈ G(μA) and w ∈ D. Denote by l the counting measure on G(μA), that
is l(φ) = ∑

k∈Z
φ(ekp). Let η be an accumulation point of the family of measures δ(0,e−x) ∗G ν. Then, in view of

Proposition 4.3, η is G(μA) invariant. Therefore there exists a probability measure Ση on D and a constant Cη such
that η = Cηl ⊗ Ση.

Observe that any radial function φ on R
d can also be seen as a function on R

+, thus in abuse of notation, we will
use below the same symbol to denote both a radial function on R

d and its projection on R
+. Let φ be a nonnegative

element of T , then

η(φ) = Cη

∑
k∈Z

∫
D

φ
(
ekpw

)
Ση(dw) = Cη

∑
k∈Z

∫
D

φ
(
ekp|w|)Ση(dw) = Cηl(φ).

If φ is Lipschitz and belongs to T (for instance φ(u) = τ(u) = (1 − | log |u||/p)+, the triangular function of “base”
2p), we can apply Proposition 4.3 to the function Φ(u) = ∫

R
r(t)φ(et u)dt . Since Φ also belongs to T , we conclude

that the value Cη = T (Φ)/l(Φ) =: C+ does not depend on η. Thus for any φ ∈ T we have

lim
z→+∞

∫
Rd

φ
(
z−1u

)
ν(du) = C+l(φ).

We calculate now the limit of ν(|u| ≤ z). Observe that for the triangular function τ one has l(τ ) = 1 and, for any
ε > 0, there exits N such that | ∫

Rd τ (e−kpu)ν(du) − C+| ≤ ε for all k ≥ N . Then since

[log z/p]−1∑
k=N+1

τ
(
e−kpu

) ≤ 1]eNp,z](u) ≤
[log z/p]+1∑

k=N

τ
(
e−kpu

)
and ν(|u| ≤ eNp) < ∞, we have

lim sup
z→+∞

∣∣∣∣pν(|u| ≤ z)

log(z)
− C+

∣∣∣∣ ≤ ε. �

We would like to remark that, in the periodic case, we could not prove that the measures of the dilated annulus
C(zα, zβ) = {u: zα ≤ |u| < zβ} converge as z goes to infinity. What is proved by the arguments above is that, if {zn}
is a sequence along which the dilated measure converge to a limit measure η, then

lim
n→∞ν

(
C
(
zna, znaep

)) = C+

for all but countably many a, namely for all a such that η(|u| = a) = 0. Thus there is still open question, wheather the
dilated measure δ(0,z−1) ∗ ν converges weakly for z → ∞.

5. Positivity of the limiting constant

In this section we are going to discuss nondegeneracy of the limit measure (1.3) and to finish the proofs of Theorems
1.1 and 1.2. A partial result was obtained in [4] in the one-dimensional case and B ≥ ε a.s. In this particular case
positivity of the constant follows immediately from the formula defining C+.

Now we are going to prove

Theorem 5.1. If hypothesis (H) is satisfied, then for all α,β > 0

lim sup
z→∞

ν
{
u ∈ R

d : zα < |u| ≤ zβ
}

> 0. (5.1)
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To prove this theorem, we will need the following explicit construction of the measure ν obtained in [1]. Define
a random walk on R by S0 = 0 and Sn = log(A1 · · ·An) for n ≥ 1 and consider the downward ladder times of Sn:
L0 = 0 and Ln = inf{k > Ln−1;Sk < SLn−1}. Let L = L1. The Markov process {Xx

Ln
} satisfies the recursion Xx

Ln
=

MnX
x
Ln−1

+ Qn, where (Qn,Mn) is a sequence of G-valued i.i.d. random variables and (Qn,Mn) =d (XL, eSL).

It is known that −∞ < E[SL] < 0 and E[log+ |XL|] < ∞ (see [10,14]). Therefore there exists a unique invariant
probability measure νL of the process {XLn} and the measure ν can be written (up to a constant) as

ν(f ) =
∫

Rd

E

[
L−1∑
n=0

f
(
Xx

n

)]
νL(dx), (5.2)

where Xx
n is the process defined in (1.1).

In the proof of Theorem 5.1, we will use a generalized version of the duality lemma. Let Wi = (Yi,Zi) be a
sequence of i.i.d. random variables on R × R and let Sn = ∑n

i=1 Yi if n ≥ 1 and S0 = 0 (later we will take Wi =
(logAi,Bi)). We define a sequence of stopping times: T0 = 0, Ti = inf{n > Ti−1: Sn ≥ STi−1} and we put L =
inf{n: Sn < 0}. If the events are void then the stopping times are equal to ∞.

Lemma 5.2 (Duality lemma). Consider a sequence of nonnegative functions

αn : (R × R)n → R

for n ≥ 1, α0 equal to some constant and α∞ = 0. Then

E

[
L−1∑
i=0

αi(W1, . . . ,Wi)

]
= E

[ ∞∑
i=0

αTi
(WTi

, . . . ,W1)

]
.

Proof. Although the technic of proof is classical (see for instance [11]), we present here a complete argument for
reader’s convenience.

We have

E

[
L−1∑
i=0

αi(W1, . . . ,Wi)

]
= α0 +

∞∑
i=1

E
[
1[Sj ≥0∀j=1,...,i]αi(W1, . . . ,Wi)

]
.

For fixed i, consider the reversed time sequence Wk = Wi−k+1 and observe that the vector (W 1, . . . ,W i) =
(Wi, . . . ,W1) has the same law as (W1, . . . ,Wi). Thus

E
[
1[Sj ≥0∀j=1,...,i]αi(W1, . . . ,Wi)

] = E
[
1[∑j

k=1 Yk≥0∀j=1,...,i]αi(W1, . . . ,Wi)
]

= E
[
1[∑j

k=1 Y k≥0∀j=1,...,i]αi(W 1, . . . ,W i)
]

= E
[
1[∑j

k=1 Yi−k+1≥0∀j=1,...,i]αi(Wi, . . . ,W1)
]

= E
[
1[Si≥Sl ∀l=0,...,i−1]αi(Wi, . . . ,W1)

] = E
[
1[∃k≥1:i=Tk]αi(Wi, . . . ,W1)

]
.

Then

E

[
L−1∑
i=0

αi(W1, . . . ,Wi)

]
= α0 +

∞∑
i=1

E
[
1[∃k≥1:i=Tk]αi(Wi, . . . ,W1)

] = E

[ ∞∑
k=0

αTk
(WTk

, . . . ,W1)

]
.

�

Proof of Theorem 5.1. Step 1. First we claim that there exist two positive constants C and M such that for every
positive nonincreasing f on R

+∫
Rd

f
(|u|)ν(du) ≥ C

∫ ∞

M

f (a)
da

a
. (5.3)
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Take Yi = logAi and Sn = ∑n
i=1 Yi . Choose a ball B of R

d of radius R such that νL(B) = CR > 0. We have

∫
Rd

f
(|u|)ν(du) ≥

∫
B

E

[
L−1∑
n=0

f
(|A1A2 · · ·Anx + A2A3 · · ·AnB1 + · · · + Bn|

)]
νL(dx)

≥ CRE

[
L−1∑
n=0

f
(
A1A2 · · ·An

(
R + |B1| + · · · + |Bn|

))]

= CRE

[
L−1∑
n=0

f
(
eSn+log(R+∑n

i=1 |Bi |))] = CRE

[ ∞∑
n=0

f
(
eSTn+log(R+∑Tn

i=1 |Bi |))].

In the last line we have applied the duality lemma to the functions:

αn

(
(Y1,B1), . . . , (Yn,Bn)

) = f
(
e
∑n

i=1 Yi+log(R+∑n
i=1 |Bi |)).

Consider two sequences of i.i.d. variables

Uj = max
{
log

(
1 + R + |Bi |

)
: i = Tj−1 + 1, . . . , Tj

}
and

Vj = STj
− STj−1 + log(Tj − Tj−1) + Uj .

Observe that for n ≥ 1

STn + log

(
R +

Tn∑
i=1

|Bi |
)

≤ STn + log

(
n∑

j=1

(
R +

Tj∑
i=Tj−1+1

|Bi |
))

≤
n∑

j=1

(
(STj

− STj−1) + log

(
1 + R +

∑
Tj−1+1≤i≤Tj

|Bi |
))

≤
n∑

j=1

Vj .

We claim that the variables Vj are integrable. In fact since Yi = logAi has a moment of order 2 + ε, then classical
results guarantee that STj

− STj−1 is integrable and Tj − Tj−1 has a moment of order 1/(2 + ε). So we need only to
prove that the variable Uj has the first moment (see [7], p. 1279). By the Borel–Cantelli Lemma it sufficient to show
that

lim sup
n→∞

1

n
Un < M a.s.

for some constant M . We have

1

n
Un =

∑n
j=1(Tj − Tj−1)

1/(2+ε)

n
· Un∑n

j=1(Tj − Tj−1)1/(2+ε)
.

By the strong law of large numbers the first term converges. For the second term we have(
Un∑n

j=1(Tj − Tj−1)1/(2+ε)

)2+ε

≤ U2+ε
n

Tn

≤
∑Tn

k=1 log(1 + R + |Bk|)2+ε

Tn

which converges since (log+ |B1|)2+ε is integrable.
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Let U(y, x) = ∑∞
n=1 E[1(y,x](

∑n
i=1 Vi)]. Since 0 < EV1 < ∞, by the renewal theorem

lim
x→∞

U(0, x)

x
= 1

EV1
> 0.

Hence for any m > 1 there exist large N such that infk≥N
U(mk,mk+1)

mk = C1 > 0. Therefore,

∫
Rd

f
(|x|)ν(dx) ≥ CRE

[ ∞∑
n=0

f
(
e
∑n

i=1 Vi
)] ≥ CR

∑
k>N

U
(
mk,mk+1)f (

emk+1)
≥ CRC1

∑
k>N

mkf
(
emk+1) ≥ CRC1

m2

∑
k>N

∫ mk+2

mk+1
f

(
ex

)
dx ≥ C

∫ ∞

mN+1
f

(
ex

)
dx,

that proves (5.3).
Step 2. Consider now the functions fn = 1[0,βn+1/αn] on R

+. Observe that

lim sup
n→∞

1

n

∫
Rd

fn

(|u|)ν(du) = lim sup
n→∞

1

n

n∑
k=0

∫
Rd

1((βk/αk)α,(βk/αk)β]
(|u|)ν(du)

≤ lim sup
z→∞

ν
{
u: zα < |u| ≤ zβ

}
.

Thus by (5.3)

lim sup
z→∞

ν
{
u: zα < |u| ≤ zβ

} ≥ C lim sup
n→∞

1

n

∫ ∞

M

fn(a)
da

a

= C lim sup
n→∞

1

n

(
log

(
βn+1

αn

)
− logM

)
= C log(β/α) > 0. �

Appendix: Sketch of the proof of Theorem 3.1

For 0 < λ < 1 let

Gλ ∗ ψ =
∞∑

n=0

λnμ∗n ∗ ψ and Aλψ = J (ψ)Gλ ∗ g(0) − Gλ ∗ ψ

for some fixed positive function g in F (μ) such that J (g) = 1. Observe that the Fourier transform of the measure

Gλ is Ĝλ(θ) = 1
1−λμ̂(θ)

. Thus Gλ ∗ ψ(x) = 1
2π

∫
R

eiθx ψ̂(−θ)

1−λμ̂(θ)
dθ . The class of functions F (μ) is chosen in such a

way that ψ̂(−θ)

1−λμ̂(θ)
is integrable outside a neighborhood of zero uniformly for all λ ≤ 1. Thus the only obstruction to

integrability is at zero and can be dealt using the methods introduced in [18,19].
If ψ ∈ F (μ), then using the fact that∣∣1 − λμ̂(θ)

∣∣ ≥ λ
∣∣1 − μ̂(θ)

∣∣ ≥ λc|θ |2, (A.1)

one can write

ψ̂(−θ)

1 − λμ̂(θ)
= J (ψ) − iK(ψ)θ

1 − λμ̂(θ)
1[−a,a](θ) + ψλ

0 (θ),



394 S. Brofferio, D. Buraczewski and E. Damek

where ψλ
0 (θ) is a family of functions in L1(dθ) bounded uniformly for 1/2 ≤ λ ≤ 1. For all ψ,φ ∈ F (μ) and x, y ∈ R,

a standard calculation gives the decomposition

Gλ ∗ φ(−y) − Gλ ∗ ψ(x − y) = −(
K(φ) − K(ψ) + xJ (ψ)

)
Cλ

μ(y) +
∫

R

e−iyθhλ
ψ,φ,x(θ)dθ, (A.2)

where the functions hλ
ψ,φ,x(θ) are bounded uniformly for all λ ∈ [1/2,1] by (1 + x2)Hφ,ψ(θ) for some integrable

function Hφ,ψ and

Cλ
μ(θ)(y) = i

2π

∫
|θ |<a

e−iyθ θ

1 − λμ̂(θ)
dθ.

By Theorem 3.1” in [18] the limit limλ↗1 Cλ
μ(y) = C1

μ(y) exists and limy→±∞ C1
μ(y) = ±σ−2.

By Lebesgue’s dominated convergence theorem, the following limit exists

lim
λ↗1

Gλ ∗ φ(−y) − Gλ ∗ ψ(x − y) = −(
K(φ) − K(ψ) + xJ (ψ)

)
C1

μ(y) +
∫

R

e−iyθh1
ψ,φ,x(θ)dθ. (A.3)

For φ = J (ψ)g and y = 0, we have Aλψ(x) = Gλ ∗ φ(0) − Gλ ∗ ψ(x) thus

Aψ(x) = lim
λ↗1

Aλψ(x) = −(
J (φ)K(g) − K(ψ) + xJ (ψ)

)
C1

μ(0) +
∫

R

h1
ψ,φ,x(θ)dθ.

Hence we have proved the existence of the recurrent potential kernel. The continuity of Aψ follows from uniform
integrability. Furthermore since C1

μ(0) is finite, we also have∣∣Aλψ(x)
∣∣ ≤ C′(1 + x2). (A.4)

Take now φ = ψ then by (A.2), (A.3) and the Riemann–Lebesgue lemma

Aψ(x − y) − Aψ(−y) = −xJ (ψ)C1
μ(y) + ĥ1

ψ,ψ,x(−y) → ∓xJ (ψ)σ−2 (A.5)

when y → ±∞. If J (ψ) > 0 and x goes to +∞ then

Aψ(x)

x
= Aψ({x}) + ∑[x]

k=1(Aψ(k + {x}) − Aψ(k + {x} − 1))

x
→ J (ψ)σ−2,

where [x] is the integer part of x and {x} = x − [x].
If J (ψ) = 0 then Aλψ = −Gλ ∗ ψ , taking φ = 0, x = 0 we have

Aψ(−y) = K(ψ)Cμ(y) + ĥ1
ψ,0,0(−y)

and passing with y to ±∞ we obtain the expected limit.
To prove that Aψ is a solution of the Poisson equation observe that

μ ∗ Aλψ = cλJ (ψ) −
∞∑

n=0

λnμ∗n+1 ∗ ψ = Aλψ + Gλ ∗ (ψ − μ ∗ ψ).

Notice that

Gλ ∗ (ψ − μ ∗ ψ)(x) = 1

2π

∫
R

eixθ ψ̂(−θ)
1 − μ̂(θ)

1 − λμ̂(θ)
dθ,

and, by (A.1), the integrand is dominated by 2|ψ̂ | ∈ L1(dθ) for all 1/2 < λ ≤ 1. Therefore, by Lebesgue’s dominated
convergence theorem limλ↗1 μ ∗ Aλψ = Aψ + ψ . By (A.4) and dominate convergence, we conclude

μ ∗ Aψ(x) =
∫

R

lim
λ↗1

Aλψ(x + y)μ(dy) = lim
λ↗1

∫
R

Aλψ(x + y)μ(dy) = Aψ(x) + ψ(x).
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