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Abstract. We improve the geometric properties of SLE(κ; �ρ) processes derived in an earlier paper, which are then used to obtain
more results about the duality of SLE. We find that for κ ∈ (4,8), the boundary of a standard chordal SLE(κ) hull stopped on
swallowing a fixed x ∈ R \ {0} is the image of some SLE(16/κ; �ρ) trace started from a random point. Using this fact together with
a similar proposition in the case that κ ≥ 8, we obtain a description of the boundary of a standard chordal SLE(κ) hull for κ > 4, at
a finite stopping time. Finally, we prove that for κ > 4, in many cases, a chordal or strip SLE(κ; �ρ) trace a.s. ends at a single point.

Résumé. Nous améliorons des résultats précédemment obtenus concernant les propriétés géométriques des processus SLE(κ; �ρ),
que nous utilisons ensuite pour étudier la propriété dite de dualité des processus SLE.

Nous prouvons que pour κ ∈ (4,8), la frontière de l’enveloppe d’un SLE(κ) chordal standard arrêté quand il disconnecte un
point fixe x ∈ R\{0} de l’infini est une courbe SLE(16/κ, �ρ) issue d’un point aléatoire. Nous obtenons ainsi une description de la
frontière de l’enveloppe d’un SLE(κ) pour κ > 4. Finalement, nous démontrons que pour κ > 4, dans de nombreux cas, la courbe
de processus SLE(κ; �ρ) généralisés (par exemple dans une bande) se termine presque sûrement en un point unique.
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1. Introduction

This paper is a follow-up of the paper [9], in which we proved some versions of Duplantier’s duality conjecture about
Schramm’s SLE process [8]. In the present paper, we will improve the technique used in [9], and derive more results
about the duality conjecture.

Let us now briefly review some results in [9]. Let κ1 < 4 < κ2 with κ1κ2 = 16. Let x1 �= x2 ∈ R. Let N ∈ N

and p1, . . . , pN ∈ R ∪ {∞} \ {x1, x2} be distinct points. Let C1, . . . ,CN ∈ R and ρj,m = Cm(κj − 4), 1 ≤ m ≤ N ,
j = 1,2. Let �p = (p1, . . . , pN) and �ρj = (ρj,1, . . . , ρj,N ), j = 1,2. We used Itô’s calculus and the Girsanov theorem
to derive some commutation relation between two SLE-type processes in the upper half-plane H = {z ∈ C: Im z >

0}: one is a chordal SLE(κ1;− κ1
2 , �ρ1) process, say K1(t), 0 ≤ t < T1, started from (x1;x2, �p), the other a chordal

SLE(κ2;− κ2
2 , �ρ2) process K2(t), 0 ≤ t < T2, started from (x2;x1, �p). Using the coupling technique obtained in [11],

we obtained a coupling of the above two SLE processes such that for any j �= k ∈ {1,2}, if Sk < Tk is a stopping time
for (Kk(t)), and if we conditioned on Kk(t), 0 ≤ t ≤ Sk , then after a time-change, the part of Kj(t) before hitting
Kk(Sk) is a chordal SLE(κj ;− κj

2 , �ρj ) process in H \ Kk(Sk) started from (xj ;βk(Sk), �p), where βk(t) is the tract
that corresponds to (Kk(t)). Moreover, some pm could be degenerate, i.e., pm = x+

j or x−
j , if the corresponding force

ρj,m satisfies ρj,m ≥ κj /2 − 2.
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This theorem was then applied to the case that N = 3; x1 < x2; p1 ∈ (−∞, x1) or = x−
1 ; p2 ∈ (x2,∞), or = ∞,

or = x+
2 ; and p3 ∈ (x1, x2), or = x+

1 , or = x−
2 ; C1 ≤ 1/2, C2 = 1 − C1 and C3 = 1/2. Using some study about the

behavior of these SLE(κ; �ρ) traces at their end points, we concluded that K1(T
−

1 ) := ⋃
0≤t<T1

K1(t) is the outer
boundary of K2(T

−
2 ) := ⋃

0≤t<T2
K2(t) in H.

The following proposition, i.e., Theorem 5.2 in [9], is an application of the above result. It describes the boundary
of a standard chordal SLE(κ) hull, where κ ≥ 8, at the time when a fixed x ∈ R \ {0} is swallowed.

Proposition 1.1. Suppose κ ≥ 8, and K(t), 0 ≤ t < ∞ is a standard chordal SLE(κ) process. Let x ∈ R \ {0}
and Tx be the first t such that x ∈ K(t). Then ∂K(Tx) ∩ H has the same distribution as the image of a chordal
SLE(κ ′;− κ ′

2 ,− κ ′
2 , κ ′

2 − 2) trace started from (x;0, xa, xb), where κ ′ = 16/κ , a = sign(x) and b = sign(−x). So a.s.
∂K(Tx) ∩ H is a crosscut in H connecting x with some y ∈ R \ {0} with sign(y) = sign(−x).

Here, a crosscut in H on R is a simple curve in H whose two ends approach to two different points on R. Since
κ ≥ 8, the trace is space-filling, so a.s. x is visited by the trace at time Tx , and so x is an end point of K(Tx) ∩ R.
From this proposition, we see that the boundary of K(Tx) in H is an SLE(16/κ)-type trace in H started from x.

The motivation of the present paper is to derive the counterpart of Proposition 1.1 in the case that κ ∈ (4,8). In
this case, the trace, say γ , is not space-filling, so a.s. x is not visited by γ , at time Tx , and so x is an interior point of
K(Tx) ∩ R. Thus we can not expect that the boundary of K(Tx) in H is a curve started from x.

This difficulty will be overcome by conditioning the process K(t), 0 ≤ t < Tx , on the value of γ (Tx). In Section 3,
we will prove that conditioned on y = γ (Tx), K(t), 0 ≤ t < Tx , is a chordal SLE(κ;−4, κ − 4) process started from
(0;y, x). This is the statement of Corollary 3.2.

In Section 4, we will improve the geometric results about SLE(κ; �ρ) processes that were derived in [9]. Using these
geometric results, we will prove in Section 5 that Proposition 2.8 can be applied with N = 4 and suitable values of
pm and Cm for 1 ≤ m ≤ 4, to obtain more results about duality. Especially, using Corollary 3.2, we will obtain the
counterpart of Proposition 1.1 in the case that κ ∈ (4,8), which is Theorem 1.1 below.

Theorem 1.1. Let κ ∈ (4,8), and x ∈ R \ {0}. Let K(t) and γ (t), 0 ≤ t < ∞, be standard chordal SLE(κ) process
and trace, respectively. Let Tx be the first time that x ∈ K(t). Let μ̄ denote the distribution of ∂K(Tx) ∩ H. Let λ

denote the distribution of γ (Tx). Let κ ′ = 16/κ , a = sign(x) and b = sign(−x). Let ν̄y denote the distribution of the

image of a chordal SLE(κ ′;− κ ′
2 , 3

2κ ′ − 4,− κ ′
2 + 2, κ ′ − 4) trace started from (y;0, ya, yb, x). Then μ̄ = ∫

ν̄y dλ(y).
So a.s. ∂K(Tx) ∩ H is a crosscut in H connecting some y, z ∈ R \ {0}, where sign(y) = sign(x), |y| > |x|, and
sign(z) = sign(−x).

In Section 6, we will use Theorem 1.1 and Proposition 1.1 to study the boundary of a standard chordal SLE(κ) hull,
say K(t), at a finite positive stopping time T . Let γ (t) be the corresponding SLE trace. We will find that if γ (T ) ∈ R,
then ∂K(T ) ∩ H is a crosscut in H with γ (T ) as one end point; and if γ (T ) ∈ H, then ∂K(T ) ∩ H is the union of two
semi-crosscuts in H, which both have γ (T ) as one end point. Here a semi-crosscut in H is a simple curve in H whose
one end lies in H and the other end approaches to a point on R. Moreover, in the latter case, every intersection point
of the two semi-crosscuts other than γ (T ) corresponds to a cut-point of K(T ). If κ ≥ 8, then the two semi-crosscuts
only meet at γ (T ), and so ∂K(T ) ∩ H is again a crosscut in H on R.

In the last section of this paper, we will use the results in Section 6 to derive more geometric results about SLE(κ; �ρ)

processes. We will prove that many propositions in [9] and Section 4 of this paper about the limit of an SLE(κ; �ρ)

trace that hold for κ ∈ (0,4] are also true for κ > 4.
Julien Dubédat has a nice result ([4], Theorem 1) about the boundary arc of K(t) straddling x, i.e., the boundary

arc seen by x at time T −
x , which says that the boundary arc is also an SLE(16/κ) curve. His result is about the

“inner” boundary of K(Tx), while Theorem 1.1 in this paper is about the “outer” boundary. The author prefers to
apply Theorem 1.1 to study the boundary of standard chordal SLE(κ) hulls at general stopping times, and to derive
other related results.

2. Preliminary

In this section, we review some definitions and propositions in [9], which will be used in this paper.
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If H is a bounded and relatively closed subset of H = {z ∈ C: Im z > 0}, and H \ H is simply connected, then we
call H a hull in H w.r.t. ∞. For such H , there is ϕH that maps H \ H conformally onto H, and satisfies ϕH (z) =
z + c

z
+ O( 1

z2 ) as z → ∞, where c = hcap(H) ≥ 0 is called the capacity of H in H w.r.t. ∞.
For a real interval I , we use C(I) to denote the space of real continuous functions on I . For T > 0 and ξ ∈

C([0, T )), the chordal Loewner equation driven by ξ is

∂tϕ(t, z) = 2

ϕ(t, z) − ξ(t)
, ϕ(0, z) = z.

For 0 ≤ t < T , let K(t) be the set of z ∈ H such that the solution ϕ(s, z) blows up before or at time t . We call K(t)

and ϕ(t, ·), 0 ≤ t < T , chordal Loewner hulls and maps, respectively, driven by ξ . It turns out that ϕ(t, ·) = ϕK(t) for
each t ∈ [0, T ).

Let B(t), 0 ≤ t < ∞, be a (standard linear) Brownian motion. Let κ ≥ 0. Then K(t) and ϕ(t, ·), 0 ≤ t < ∞, driven
by ξ(t) = √

κB(t), 0 ≤ t < ∞, are called standard chordal SLE(κ) hulls and maps, respectively. It is known [5,7] that
almost surely for any t ∈ [0,∞),

γ (t) := lim
H
z→ξ(t)

ϕ(t, ·)−1(z) (2.1)

exists, and γ (t), 0 ≤ t < ∞, is a continuous curve in H. Moreover, if κ ∈ (0,4], then γ is a simple curve, which
intersects R only at the initial point, and for any t ≥ 0, K(t) = γ ((0, t]); if κ > 4 then γ is not simple; if κ ≥ 8 then
γ is space-filling. Such γ is called a standard chordal SLE(κ) trace.

If (ξ(t)) is a semi-martingale, and d〈ξ(t)〉 = κ dt for some κ > 0, then from Girsanov theorem (cf. [6]) and the
existence of standard chordal SLE(κ) trace, almost surely for any t ∈ [0, T ), γ (t) defined by (2.1) exists, and has the
same property as a standard chordal SLE(κ) trace (depending on the value of κ) as described in the last paragraph.

Let κ ≥ 0, ρ1, . . . , ρN ∈ R, x ∈ R, and p1, . . . , pN ∈ R̂ \ {x}, where R̂ = R ∪ {∞} is a circle. Let ξ(t) and pk(t),
1 ≤ k ≤ N , be the solutions to the SDE:{

dξ(t) = √
κ dB(t) + ∑N

k=1
ρk

ξ(t)−pk(t)
dt,

dpk(t) = 2
pk(t)−ξ(t)

dt, 1 ≤ k ≤ N,
(2.2)

with initial values ξ(0) = x and pk(0) = pk , 1 ≤ k ≤ N . If ϕ(t, ·) are chordal Loewner maps driven by ξ(t), then
pk(t) = ϕ(t,pk). Suppose [0, T ) is the maximal interval of the solution. Let K(t) and γ (t), 0 ≤ t < T , be chordal
Loewner hulls and trace driven by ξ . Let �ρ = (ρ1, . . . , ρN) and �p = (p1, . . . , pN). Then K(t) and γ (t), 0 ≤ t < T , are
called (full) chordal SLE(κ;ρ1, . . . , ρN) or SLE(κ; �ρ) process and trace, respectively, started from (x;p1, . . . , pN) or
(x; �p). If T0 ∈ (0, T ] is a stopping time, then K(t) and γ (t), 0 ≤ t < T0, are called partial chordal SLE(κ; �ρ) process
and trace, respectively, started from (x; �p).

If we allow that one of the force points takes value x+ or x−, or two of the force points take values x+ and x−,
respectively, then we obtain the definition of degenerate chordal SLE(κ; �ρ) process. Let κ ≥ 0; ρ1, . . . , ρN ∈ R, and
ρ1 ≥ κ/2 − 2; p1 = x+, p2, . . . , pN ∈ R̂ \ {x}. Let ξ(t) and pk(t), 1 ≤ k ≤ N , 0 < t < T , be the maximal solution
to (2.2) with initial values ξ(0) = p1(0) = x, and pk(0) = pk , 1 ≤ k ≤ N . Moreover, we require that p1(t) > ξ(t)

for any 0 < t < T . Then the chordal Loewner hulls K(t) and trace γ (t), 0 ≤ t < T , driven by ξ , are called chordal
SLE(κ;ρ1, . . . , ρN) process and trace started from (x;x+,p2, . . . , pN). If the condition p1(t) > ξ(t) is replaced by
p1(t) < ξ(t), then we get chordal SLE(κ;ρ1, . . . , ρN) process and trace started from (x;x−,p2, . . . , pN). Now sup-
pose N ≥ 2, ρ1, ρ2 ≥ κ/2 − 2, p1 = x+ and p2 = x−. Let ξ(t) and pk(t), 1 ≤ k ≤ N , 0 < t < T , be the maximal solu-
tion to (2.2) with initial values ξ(0) = p1(0) = p2(0) = x, and pk(0) = pk , 1 ≤ k ≤ N , such that p1(t) > ξ(t) > p2(t)

for all 0 < t < T . Then we obtain chordal SLE(κ;ρ1, . . . , ρN) process and trace started from (x;x+, x−,p3, . . . , pN).
The force point x+ or x− is called a degenerate force point. Other force points are called generic force points. Let
ϕ(t, ·) be the chordal Loewner maps driven by ξ . Since for any generic force point pj , we have pj (t) = ϕ(t,pj ), so
we write ϕ(t,pj ) for pj (t) in the case that pj is a degenerate force point.

For h > 0, let Sh = {z ∈ C: 0 < Im z < h} and Rh = ih + R. If H is a bounded closed subset of Sπ , Sπ \ H is
simply connected, and has Rπ as a boundary arc, then we call H a hull in Sπ w.r.t. Rπ . For such H , there is a unique
ψH that maps Sπ \ H conformally onto Sπ , such that for some c ≥ 0, ψH (z) = z ± c + o(1) as z → ±∞ in Sπ . We
call such c the capacity of H in Sπ w.r.t. Rπ , and let it be denoted it by scap(H).
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For ξ ∈ C([0, T )), the strip Loewner equation driven by ξ is

∂tψ(t, z) = coth

(
ψ(t, z) − ξ(t)

2

)
, ψ(0, z) = z. (2.3)

For 0 ≤ t < T , let L(t) be the set of z ∈ Sπ such that the solution ψ(s, z) blows up before or at time t . We call
L(t) and ψ(t, ·), 0 ≤ t < T , strip Loewner hulls and maps, respectively, driven by ξ . It turns out that ψ(t, ·) = ψL(t)

and scap(L(t)) = t for each t ∈ [0, T ). In this paper, we use coth2(z), tanh2(z), cosh2(z) and sinh2(z) to denote the
functions coth(z/2), tanh(z/2), cosh(z/2) and sinh(z/2), respectively.

Let κ ≥ 0, ρ1, . . . , ρN ∈ R, x ∈ R, and p1, . . . , pN ∈ R ∪ Rπ ∪ {+∞,−∞} \ {x}. Let B(t) be a Brownian motion.
Let ξ(t) and pk(t), 1 ≤ k ≤ N , be the solutions to the SDE:{

dξ(t) = √
κ dB(t) + ∑N

k=1
ρk

2 coth2
(
ξ(t) − pk(t)

)
dt,

dpk(t) = coth2
(
pk(t) − ξ(t)

)
dt, 1 ≤ k ≤ N,

(2.4)

with initial values ξ(0) = x and pk(0) = pk , 1 ≤ k ≤ N . Here, if some pk = ±∞, then pk(t) = ±∞ and
coth2(ξ(t) − pk(t)) = ±1 for all t ≥ 0. Suppose [0, T ) is the maximal interval of the solution to (2.4). Let L(t),
0 ≤ t < T , be strip Loewner hulls driven by ξ . Let β(t) = limSπ
z→ξ(t) ψ(t, z), 0 ≤ t < T . Then we call L(t) and
β(t), 0 ≤ t < T , (full) strip SLE(κ; �ρ) process and trace, respectively, started from (x; �p), where �ρ = (ρ1, . . . , ρN)

and �p = (p1, . . . , pN). If T0 ∈ (0, T ] is a stopping time, then L(t) and β(t), 0 ≤ t < T0, are called partial strip
SLE(κ; �ρ) process and trace, respectively, started from (x; �p).

The following two propositions are Lemmas 2.1 and 2.3 in [9]. They will be used frequently in this paper. Let S1
and S2 be two sets of boundary points or prime ends of a domain D. We say that K does not separate S1 from S2 in
D if there are neighborhoods U1 and U2 of S1 and S2, respectively, in D such that U1 and U2 lie in the same pathwise
connected component of D \ K .

Proposition 2.1. Suppose κ ≥ 0 and �ρ = (ρ1, . . . , ρN) with
∑N

m=1 ρm = κ − 6. For j = 1,2, let Kj(t), 0 ≤ t < Tj ,
be a generic or degenerate chordal SLE(κ; �ρ) process started from (xj ; �pj ), where �pj = (pj,1, . . . , pj,N ), j = 1,2.
Suppose W is a conformal or conjugate conformal map from H onto H such that W(x1) = x2 and W(p1,m) = p2,m,
1 ≤ m ≤ N . Let p1,∞ = W−1(∞) and p2,∞ = W(∞). For j = 1,2, let Sj ∈ (0, Tj ] be the largest number such
that for 0 ≤ t < Sj , Kj(t) does not separate pj,∞ from ∞ in H. Then (W(K1(t)),0 ≤ t < S1) has the same law as
(K2(t),0 ≤ t < S2) up to a time-change. A similar result holds for the traces.

Proposition 2.2. Suppose κ ≥ 0 and �ρ = (ρ1, . . . , ρN) with
∑N

m=1 ρm = κ − 6. Let K(t), 0 ≤ t < T , be a chordal
SLE(κ; �ρ) process started from (x; �p), where �p = (p1, . . . , pN). Let L(t), 0 ≤ t < S, be a strip SLE(κ; �ρ) process
started from (y; �q), where �q = (q1, . . . , qN). Suppose W is a conformal or conjugate conformal map from H onto
Sπ such that W(x) = y and W(pk) = qk , 1 ≤ k ≤ N . Let I = W−1(Rπ ) and q∞ = W(∞). Let T ′ ∈ (0, T ] be the
largest number such that for 0 ≤ t < T ′, K(t) does not separate I from ∞ in H. Let S′ ∈ (0, S] be the largest number
such that for 0 ≤ t < S′, L(t) does not separate q∞ from Rπ . Then (W(K(t)),0 ≤ t < T ′) has the same law as
(L(t),0 ≤ t < S′) up to a time-change. A similar result holds for the traces.

Now we recall some geometric results of SLE(κ; �ρ) traces derived in [9].
Let κ > 0, and ρ+, ρ− ∈ R be such that ρ+ +ρ− = κ −6. Suppose β(t), 0 ≤ t < ∞, is a strip SLE(κ;ρ+, ρ−) trace

started from (0;+∞,−∞). In the following propositions, Proposition 2.3 is a combination of Lemma 3.1, Lemma 3.2
and the argument before Lemma 3.2 in [9]; Propositions 2.4 and 2.5 are Theorem 3.3, and Theorem 3.4, respectively,
in [9].

Proposition 2.3. If |ρ+ − ρ−| < 2, then a.s. β([0,∞)) is bounded, and β([0,∞)) intersects Rπ at a single point
J +πi. And the distribution of J has a probability density function w.r.t. the Lebesgue measure, which is proportional
to exp( 1

κ
(ρ− − ρ+)x)(cosh2 x)−4/κ .

Proposition 2.4. If κ ∈ (0,4] and |ρ+ − ρ−| < 2, then a.s. limt→∞ β(t) ∈ Rπ .
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Proposition 2.5. If κ ∈ (0,4] and ±(ρ+ − ρ−) ≥ 2, then a.s. limt→∞ β(t) = ∓∞.

The following two propositions are Theorems 3.1 and 3.2 in [9].

Proposition 2.6. Let κ > 0, N+,N− ∈ N, �ρ± = (ρ±1, . . . , ρ±N±) ∈ RN± with
∑k

j=1 ρ±j ≥ κ/2 − 2 for 1 ≤ k ≤ N±,
�p± = (p±1, . . . , p±N±) with 0 < p1 < · · · < pN+ and 0 > p−1 > · · · > p−N− . Let γ (t), 0 ≤ t < T , be a chordal
SLE(κ; �ρ+, �ρ−) trace started from (0; �p+, �p−). Then a.s. T = ∞ and ∞ is a subsequential limit of γ (t) as t → ∞.

Proposition 2.7. Let κ ∈ (0,4], ρ+, ρ− ≥ κ/2 − 2. Suppose γ (t), 0 ≤ t < ∞, is a chordal SLE(κ;ρ+, ρ−) trace
started from (0;p+,p−). If p+ = 0+ and p− = 0−, or p+ ∈ (0,∞) and p− ∈ (−∞,0), then a.s. limt→∞ γ (t) = ∞.

The following proposition is Theorem 4.1 in [9] in the case that κ1 < 4 < κ2.

Proposition 2.8. Let 0 < κ1 < 4 < κ2 be such that κ1κ2 = 16. Let x1 �= x2 ∈ R. Let N ∈ N. Let p1, . . . , pN ∈ R ∪
{∞} \ {x1, x2} be distinct points. For 1 ≤ m ≤ N , let Cm ∈ R and ρj,m = Cm(κj − 4), j = 1,2. There is a coupling of
K1(t), 0 ≤ t < T1, and K2(t), 0 ≤ t < T2, such that (i) for j = 1,2, Kj(t), 0 ≤ t < Tj , is a chordal SLE(κj ;− κj

2 , �ρj )

process started from (xj ;x3−j , �p); and (ii) for j �= k ∈ {1,2}, if t̄k is an (F k
t )-stopping time with t̄k < Tk , then

conditioned on F k
t̄k

, ϕk(t̄k,Kj (t)), 0 ≤ t ≤ Tj (t̄k), has the same distribution as a time-change of a partial chordal

SLE(κj ;− κj

2 , �ρj ) process started from (ϕk(t̄k, xj ); ξk(t̄k), ϕk(t̄k, �p)), where ϕk(t, �p) = (ϕk(t,p1), . . . , ϕk(t,pN));
ϕk(t, ·), 0 ≤ t < Tk , are chordal Loewner maps for the hulls Kk(t), 0 ≤ t < Tk ; Tj (t̄k) ∈ (0, Tj ] is the largest number

such that Kj(t) ∩ Kk(t̄k) = ∅ for 0 ≤ t < Tj (t̄k); and (F j
t ) is the filtration generated by (Kj (t)), j = 1,2. This still

holds if some pm take(s) value x±
1 or x±

2 .

3. Integration of SLE measures

Let κ > 0, ρ+, ρ− ∈ R, ρ+ + ρ− = κ − 6, and |ρ+ − ρ−| < 2. Suppose ξ(t), 0 ≤ t < ∞, is the driving function of
a strip SLE(κ;ρ+, ρ−) process started from (0;+∞,−∞). Let σ = (ρ− − ρ+)/2. Then there is a Brownian motion
B(t) such that ξ(t) = √

κB(t) + σ t , 0 ≤ t < ∞.
Let μ denote the distribution of ξ . We consider μ as a probability measure on C([0,∞)). Let (Ft ) be the filtration

on C([0,∞)) generated by coordinate maps. Then the total σ -algebra is F∞ = ∨
t≥0 Ft . For each x ∈ R, let νx

denote the distribution of the driving function of a strip SLE(κ;−4, ρ− + 2, ρ+ + 2) process started from (0;x +
πi,+∞,−∞), which is also a probability measure on C([0,∞)). Then we have the following lemma.

Lemma 3.1. We have

μ = 1

Z

∫
R

νx exp(2σx/κ)(cosh2 x)−4/κ dx,

where dx is Lebesgue measure, Z = ∫
R

exp(2σx/κ)(cosh2 x)−4/κ dx, which is finite because |σ | < 1, and the integral
means that for any A ∈ F∞,

μ(A) = 1

Z

∫
R

νx(A) exp(2σx/κ)(cosh2 x)−4/κ dx. (3.1)

Proof. Let f (x) = 1
Z

exp(2σx/κ)(cosh2 x)−4/κ , x ∈ R. Then
∫

R
f (x)dx = 1, and

f ′(x)

f (x)
= 2

κ
(σ − tanh2 x), x ∈ R, (3.2)

κ

2
f ′′(x) + f ′(x)(−σ + tanh2 x) + f (x)

2
(cosh2 x)−2 = 0, x ∈ R. (3.3)
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Note that the collection of A’s that satisfy (3.1) is a monotone class, and
⋃

t≥0 Ft is an algebra. From Monotone
Class theorem, we suffice to show that (3.1) holds for any A ∈ Ft , t ∈ [0,∞). This will be proved by showing that
νx |Ft

� μ|Ft
for all x ∈ R and t ∈ [0,∞), and if Rt(x) is the Radon–Nikodym derivative, then

∫
R

Rt(x)f (x)dx = 1.
Let ψ(t, ·), 0 ≤ t < ∞, be the strip Loewner maps driven by ξ . For x ∈ R and t ≥ 0, let X(t, x) = Re(ψ(t, x +

πi) − ξ(t)). Note that ψ(t, x + πi) ∈ Rπ for any t ≥ 0. From (2.3), for any fixed x ∈ R, X(t, x) satisfies the SDE

∂tX(t, x) = −√
κ ∂B(t) − σ ∂t + tanh2

(
X(t, x)

)
∂t. (3.4)

If t is fixed, then ∂xX(t, x) = ∂xψ(t, x + πi). From (2.3), we have

∂t ∂xX(t, x) = ∂t ∂xψ(t, x + πi) = −1

2
sinh−2

2

(
ψ(t, x + πi) − ξ(t)

)
∂xψ(t, x + πi)

= 1

2
cosh−2

2

(
X(t, x)

)
∂xX(t, x). (3.5)

For x ∈ R and t ≥ 0, define M(t, x) = f (X(t, x)) ∂xX(t, x). From (3.2)–(3.5) and Itô’s formula (cf. [6]), we find that
for any fixed x, (M(t, x)) is a local martingale, and satisfies the SDE:

∂tM(t, x)

M(t, x)
= −f ′(X(t, x))

f (X(t, x))

√
κ ∂B(t) = − 2√

κ

(
σ − tanh2

(
X(t, x)

))
∂B(t).

From the definition, f is bounded on R. From (3.5) and that ∂xX(0, x) = 1, it follows that |∂xX(t, x)| ≤ exp(t/2).
Thus, for any fixed t0 > 0, M(t, x) is bounded on [0, t0] × R. So (M(t, x): 0 ≤ t ≤ t0) is a bounded martingale.
Then we have E[M(t0, x)] = M(0, x) = f (x) for any x ∈ R. Now define the probability measure νt0,x such that
dνt0,x/dμ = M(t0, x)/f (x), and let

B̃(t) = B(t) +
∫ t

0

2√
κ

(
σ − tanh2

(
X(s, x)

))
ds, 0 ≤ t ≤ t0.

From the Girsanov theorem, under the probability measure νt0,x , B̃(t), 0 ≤ t ≤ t0, is a partial Brownian motion. Now
ξ(t), 0 ≤ t ≤ t0, satisfies the SDE:

dξ(t) = √
κ dB̃(t) + σ dt − 2

(
σ − tanh2

(
X(t, x)

))
dt

= √
κ dB̃(t) − σ dt − −4

2
coth2

(
ψ(t, x + πi) − ξ(t)

)
dt.

Since ξ(0) = 0, so under νt0,x , (ξ(t),0 ≤ t ≤ t0) has the distribution of the driving function of a strip SLE(κ;−4, ρ− +
2, ρ+ + 2) process started from (0;x + πi,+∞,−∞). So we conclude that νt0,x |Ft0

= νx |Ft0
. Thus, νx |Ft0

� μ|Ft0
,

and the Radon–Nikodym derivative is Rt0(x) = M(t0, x)/f (x). Thus,∫
R

Rt0(x)f (x)dx =
∫

R

M(t0, x)dx =
∫

R

f (X(t0, x)) ∂xX(t0, x)dx =
∫

R

f (y)dy = 1. �

Theorem 3.1. Let κ > 0, and ρ+, ρ− ∈ R satisfy ρ+ + ρ− = κ − 6 and |ρ+ − ρ−| < 2. Let μ̄ denote the distribution
of a strip SLE(κ;ρ+, ρ−) trace β(t), 0 ≤ t < ∞, started from (0;+∞,−∞). Let λ denote the distribution of the
intersection point of β([0,∞)) with Rπ . For each p ∈ Rπ , let ν̄p denote the distribution of a strip SLE(κ;−4, ρ− +
2, ρ+ + 2) trace started from (0;p,+∞,−∞). Then μ̄ = ∫

Rπ
ν̄p dλ(p).

Proof. This follows from Proposition 2.3 and the above lemma. �

Remark. A special case of the above theorem is that κ = 2 and ρ+ = ρ− = −2, so ρ+ + 2 = ρ− + 2 = 0. From [10],
a strip SLE(2;−2,−2) trace started from (0;+∞,−∞) is a continuous LERW in Sπ from 0 to Rπ ; a strip
SLE(2;−4,0,0) trace started from (0;p,+∞,−∞) is a continuous LERW in Sπ from 0 to p; and the above theorem
in this special case follows from the convergence of discrete LERW to continuous LERW.
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Corollary 3.1. Let κ > 0, ρ ∈ (κ/2 − 4, κ/2 − 2), and x �= 0. Let μ̄ denote the distribution of a chordal SLE(κ;ρ)

trace γ (t), 0 ≤ t < T , started from (0;x). Let λ denote the distribution of the subsequential limit of γ (t) on R as
t → T , which is a.s. unique. For each y ∈ R, let ν̄y denote the distribution of a chordal SLE(κ;−4, κ − 4 − ρ) trace
started from (0;y, x). Then μ̄ = ∫

R
ν̄y dλ(y).

Proof. This follows from the above theorem and Proposition 2.2. �

Corollary 3.2. Let κ ∈ (4,8) and x �= 0. Let γ (t), 0 ≤ t < ∞, be a standard chordal SLE(κ) trace. Let Tx be the
first t that γ ([0, t]) disconnects x from ∞ in H. Let μ̄ denote the distribution of (γ (t),0 ≤ t < Tx). Let λ denote the
distribution of γ (Tx). For each y ∈ R, let ν̄y denote the distribution of a chordal SLE(κ;−4, κ − 4) trace started from
(0;y, x). Then μ̄ = ∫

R
ν̄y dλ(y).

Proof. This is a special case of the above corollary because γ (t), 0 ≤ t < Tx , is a chordal SLE(κ;0) trace started
from (0;x), and 0 ∈ (κ/2 − 4, κ/2 − 2). �

4. Geometric properties

In this section, we will improve some results derived in Section 3 of [9]. We first derive a simple lemma.

Lemma 4.1. Suppose ψ(t, ·), 0 ≤ t < T , are strip Loewner maps driven by ξ . Suppose ξ(0) < x1 < x2 or ξ(0) >

x1 > x2, and ψ(t, x1) and ψ(t, x2) are defined for 0 ≤ t < T . Then for any 0 ≤ t < T ,∣∣∣∣∫ t

0
coth2

(
ψ(s, x1) − ξ(s)

)
ds −

∫ t

0
coth2

(
ψ(s, x2) − ξ(s)

)
ds

∣∣∣∣ < |x1 − x2|.

Proof. By symmetry, we only need to consider the case that ξ(0) < x1 < x2. For any 0 ≤ t < T , we have
ξ(t) < ψ(t, x1) < ψ(t, x2), which implies that coth2(ψ(t, x1) − ξ(t)) > coth2(ψ(t, x2) − ξ(t)) > 0. Also, note that
∂tψ(t, xj ) = coth2(ψ(t, xj ) − ξ(t)), j = 1,2, so for 0 ≤ t < T ,

0 ≤
∫ t

0
coth2

(
ψ(s, x1) − ξ(s)

)
ds −

∫ t

0
coth2

(
ψ(s, x2) − ξ(s)

)
ds

= (
ψ(t, x1) − ψ(0, x1)

) − (
ψ(t, x2) − ψ(0, x2)

)
= ψ(t, x1) − ψ(t, x2) + x2 − x1 < x2 − x1 = |x1 − x2|. �

From now on, in this section, we let κ > 0, N+,N− ∈ N ∪ {0}, �ρ± = (ρ±1, . . . , ρ±N±) ∈ RN± , and χ± =∑N±
m=1 ρ±m. Let τ+, τ− ∈ R be such that χ+ + τ+ + χ− + τ− = κ − 6. Let �p± = (p±1, . . . , p±N±) be such that

p−N− < · · · < p−1 < 0 < p1 < · · · < pN+ . Suppose β(t), 0 ≤ t < T , is a strip SLE(κ; �ρ+, �ρ−, τ+, τ−) trace started
from (0; �p+, �p−,+∞,−∞). Let ξ(t) and ψ(t, ·), 0 ≤ t < T , be the driving function and strip Loewner maps for β .
Then there is a Brownian motion B(t) such that for 0 ≤ t < T , ξ(t) satisfies the SDE

dξ(t) = √
κ dB(t) −

N+∑
m=1

ρm

2
coth2

(
ψ(t,pm) − ξ(t)

)
dt

−
N−∑
m=1

ρ−m

2
coth2

(
ψ(t,p−m) − ξ(t)

)
dt − τ+ − τ−

2
dt. (4.1)

For 0 ≤ t < T , we have

ψ(t,p−N−) < · · · < ψ(t,p−1) < ξ(t) < ψ(t,p1) < · · · < ψ(t,pN+). (4.2)
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Since ∂tψ(t, x) = coth2(ψ(t, x)− ξ(t)), so ∂tψ(t,pm) > 1 for 1 ≤ m ≤ N+, and ∂tψ(t,p−m) < −1 for 1 ≤ m ≤ N−.
Thus, for 0 ≤ t < T , ψ(t,pm) increases in t , and ψ(t,pm) > t for 1 ≤ m ≤ N+; ψ(t,p−m) decreases in t , and
ψ(t,p−m) < −t for 1 ≤ m ≤ N−. We say that some force point ps is swallowed by β if T < ∞ and ψ(t,ps)−ξ(t) →
0 as t → T . In fact, if T < ∞ then some force point on R must be swallowed by β , and from (4.2) we see that either
p1 or p−1 is swallowed.

Lemma 4.2. (i) If
∑k

j=1 ρj ≥ κ/2−2 for 1 ≤ k ≤ N+, then a.s. p1 is not swallowed by β . (ii) If
∑k

j=1 ρ−j ≥ κ/2−2
for 1 ≤ k ≤ N−, then a.s. p−1 is not swallowed by β .

Proof. From symmetry, we only need to prove (i). Suppose
∑k

j=1 ρj ≥ κ/2 − 2 for 1 ≤ k ≤ N+. Let E denote the
event that p1 is swallowed by β . Let P be the probability measure we are working on. We want to show that P(E ) = 0.
Assume that P(E ) > 0. Assume that E occurs. Then limt→T ξ(t) = limt→T ψ(t,p1) ≥ T . For 1 ≤ m ≤ N−, since
ψ(t,p−m) < −t , 0 ≤ t < T , so ψ(t,p−m) − ξ(t) on [0, T ) is uniformly bounded above by a negative number. Thus
coth2(ψ(t,p−m)−ξ(t)) on [0, T ) is uniformly bounded for 1 ≤ m ≤ N−. For 0 ≤ t < T , let B̃(t) = B(t)+∫ t

0 a(s)ds,
where

a(t) = −κ/2 − 2

2
√

κ
+ κ/2 − 4 − χ+

2
√

κ
coth2

(
ψ(t,πi) − ξ(t)

)
−

N−∑
m=1

ρ−m

2
√

κ
coth2

(
ψ(t,p−m) − ξ(t)

) − τ+ − τ−
2
√

κ
.

For 0 ≤ t < T , since ψ(t,πi) − ξ(t) ∈ Rπ , so |coth2(ψ(t,πi) − ξ(t))| ≤ 1. From the previous discussion, we see that
if E occurs, then T < ∞ and a(t) is uniformly bounded on [0, T ), and so

∫ T

0 a(t)2 dt < ∞. For 0 ≤ t < T , define

M(t) = exp

(
−

∫ t

0
a(s)dB(s) − 1

2

∫ t

0
a(s)2 ds

)
. (4.3)

Then (M(t),0 ≤ t < T ) is a local martingale and satisfies dM(t)/M(t) = −a(t)dB(t). In the event E , since∫ T

0 a(t)2 dt < ∞, so a.s. limt→T M(t) ∈ (0,∞). For N ∈ N, let TN ∈ [0, T ] be the largest number such that
M(t) ∈ (1/(2N),2N) on [0, TN). Let EN = E ∩ {TN = T }. Then E = ⋃∞

N=1 EN a.s., and E[M(TN)] = M(0) = 1,
where M(T ) := limt→T M(t). Since P(E ) > 0, so there is N ∈ N such that P(EN) > 0. Define another probability
measure Q such that dQ/dP = M(TN). Then P � Q, and so Q(EN) > 0. By the Girsanov theorem, under the proba-
bility measure Q, B̃(t), 0 ≤ t < TN , is a partial Brownian motion. From (4.1), ξ(t), 0 ≤ t < T , satisfies the SDE:

dξ(t) = √
κ dB̃(t) −

N+∑
m=1

ρm

2
coth2

(
ψ(t,pm) − ξ(t)

)
dt

+ κ/2 − 2

2
dt − κ/2 − 4 − χ+

2
coth2

(
ψ(t,πi) − ξ(t)

)
dt,

so under Q, β(t), 0 ≤ t < TN , is a partial strip SLE(κ; �ρ+, κ
2 − 2, κ

2 − 4 − χ+) trace started from (0; �p+,−∞,πi). In
the event EN , since ψ(t,p1) − ξ(t) → 0 as t → TN = T , so β(t), 0 ≤ t < TN , is a full trace under Q. Note that

N+∑
m=1

ρm +
(

κ

2
− 2

)
+

(
κ

2
− 4 − χ+

)
= κ − 6.

From Proposition 2.2, Proposition 2.6, and that
∑k

j=1 ρj ≥ κ/2 − 2 for 1 ≤ k ≤ N+, we see that on EN , Q-a.s. πi
is a subsequential limit of β(t) as t → TN , which implies that the height of β((0, t]) tends to π as t → TN , and so
TN = ∞. This contradicts that TN = T < ∞ on EN and Q(EN) > 0. Thus P(E ) = 0. �
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Lemma 4.3. (i) If χ+ ≥ −2 and χ+ +τ+ > κ/2−4, then T = ∞ a.s. implies that lim inft→∞(ψ(t,pm)−ξ(t))/t > 0
for 1 ≤ m ≤ N+. (ii) If χ− ≥ −2 and χ− + τ− > κ/2 − 4, then a.s. T = ∞ implies that lim supt→∞(ψ(t,p−m) −
ξ(t))/t < 0 for 1 ≤ m ≤ N−.

Proof. We will only prove (i) since (ii) follows from symmetry. Suppose χ+ ≥ −2 and χ+ + τ+ > κ/2 − 4. Then
� := 1 + χ+

2 + τ+
2 − χ−

2 − τ−
2 > 0. Let X(t) = ψ(t,p1) − ξ(t), t ≥ 0. From (4.2) we suffice to show that T = ∞ a.s.

implies that lim inft→∞ X(t)/t > 0. Now assume that T = ∞. From (2.3) and (4.1), for any 0 ≤ t1 ≤ t2,

X(t2) − X(t1) = −√
κB(t2) + √

κB(t1) + τ+ − τ−
2

(t2 − t1) +
∫ t2

t1

coth2
(
X(t)

)
dt

+
N+∑
m=1

ρm

2

∫ t2

t1

coth2
(
ψ(t,pm) − ξ(t)

)
dt +

N−∑
m=1

ρ−m

2

∫ t2

t1

coth2
(
ψ(t,p−m) − ξ(t)

)
dt. (4.4)

Let M+ = ∑N+
m=1 |ρm||pm − p1|. From Lemma 4.1, for any 0 ≤ t1 ≤ t2,

N+∑
m=1

ρm

2

∫ t2

t1

coth2
(
ψ(t,pm) − ξ(t)

)
dt ≥ χ+

2

∫ t2

t1

coth2
(
X(t)

)
dt − M+. (4.5)

Let ε1 = min{�,1}/6 > 0. There is a random number A0 = A0(ω) > 0 such that a.s.∣∣√κB(t)
∣∣ ≤ A0 + ε1t for any t ≥ 0. (4.6)

Let χ∗− = ∑N−
m=1 |ρ−m|, and ε2 = �

χ∗−+1 > 0. Choose R > 0 such that if x < −R then |coth2(x)− (−1)| < ε2. Suppose

X(t) ≤ t on [t1, t2], where t2 ≥ t1 ≥ R. Then for 1 ≤ m ≤ N− and t ∈ [t1, t2], from ψ(t,p−m) < −t and ψ(t,p1) > t ,
we have

ψ(t,p−m) − ξ(t) = ψ(t,p−m) − ψ(t,p1) + X(t) < −t − t + t = −t ≤ −R,

and so |coth2(ψ(t,p−m) − ξ(t)) − (−1)| < ε2. Then

N−∑
m=1

ρ−m

2

∫ t2

t1

coth2
(
ψ(t,p−m) − ξ(t)

)
dt ≥

(
−χ−

2
− χ∗−

2
ε2

)
(t2 − t1). (4.7)

Suppose X(t0) ≥ t0 for some t0 ≥ max{R,2M+ + 4A0 + 2}. We claim that a.s. for any t ≥ t0, we have X(t) ≥ ε1t .
If this is not true, then there are t2 > t1 ≥ t0 such that X(t1) = t1, X(t2) = ε1t2 and X(t) ≤ t for t ∈ [t1, t2]. From
(4.4)–(4.7), we have a.s.

X(t2) − X(t1) ≥ −2A0 − ε1t1 − ε1t2 + τ+ − τ−
2

(t2 − t1)

+
(

1 + χ+
2

)∫ t2

t1

coth2
(
X(t)

)
dt − M+ − χ− + χ∗−ε2

2
(t2 − t1)

≥ −M+ − 2A0 − 2ε1t2 +
(

� − χ∗−ε2

2

)
(t2 − t1), (4.8)

where in the last inequality we use the facts that coth2(X(t)) > 1 and 1 + χ+
2 ≥ 0. Since X(t1) = t1 and X(t2) = ε1t2,

so we have

M+ + 2A0 ≥ (
� − χ∗−ε2/2 − 3ε1

)
(t2 − t1) + (1 − 3ε1)t1.
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Since � − χ∗−ε2/2 − 3ε1 ≥ � − �/2 − �/2 ≥ 0 and 1 − 3ε1 ≥ 1/2, so

M+ + 2A0 ≥ t1/2 ≥ t0/2 ≥ (2M+ + 4A0 + 2)/2 = M+ + 2A0 + 1,

which is a contradiction. Thus, if X(t0) ≥ t0 for some t0 ≥ max{R,2M++4A0 +2}, then a.s. X(t) ≥ ε1t for any t ≥ t0,
and so lim inft→∞ X(t)/t ≥ ε1 > 0. The other possibility is that X(t0) < t0 for all t0 ≥ max{R,2M+ + 4A0 + 2}. Let
t1 = max{R,2M+ + 4A0 + 2} and t2 ≥ t1. Then (4.4)–(4.7) still hold, so we have (4.8) again. Let both sides of (4.8)
be divided by t2 and let t2 = t → ∞. Then we have a.s.

lim inf
t→∞ X(t)/t ≥ � − χ∗−ε2/2 − 2ε1 ≥ �/6 > 0. �

The following theorem improves Theorem 3.6 in [9].

Theorem 4.1. If κ ∈ (0,4], ∑k
j=1 ρ±j ≥ κ/2 − 2, 1 ≤ k ≤ N±, and |χ+ + τ+ − χ− − τ−| < 2, then a.s. T = ∞ and

limt→∞ β(t) ∈ Rπ .

Proof. From Lemma 4.2, a.s. neither p1 nor p−1 is swallowed by β , so T = ∞. Since |χ+ + τ+ − χ− − τ−| < 2
and χ+ + τ+ + χ− + τ− = κ − 6, so χ± + τ± > κ/2 − 4. If N+ ≥ 1, then χ+ = ∑N+

m=1 ρ± ≥ κ/2 − 2 ≥ −2, so
from Lemma 4.3, a.s. lim inft→∞(ψ(t,pm) − ξ(t))/t > 0 for 1 ≤ m ≤ N+. If N+ = 0, this is also true since there
is nothing to check. Similarly, lim supt→∞(ψ(t,p−m) − ξ(t))/t < 0 for 1 ≤ m ≤ N−. For 0 ≤ t < ∞, let B̃(t) =
B(t) + ∫ t

0 a(s)ds, where

a(t) =
N+∑
m=1

ρm

2
√

κ

(
1 − coth2

(
ψ(t,pm) − ξ(t)

)) −
N−∑
m=1

ρ−m

2
√

κ

(
1 + coth2

(
ψ(t,p−m) − ξ(t)

))
.

Then
∫ ∞

0 a(t)2 dt < ∞, and ξ(t), 0 ≤ t < ∞, satisfies the SDE:

dξ(t) = √
κ dB̃(t) − τ+ + χ+ − τ− − χ−

2
dt. (4.9)

For 0 ≤ t < ∞, define M(t) by (4.3). Then (M(t)) is a local martingale, satisfies the SDE: dM(t)/M(t) =
−a(t)dB(t), and a.s. M(∞) := limt→∞ M(t) ∈ (0,∞). For N ∈ N, let TN ∈ [0,∞] be the largest number such
that M(t) ∈ (1/(2N),2N) on [0, TN). Then E[M(TN)] = M(0) = 1. Let EN = {TN = ∞}. Let P be the probability
measure we are working on. Fix ε > 0. There is N ∈ N such that P[EN ] > 1−ε. Define another probability measure Q
such that dQ/dP = M(TN). By the Girsanov theorem, under Q, B̃(t), 0 ≤ t < TN , is a partial Brownian motion, which
together with (4.9) implies that β(t), 0 ≤ t < TN , is a partial strip SLE(κ;ρ+, ρ−) trace started from (0;+∞,−∞),
where ρ± = χ± + τ±. Since ρ+ + ρ− = κ − 6 and |ρ+ − ρ−| < 2, so from Proposition 2.4, Q-a.s. limt→TN

β(t) ∈ Rπ

on {TN = ∞} = EN . Since P � Q, so (P-)a.s. limt→TN
β(t) ∈ Rπ on EN . Since P[EN ] > 1 − ε, so the probability that

limt→∞ β(t) ∈ Rπ is greater than 1 − ε. Since ε > 0 is arbitrary, so (P-)a.s. limt→∞ β(t) ∈ Rπ . �

The following theorem improves Theorem 3.1 in [9] when κ ∈ (0,4].

Theorem 4.2. Suppose κ ∈ (0,4]; N+,N− ∈ N ∪ {0}; �ρ± = (ρ±1, . . . , ρ±N±) ∈ RN± ;
∑k

j=1 ρ±j ≥ κ/2 − 2, 1 ≤ k ≤
N±; �p± = (p±1, . . . , p±N±) ∈ RN± ; p−N− < · · · < p−1 < 0 < p1 < · · · < pN+ . Let γ (t), 0 ≤ t < T , be a chordal
SLE(κ; �ρ+, �ρ−) trace started from (0; �p+, �p−). Then a.s. limt→T γ (t) = ∞.

Proof. If N+ = N− = 0, then γ is a standard chordal SLE(κ) trace, so the conclusion follows from Theorem 7.1
in [7]. If N+ = 0 and N− = 1, or N+ = 1 and N− = 0, the conclusion follows from Propositions 2.2 and 2.5. If
N+ = N− = 1, this follows from Proposition 2.7. For other cases, we will prove the theorem by reducing the number
of force points.

Now consider the case that N− = 0 and N+ ≥ 2. Choose W that maps H conformally onto Sπ such that W(0) = 0,
W(∞) = −∞, and W(pN+) = +∞. Let N ′+ = N+ − 1; �q = (q1, . . . , qN ′+), where qm = W(pm), 1 ≤ m ≤ N ′+. Then
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0 < q1 < · · · < qN ′+ . Let �ρ = (ρ1, . . . , ρN ′+) ∈ RN ′+ . Then
∑k

j=1 ρj ≥ κ/2 − 2 for 1 ≤ k ≤ N ′+. Let χ+ = ∑N ′+
m=1 ρm.

Then χ+ ≥ κ/2 − 2 ≥ −2. Let τ+ = ρN+ and τ− = κ − 6 − χ+ − τ+. Then χ+ + τ+ + τ− = κ − 6 and χ+ + τ+ =∑N+
m=1 ρm ≥ κ/2 − 2 > κ/2 − 4. From Proposition 2.2, a time-change of W ◦ γ (t), 0 ≤ t < T , say β(t), 0 ≤ t < S, is

a strip SLE(κ; τ−, τ+, �ρ) trace started from (0;−∞,+∞, �q). Let ξ(t) and ψ(t, ·), 0 ≤ t < S, be the driving function
and strip Loewner maps for β . Then there is a Brownian motion B(t) such that for 0 ≤ t < S, ξ(t) satisfies the SDE

dξ(t) = √
κ dB(t) − τ+ − τ−

2
dt −

N ′+∑
m=1

ρm

2
coth2

(
ψ(t, qm) − ξ(t)

)
dt.

From Lemmas 4.2 and 4.3, a.s. S = ∞ and lim inft→∞(ψ(t, qm) − ξ(t))/t > 0 for 1 ≤ m ≤ N ′+. Let B̃(t) = B(t) +∫ t

0 a(s)ds, where

a(t) =
N ′+∑
m=1

ρm

2
√

κ

(
1 − coth2

(
ψ(t,pm) − ξ(t)

))
.

Then
∫ ∞

0 a(t)2 dt < ∞. Now ξ(t) satisfies the SDE

dξ(t) = √
κ dB̃(t) − χ+ + τ+ − τ−

2
dt.

Note that (χ+ + τ+) − τ− ≥ 2. We observe that if B̃(t) is a Brownian motion, then β is a strip SLE(κ;χ+ + τ+, τ−)

trace started from (0;+∞,−∞), and so from Proposition 2.5, we have limt→∞ β(t) = −∞. Using the argument at
the end of the proof of Theorem 4.1, we conclude that a.s. limt→∞ β(t) = −∞, and so limt→T γ (t) = W−1(−∞) =
∞.

For the case N− = 1 and N+ ≥ 2, we define W and β as in the above case, and conclude that limt→∞ β(t) = −∞
using the same argument as above except that now we use Proposition 2.2 and the conclusion of this theorem in the
case N+ = N− = 1 to prove that a.s. limt→∞ β(t) = −∞. So again we conclude that a.s. limt→T γ (t) = ∞. The cases
that N+ ∈ {0,1} and N− ≥ 2 are symmetric to the above two cases. For the case that N+,N− ≥ 2, we define W and
β as in the case that N− = 0 and N+ ≥ 2, and conclude that a.s. limt→∞ β(t) = −∞ using the same argument as in
that case except that now we use Proposition 2.2 and the conclusion of this theorem in the case N− ≥ 2 and N+ = 1.
So we also have a.s. limt→T γ (t) = ∞. �

5. Duality

Let γ be a simple curve in a simply connected domain Ω . We call γ a crosscut in Ω if its two ends approach to two
different boundary points or prime ends of Ω . We call γ a degenerate crosscut in Ω if its two ends approach to the
same boundary point or prime end of Ω . We call γ a semi-crosscut in Ω if its one end approaches to some boundary
point or prime end of Ω , and the other end stays inside Ω . In the above definitions, if Ω = H, and no end of γ is
∞, then γ is called a crosscut, or degenerate crosscut, or semi-crosscut, respectively, in H on R. For example, eiθ ,
0 < θ < π, is a crosscut in H on R; eiθ , 0 < θ ≤ π/2, is a semi-crosscut in H on R; i + eiθ , −π/2 < θ < 3π/2, is a
degenerate crosscut in H on R. If γ is a crosscut in H on R, H \ γ has two connected components. We use DH(γ ) to
denote the bounded component.

In Proposition 2.8, let N = 4; choose p1 < x1 < p3 < p4 < x2 < p2; choose C2,C4 ≥ 1/2, let C1 = 1 − C2, C3 =
1/2 − C4 and ρj,m = Cm(κj − 4), 1 ≤ m ≤ 4, j = 1,2. Let Kj(t), 0 ≤ t < Tj , j = 1,2, be given by Proposition 2.8.
Let ϕj (t, ·) and γj (t), 0 ≤ t < Tj , j = 1,2, be the corresponding chordal Loewner maps and traces.

Since κ1 ∈ (0,4), so γ1(t), 0 ≤ t < Tj , is a simple curve, and γ1(t) ∈ H for 0 < t < Tj . From Theorem 4.1 and
Proposition 2.2, a.s. γ1(T1) := limt→T1 γ1(t) ∈ (x2,p2). Thus, γ1 is a crosscut in H on R. Note that γ1 disconnects x2
from ∞ in H. If t̄2 ∈ [0, T2) is an (F 2

t )-stopping time, then conditioned on F 2
t̄2

, after a time-change, ϕ2(t̄2, γ1(t)), 0 ≤
t < T1(t̄2), has the same distribution as a chordal SLE(κ1;− κ1

2 , �ρ1) trace started from (ϕ2(t̄2, x1); ξ2(t̄2), ϕ2(t̄2, �p)).
Then we find that a.s. limt→T1(t̄2)

ϕ2(t̄2, γ1(t)) ∈ (ξ2(t̄2), ϕ2(t̄2,p2)). Thus, ϕ2(t̄2, γ1(t)), 0 ≤ t < T1(t̄2), disconnects
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ξ2(t̄2) from ∞ in H, and so γ1 disconnects γ2(t̄2) from ∞ in H \ L2(t̄2). By choosing a sequence of (F 2
t )-stopping

times that are dense in [0, T2), we conclude that a.s. K2(T
−

2 ) ⊂ DH(γ1), where K2(T
−

2 ) = ⋃
0≤t<T2

K2(t). From
Propositions 2.6 and 2.1, a.s. x1 is a subsequential limit of γ2(t) as t → T2. Similarly, for every (F 1

t )-stopping time
t̄1 ∈ (0, T̄1), γ1(t̄1) is a subsequential limit of γ2(t) as t → T2(t̄1). By choosing a sequence of (F 1

t )-stopping times

that are dense in [0, T1), we conclude that a.s. γ1(t) ∈ K2(T
−

2 ) for 0 ≤ t < T1. So we have the following lemma and
theorem. Here, ∂out

H
S is defined for bounded S ⊂ H, which is the intersection of H with the boundary of the unbounded

component of H \ S. For detailed proof of the lemma, please see Lemma 5.1 in [9].

Lemma 5.1. Almost surely ∂out
H

K2(T
−
2 ) is the image of γ1(t), 0 < t < T1.

Theorem 5.1. Suppose κ > 4; p1 < x1 < p3 < p4 < x2 < p2; C2,C4 ≥ 1/2, C1 = 1 − C2, and C3 = 1/2 − C4.
Let K(t), 0 ≤ t < T , be chordal SLE(κ;− κ

2 ,C1(κ − 4),C2(κ − 4),C3(κ − 4),C4(κ − 4)) process started from
(x2;x1,p1,p2,p3,p4). Let K(T −) = ⋃

0≤t<T K(t). Then a.s. K(T −) is bounded, and ∂out
H

K(T −) has the distri-

bution of the image of a chordal SLE(κ ′;− κ ′
2 ,C1(κ

′ − 4),C2(κ
′ − 4),C3(κ

′ − 4),C4(κ
′ − 4)) trace started from

(x1;x2,p1,p2,p3,p4), where κ ′ = 16/κ .

The above lemma and theorem still hold if we let p1 ∈ (−∞, x1), or = x−
1 ; let p2 ∈ (x2,∞), or = ∞, or = x+

2 ; let
p3 ∈ (x1, x2), or = x+

1 ; let p4 ∈ (x1, x2) or = x−
2 . Here if p2 = x+

2 , we use Theorem 4.2 instead of Theorem 4.1 to
prove that the image of γ1 in Lemma 5.1 is a crosscut in H on R.

Proof of Theorem 1.1. First suppose x < 0. Then λ is supported by (−∞, x), and μ̄ = ∫
ν̄y dλ(y) follows from

Corollary 3.2 and Theorem 5.1 with x1 = y, x2 = 0, p1 = y−, p2 = ∞, p3 = y+, p4 = x, C1 = κ−6
κ−4 , C2 = 2

κ−4 ,
C3 = −1/2 and C4 = 1. From Theorem 4.1 and Proposition 2.2, for each y ∈ (−∞, x), ν̄y is supported by the space
of crosscuts in H from y to some point on (0,∞). Thus a.s. ∂out

H
K(Tx) is a crosscut in H on R connecting some

y ∈ (−∞, x) with some z ∈ (0,∞). The case that x > 0 is symmetric. � �

Let S ⊂ H. Suppose S ∩ (a,∞) = ∅ for some a ∈ R. Then there is a unique component of H\S, which has (a,∞)

as part of its boundary. Let D+ denote this component. Then ∂D+ ∩ H is called the right boundary of S in H. Let it
be denoted by ∂+

H
S. Similarly, if S ∩ (−∞, a) = ∅ for some a ∈ R. Then there is a unique component of H \S, which

has (−∞, a) as part of its boundary. Let D− denote this component. Then ∂D− ∩ H is called the left boundary of S

in H. Let it be denoted by ∂−
H

S. The following theorem improves Theorem 5.3 in [9].

Theorem 5.2. Let κ > 4 and Cr,Cl ≥ 1/2. Let K(t), 0 ≤ t < ∞, be a chordal SLE(κ;Cr(κ − 4),Cl(κ − 4))

process started from (0;0+,0−). Let K(∞) = ⋃
t≥0 K(t). Let κ ′ = 16/κ and W(z) = 1/z. Then (i) W(∂+

H
K(∞))

has the same distribution as the image of a chordal SLE(κ ′; (1 − Cr)(κ
′ − 4), (1/2 − Cl)(κ

′ − 4)) trace started from
(0;0+,0−); (ii) W(∂−

H
K(∞)) has the same distribution as the image of a chordal SLE(κ ′; (1/2 − Cr)(κ

′ − 4), (1 −
Cl)(κ

′ − 4)) trace started from (0;0+,0−); and (iii) a.s. K(∞) ∩ R = {0}.
Proof. Let W0(z) = 1/(1 − z). Then W0 maps H conformally onto H, and W0(0) = 1, W0(∞) = 0, W0(0±) = 1±.
From Proposition 2.1, after a time-change, (W0(K(t))) has the same distribution as a chordal SLE(κ; ( 3

2 − Cr −
Cl)(κ − 4) − κ

2 ,Cr(κ − 4),Cl(κ − 4)) process started from (1;0,1+,1−). Applying Theorem 5.1 with x1 = 0,
x2 = 1, p1 = 0−, p2 = 1+, p3 = 0+, p4 = 1−, C1 = 1 − Cr , C2 = Cr , C3 = 1/2 − Cl , and C4 = Cl , we find
that ∂out

H
W0(K(∞)) has the same distribution as the image of a chordal SLE(κ ′; (C2 + C4)(κ

′ − 4) − κ ′
2 ,C1(κ

′ −
4),C3(κ

′ − 4)) trace started from (0;1,0−,0+). Let γ denote this trace. From Proposition 2.1 and Theorem 4.2, γ is
a crosscut in H from 0 to 1. Thus ∂+

H
K(∞) = W−1

0 (γ ), and so W(∂+
H

K(∞)) = W ◦ W−1
0 (γ ). Let W1 = W ◦ W−1

0 .
Then W1(z) = z/(z − 1). So W1(0) = 0, W1(1) = ∞, W1(0±) = 0∓. From Proposition 2.1, after a time-change,
W1(γ ) has the same distribution as a chordal SLE(κ ′;C1(κ

′ − 4),C3(κ
′ − 4)) trace started from (0;0+,0−). Since

C1 = 1 − Cr and C3 = 1/2 − Cl , so we have (i). Now (ii) follows from symmetry. Finally, from (i), (ii) and Proposi-
tion 2.7, ∂+

H
K(∞) and ∂−

H
K(∞) are two crosscuts in H that connect ∞ with 0, so we have (iii). �

In the proof of the above theorem, if we choose p2 and p4 to be generic force points, then we may obtain the
following theorem using a similar argument.
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Theorem 5.3. Let κ > 4, Cr,Cl ≥ 1/2, and pr > 0 > pl . Suppose K(t), 0 ≤ t < ∞, is a chordal SLE(κ;Cr(κ −
4),Cl(κ − 4)) process started from (0;pr,pl). Let K(∞) = ⋃

t≥0 K(t) and κ ′ = 16/κ . Then ∂+
H

K(∞) is a crosscut
in H from ∞ to some point on (0,pr); ∂−

H
K(∞) is a crosscut in H from ∞ to some point on (pl,0); and K(∞) is

bounded away from (−∞,pl] and [pr,+∞).

6. Boundary of chordal SLE

In this section, we use Theorem 1.1 and Proposition 1.1 to study the boundary of standard chordal SLE(κ) hulls for
κ > 4.

Let κ > 4. Let K(t), 0 ≤ t < ∞, be a standard chordal SLE(κ) process. Let ξ(t), ϕ(t, ·) and γ (t), 0 ≤ t < ∞, be
the corresponding driving function, chordal Loewner maps, and trace. Then there is a Brownian motion B(t) such that
ξ(t) = √

κB(t), t ≥ 0. For each t > 0, let a(t) = inf(K(t) ∩ R) and b(t) = sup(K(t) ∩ R), then a(t) < 0 < b(t), and
ϕ(t, ·) maps (−∞, a(t)) and (b(t),+∞) onto (−∞, c(t)) and (d(t),+∞) for some c(t) < 0 < d(t). And we have
c(t) ≤ ξ(t) ≤ d(t), t > 0. For each t > 0, ft := ϕ(t, ·)−1 extends continuously to H with ft (c(t)) = a(t), ft (d(t)) =
b(t), ft (ξ(t)) = γ (t), and K(t) is bounded by ft ([c(t), d(t)]) and R. We have the following theorem.

Theorem 6.1. Let T ∈ (0,∞) be a stopping time w.r.t. the filtration generated by (ξ(t)). Then γ (T ) ∈ R a.s. implies
that ξ(T ) = c(T ) or = d(T ), and the curve ft (x), c(T ) < x < d(T ), is a crosscut in H on R with dimension 1 + 2/κ

everywhere; and γ (T ) ∈ H a.s. implies that c(T ) < ξ(T ) < d(T ), and the two curves ft (x), c(T ) < x ≤ ξ(T ), and
ft (x), ξ(T ) ≤ x < d(T ), are both semi-crosscuts in H on R with dimension 1 + 2/κ everywhere. Moreover, K(T ) is
connected, and has no cut-point on R.

Here, a curve α is said to have dimension d everywhere if any nondegenerate subcurve of α has Hausdorff dimen-
sion d . From the main theorem in [3], every standard chordal SLE(κ) trace has dimension (1 + κ/8) ∧ 2 everywhere.
From the Girsanov theorem and Proposition 2.2, this is also true for any chordal or strip SLE(κ; �ρ) trace. For a con-
nected set K ⊂ C, z0 ∈ K is called a cut-point of K , if K \ {z0} is not connected. Such cut-point must lie on the
boundary of K .

We need a lemma to prove this theorem. For each p ∈ R \ {0}, let Tp denote the first time that p is swallowed
by K(t). Then Tp > 0 is a finite stopping time because κ > 4.

Lemma 6.1. For p− < 0 < p+, the events {Tp− < Tp+} and {Tp+ < Tp−} both have positive probabilities.

Proof. Let T = Tp− ∧ Tp+ . Let X±(t) = ϕ(t,p±) − ξ(t), 0 ≤ t < T . Then X±(t) satisfies the SDE: dX±(t) =
−√

κ dB(t) + 2
X±(t)

dt . Let Y±(t) = ln(|X±(t)|), 0 ≤ t < T . From Itô’s formula, Y±(t) satisfies the SDE:

dY±(t) = −
√

κ

X±(t)
dB(t) +

(
2 − κ

2

)
dt

X±(t)2
.

Let Y(t) = Y+(t) − Y−(t), 0 ≤ t < T . Then Y(t) satisfies the SDE:

dY(t) = −√
κ

[
1

X+(t)
− 1

X−(t)

]
dB(t) +

(
2 − κ

2

)[
1

X+(t)2
− 1

X−(t)2

]
dt.

Let u(t) = ∫ t

0 (1/X+(s) − 1/X−(s))2 ds, 0 ≤ t < T . Let Z(t) = Y(u−1(t)), 0 ≤ t < u(T ). Then there is a Brownian
motion B̃(t) such that Z(t) satisfies the SDE:

dZ(t) = −√
κ dB̃(t) +

(
2 − κ

2

)
X−(u−1(t)) + X+(u−1(t))

X−(u−1(t)) − X+(u−1(t))
dt

= −√
κ dB̃(t) +

(
κ

2
− 2

)
tanh2(Z(t))dt.
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From the chordal Loewner equation, X+(t) − X−(t) = ϕ(t,p+) − ϕ(t,p−) increases in t . If T = Tp− , as t → T −,
X−(t) = ϕ(t,p−) − ξ(t) → 0, so |X+(t)|/|X−(t)| → ∞, which implies that Z(t) → +∞ as t → u(T ). Similarly, if
T = Tp+ , then Z(t) → −∞ as t → u(T ). Thus as t → T , either Z(t) → +∞ or Z(t) → −∞. For x ∈ R, let h(x) =∫ x

0 (cosh2 s)2/κ−2 ds. Since 2/κ − 2 < 0, so h maps R onto a finite interval, say (−L,L). And we have κ
2 h′′(x) +

( κ
2 − 2)h′(x) tanh2(x) = 0 for any x ∈ R. Let W(t) = h(Z(t)), 0 ≤ t < u(T ). Then as t → u(T ), either W(t) → L or

W(t) → −L. From Itô’s formula, (W(t)) is a bounded martingale. Thus, the probability that limt→u(T ) W(t) = L is
(W(0)− (−L))/(2L) > 0. So the probability that Tp− < Tp+ , i.e., T = Tp− , is positive. Similarly, the probability that
Tp+ < Tp− is also positive. �

Proof of Theorem 6.1. Let κ ′ = 16/κ ∈ (0,4). If T = Tp for some p ∈ R \ {0}, then γ (T ) ∈ R, and ξ(T ) = c(T ) or
d(T ), depending on whether p < 0 or p > 0. From Theorem 1.1 and Proposition 1.1, ∂K(T ) ∩ H = {fT (x): c(T ) <

x < d(T )} is the image of a chordal SLE(κ ′, �ρ) trace, and so it has dimension 1 + κ ′/8 = 1 + 2/κ everywhere. We
also see that this curve is a crosscut in H on R, so K(T ) is the hull bounded by this crosscut. Thus, K(T ) is connected,
and has no cut-point.

Now consider the general case. We first prove (i): ξ(T ) = c(T ) a.s. implies that ft (x), c(T ) < x < d(T ), is a
crosscut in H on R with dimension 1 + 2/κ everywhere. Let E denote the event that ξ(T ) = c(T ), but ft (x), c(T ) <

x < d(T ), is not a crosscut in H on R, or does not have dimension 1 + 2/κ anywhere. Assume that P(E ) > 0. For
each n ∈ N, let

En := {
ξ(T ) = c(T )

} ∩ {−n < a(T )
} ∩ {

d(T ) − c(T ) > 1/n
}

∩ {
ft (x), c(T ) + 1/n ≤ x < d(T ), is not a semi-crosscut in H on R,

or does not have dimension 1 + 2/κ everywhere
}
.

Since fT (c(T )) = a(T ) ∈ R, and a(T ) < b(T ) = fT (d(T )), so E = ⋃∞
n=1 En. Then there is n0 ∈ N such that P(En0) >

0.
Let (K̃(t),0 ≤ t < ∞) be a standard chordal SLE(κ) process that is independent of (K(t)). Let Ẽn0 denote the event

that K̃(t) swallows ϕ(T ,−n0) − ξ(T ) before swallowing 1/n0, and let T̃ denote the first time that K̃(t) swallows
ϕ(T ,−n0)− ξ(T ). From Lemma 6.1, the probability of Ẽn0 is positive. Let Ên0 = En0 ∩ Ẽn0 . Then Ên0 also has positive
probability.

Define K̂(t) = K(t) for 0 ≤ t ≤ T ; and K̂(t) = K(T )∪fT (K̃(t −T )+ ξ(T )) for t > T . Then (K̂(t)) has the same
distribution as (K(t)). Let T̂−n0 denote the first time that K̂(t) swallows −n0. Then ∂K̂(T̂−n0) ∩ H is a.s. a crosscut

in H on R with dimension 1 + 2/κ everywhere. Since on Ên0 , T̂−n0 = T + T̃ , and K̃(T̃ ) ∩ R is bounded above by
1/n0, so {fT (x), c(T )+1/n0 ≤ x < d(T )} is a subset of the boundary of K̂(T̂−n0) = K(T )∪fT (K̃(T̃ )+ ξ(T )) in H,
which implies that a.s. fT (x), c(T ) + 1/n0 ≤ x < d(T ), is a semi-crosscut with dimension 1 + 2/κ everywhere. This
contradicts that Ên0 has positive probability. So we have (i). Symmetrically, we have (ii): ξ(T ) = d(T ) a.s. implies
that ft (x), c(T ) < x < d(T ), is a crosscut in H on R with dimension 1 + 2/κ everywhere.

If γ (T ) = fT (ξ(T )) ∈ H, then γ (T ) /∈ {c(T ), d(T )}, so c(T ) < ξ(T ) < d(T ). Using the same argument as in (i),
we can prove (iii): γ (T ) ∈ H a.s. implies that ft (x), ξ(T ) ≤ x < d(T ), is a semi-crosscut in H on R with dimension
1 + 2/κ everywhere. Symmetrically, we have (iv): γ (T ) ∈ H a.s. implies that ft (x), c(T ) < x ≤ ξ(T ), is a semi-
crosscut in H on R with dimension 1 + 2/κ everywhere. From (iii) and (iv), we see that γ (T ) ∈ H a.s. implies that
K(T ) is connected, and has no cut-point on R. Similarly, we have (v): c(T ) < ξ(T ) < d(T ) and γ (T ) ∈ R a.s. implies
that fT (x), ξ(T ) < x < d(T ), and fT (x), c(T ) < x < ξ(T ), are both crosscuts or degenerate crosscuts in H on R.
Moreover, these two curves intersect at only one point: γ (T ), since the curve α(y) := fT (ξ(T )+ iy), y > 0, connects
γ (T ) with ∞, and does not intersect the above two curves. So γ (T ) is a cut-point of K(T ) on R.

To finish the proof, it remains to prove (vi): γ (T ) ∈ R a.s. implies that ξ(T ) = c(T ) or = d(T ). Let E denote the
event that γ (T ) ∈ R and c(T ) < ξ(T ) < d(T ). We suffice to show that P(E ) = 0. Assume that P(E ) > 0. Assume that
E occurs. From (v), we know that K(T ) = K1 ∪ K2, where K1 and K2 are hulls bounded by crosscut or degenerate
crosscut in H on R, and K1 ∩ K2 = {γ (T )}. Since κ > 4, so a.s. K(T ) contains a neighborhood of 0 in H. We may
label K1 and K2 such that K1 contains a neighborhood of 0 in H. Then γ (T ) �= 0. Let S = {B(x + iy; r): x, y, r ∈
Q, y, r > 0, r < y/2}, where B(z0; r) := {z ∈ C: |z−z0| < r}. Then S is countable, and every A ∈ S is contained in H.
For A ∈ S , let EA denote the intersection of E with the event that A∩ ∂K2 �= ∅ and A∩K1 = ∅. Then E = ⋃

A∈S EA.
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So there is A0 ∈ S such that P(EA0) > 0. Let T0 be the first time that γ (t) hits A0. Let T1 = T ∧ T0. Then T1 is a
finite stopping time. Assume EA0 occurs. Since γ (t), 0 ≤ t ≤ T , visits every point on ∂K2 ∩ H ⊂ ∂K(T ) ∩ H, so
T0 ≤ T , and so T1 = T0. We have γ (T1) = γ (T0) ∈ A0. Since A0 ∩ R = ∅, so γ (T1) ∈ H. Since γ (0) = 0 ∈ K1, and
γ (T1) ∈ K2, which are both different from γ (T ), so γ (T ) ∈ K1 ∩ K2 is a cut-point of K(T1). However, since T1 is
a positive finite stopping time, and γ (T1) ∈ H on EA0 , so from (iii) and (iv) in the above proof, a.s. K(T1) has no
cut-point on R in the event EA0 . This contradicts that P(EA0) > 0. So P(E ) = 0. �

Corollary 6.1. For any stopping time T ∈ (0,∞), a.s. fT (x) /∈ R for x ∈ (c(T ), d(T )); ∂K(T ) ∩ H has Hausdorff
dimension 1 + 2/κ ; K(T ) is connected, and has no cut-point on R; and for every x ∈ (a(T ), b(T )), K(T ) contains a
neighborhood of x in H.

In the above theorem, when γ (T ) ∈ H, ∂K(T )∩H is composed of two semi-crosscuts in H on R, which are fT (x),
c(T ) < x ≤ ξ(T ) and fT (x), ξ(T ) ≤ x < d(T ). If the two semi-crosscuts intersect only at γ (T ) = fT (ξ(T )), then
we get a crosscut fT (x), c(T ) < x < d(T ). If the two semi-crosscuts intersect at any point z0 other than γ (T ), then
z0 is a cut-point of K(T ). To see this, suppose fT (x1) = fT (x2) = z0, where c(T ) < x1 < ξ(T ) < x2 < d(T ). Then
fT (x), c(T ) < x ≤ x1 and fT (x), x2 ≤ x < d(T ) are two semi-crosscuts in H on R, which together bound a hull
in H on R. Let it be denoted by K1. The simple curves fT (x), x1 ≤ x ≤ ξ(T ), and fT (x), ξ(T ) ≤ x ≤ x2, together
bound a closed bounded set in H. Let it be denoted by K2. Then K(T ) = K1 ∪ K2 and K1 ∩ K2 = {z0}. On the other
hand, every cut-point of K(T ) corresponds to an intersection point between fT (x), c(T ) < x < ξ(T ), and fT (x),
ξ(T ) < x < d(T ), and so such cut-point disconnects γ (T ) from ξ(0) = 0 in K(T ). From Theorem 5 in [2], if κ > 8
and T > 0 is a constant, then a.s. K(T ) has no cut-point, so fT (x), c(T ) < x < d(T ), is a crosscut in H on R. We
now make some improvement over this result.

Theorem 6.2. If κ ≥ 8 and T ∈ (0,∞) is a stopping time, then a.s. K(T ) has no cut-point, and so fT (x), c(T ) <

x < d(T ), is a crosscut in H on R.

Proof. First suppose κ > 8. Let E denote the event that K(T ) has a cut-point. We suffice to show that P(E ) = 0.
Assume that P(E ) > 0. For each n ∈ N, let En denote the event that c(T ) + 1/n < ξ(T ) < d(T ) − 1/n, and the two
curves fT (x), c(T ) < x ≤ ξ(T ) − 1/n, and fT (x), ξ(T ) + 1/n ≤ x < d(T ), are not disjoint. Then E = ⋃∞

n=1 En. So
there is n0 ∈ N such that P(En0) > 0.

Let (K̃(t)) be a standard chordal SLE(κ) process that is independent of (K(t)). There is a small h > 0 such that the

probability that K̃(h) ∩ R ⊂ (−1/n0,1/n0) is positive. There is t0 ∈ [0,∞) such that P(En0 ∩ {t0 − h ≤ T ≤ t0}) > 0.

Let Ê denote the intersection of En0 ∩ {t0 − h ≤ T ≤ t0} with {K̃(h) ∩ R ⊂ (−1/n0,1/n0)}. Then Ê also has positive
probability. Define K̂(t) = K(t) for 0 ≤ t ≤ T ; and K̂(t) = K(T ) ∪ fT (K̃(t − T ) + ξ(T )) for t > T . Then (K̂(t))

has the same distribution as (K(t)). From Theorem 5 in [2], a.s. K̂(t0) has no cut-point. Since T ≤ t0 ≤ T + h, so

K(T ) ⊂ K̂(t0) ⊂ K(T ) ∪ fT (K̃(h) + ξ(T )). In the event Ê , since K̃(h) ∩ R ⊂ (−1/n0,1/n0), so fT (x), c(T ) < x ≤
ξ(T ) − 1/n0, and fT (x), ξ(T ) + 1/n0 ≤ x < d(T ), are subarcs of ∂K̂(t0) ∩ H. However, in the event Ê , the above
two curves are not disjoint, so K̂(t0) has a cut-point, which contradicts that Ê has positive probability. Thus P(E ) = 0.

Now suppose κ = 8. Let γ R(t) = γ (1/t), 0 < t < ∞. Since chordal SLE(8) trace is reversible (cf. [5]), so after
a time-change, γ R has the distribution of a chordal SLE(8) trace in H from ∞ to 0. Thus, a.s. there is a crosscut α

in H \ γ R((0,1/T ]) = H \ γ ([T ,∞)) connecting γ R(1/T ) = γ (T ) with 0. Then α ⊂ K(T ) and does not intersect
∂K(T ). If K(T ) has any cut-point, the cut-point must disconnect γ (T ) from 0 in K(T ), so such α does not exist.
Thus a.s. K(T ) has no cut-point. �

If κ ∈ (4,8), this theorem does not hold since from Theorem 5 in [2], the probability that K(1) has cut-point is
positive.

7. More geometric results

The description of the boundary of SLE(κ) hulls for κ > 4 enables us to obtain some results about the limit of
SLE(κ; �ρ) traces when κ > 4. We will prove that the limits of the traces exist when certain conditions are satisfied.
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Let κ > 4. In this section, L(t), 0 ≤ t < Te, is a strip SLE(κ; �ρ) process started from (0; �p), where no force point
is degenerate. Let ξ(t), ψ(t, ·), and β(t), 0 ≤ t < Te, be the corresponding driving function, strip Loewner maps, and
trace. For t ∈ (0, Te), let a(t) = inf(L(t) ∩ R) < 0 and b(t) = sup(L(t) ∩ R) > 0. Then ψ(t, ·) maps (−∞, a(t)) and
(b(t),+∞) onto (−∞, c(t)) and (d(t),+∞) for some c(t) < 0 < d(t), and we have c(t) ≤ ξ(t) ≤ d(t). For each
t > 0, ft := ψ(t, ·)−1 extends continuously to Sπ such that ft (c(t)) = a(t), ft (d(t)) = b(t) and ft (ξ(t)) = β(t).
From Theorem 6.1, Proposition 2.2 and the Girsanov theorem, we have the following lemma.

Lemma 7.1. If T ∈ (0, Te) is a stopping time, then a.s. fT (x) ∈ Sπ for c(T ) < x < d(T ), and for every x ∈
(a(T ), b(T )), L(T ) contains a neighborhood of x in Sπ .

Lemma 7.2. Let T ∈ [0, Te) be a stopping time. Define βT (t) = ψ(T ,β(T + t)) − ξ(T ), 0 ≤ t < Te − T . Suppose
�p = (p1, . . . , pN). If ψ(T ,pm) − ξ(T ) = pm for 1 ≤ m ≤ N , then βT has the same distribution as β . In the general
case, conditioned on β(t), 0 ≤ t ≤ T , βT is a strip SLE(κ; �ρ) trace started from (0; �q), where �q = (q1, . . . , qN) and
qm = ψ(T ,pm) − ξ(T ), 1 ≤ m ≤ N .

Proof. This follows from the definition of strip SLE(κ; �ρ) process and the property that Brownian motion has i.i.d.
increment. �

Lemma 7.3. Let κ > 4, ρ+, ρ− ∈ R, ρ+ + ρ− = κ − 6, and ρ− − ρ+ ≥ 2. Suppose β(t), 0 ≤ t < ∞, is a strip
SLE(κ;ρ+, ρ−) trace started from (0;+∞,−∞). Then a.s. any subsequential limit of β(t) as t → ∞ does not lie on
R ∪ Rπ ∪ {−∞}.

Proof. Let Q denote the set of subsequential limits of β(t) as t → ∞. Let σ = (ρ− − ρ+)/2 ≥ 1. Then there is a
Brownian motion B(t) such that ξ(t) = √

κB(t) + σ t , 0 ≤ t < ∞. Thus, a.s. there is a random number A0 < 0 such
that ξ(t) ≥ A0 for 0 ≤ t < ∞. From (2.3), for any z ∈ Sπ with Re z < A0, ψ(t, z) never blows up for 0 ≤ t < ∞.
Thus, a.s. β([0,∞)) ⊂ {z ∈ Sπ : Re z ≥ A0}. So a.s. −∞ /∈ Q. Moreover, for any ε > 0, there is Rε > 0 such that the
probability that Reβ(t) ≥ −Rε for 0 ≤ t < ∞ is at least 1 − ε.

Fix x0 ∈ R. Let X(t) = Reψ(t, x0 + πi) − ξ(t), 0 ≤ t < ∞. Then X(t) satisfies the SDE: dX(t) = −√
κ dB(t) +

tanh2(X(t))dt − σ dt . Define h on R such that

h′(x) = exp(2σx/κ)(cosh2 x)−4/κ , x ∈ R.

Since σ ≥ 1, so h maps R onto (L,∞) for some L ∈ R. Let Y(t) = h(X(t)), 0 ≤ t < ∞. From Itô’s formula, Y(t) sat-
isfies the SDE: dY(t) = −h′(X(t))

√
κ dB(t). Define u(t) = ∫ t

0 κh′(X(s))2 ds, 0 ≤ t < ∞, and u(∞) = supu([0,∞)).
Then Y(u−1(t)), 0 ≤ t < u(∞), has the distribution of a partial Brownian motion. Since Y(u−1(t)) ∈ (L,∞) for 0 ≤
t < u(∞), so a.s. u(∞) < ∞ and limt→∞ Y(t) = limt→u(∞) Y (u−1(t)) ∈ [L,∞). Note that limt→∞ Y(t) ∈ (L,∞)

implies that limt→∞ X(t) ∈ R and so X(t), 0 ≤ t < ∞, is bounded. If X is bounded on [0,∞), from the definition of
u, u′(t) is uniformly bounded below by a positive constant, which implies that u(∞) = ∞. Since a.s. u(∞) < ∞, so
limt→∞ Y(t) /∈ (L,∞). Thus, a.s. limt→∞ Y(t) = L, and so limt→∞ X(t) = −∞.

Fix ε > 0. Let T be the first time such that X(t) ≤ −Rε − 1. Then T is a finite stopping time. Let βT be defined as
in Lemma 7.2. Then βT has the same distribution as β . So the probability that ReβT (t) ≥ −Rε for any 0 ≤ t < ∞ is
at least 1 − ε. Let QT denote the set of subsequential limits of βT (t) as t → ∞. Then the probability that QT ∩ (πi +
(−∞,−Rε − 1]) = ∅ is at least 1 − ε. If for any x ≤ x0, x + πi ∈ Q, then ψ(T ,x + πi) − ξ(T ) ∈ QT . Since x ≤ x0,
so Reψ(T ,x +πi)−ξ(T ) ≤ X(T ) ≤ −Rε −1, and so ψ(T ,x +πi)−ξ(T ) ∈ QT ∩ (πi+ (−∞,−Rε −1]). Thus, the
probability that Q∩ (πi + (−∞, x0]) = ∅ is at least 1 − ε. Since ε > 0 is arbitrary, so a.s. Q∩ (πi + (−∞, x0]) = ∅.
Since this holds for any x0 ∈ N, so a.s. Q ∩ Rπ = ∅.

Fix ε > 0 and x0 ≥ Rε + 1. Let X0(t) = ψ(t, x0) − ξ(t), 0 ≤ t < T0, where [0, T0) is the largest interval on which
ψ(t, x0) is defined. Then X0(t) satisfies the SDE: dX0(t) = −√

κ dB(t)+coth2(X0(t))dt −σ dt . Define h0 on (0,∞)

such that

h′
0(x) = exp(2σx/κ)(sinh2 x)−4/κ , 0 < x < ∞.
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Since κ > 4 and σ ≥ 1, so h0 maps (0,∞) onto (L,∞) for some L ∈ R. From Itô’s formula, Y0(t) := h0(X0(t)),
0 ≤ t < T0, satisfies the SDE: dY0(t) = −h′

0(X0(t))
√

κ dB(t). Using a similar argument as before, we conclude that
a.s. T0 < ∞ and limt→T0 X0(t) = 0. So T0 is a finite stopping time. Let βT0 be the βT in Lemma 7.2 with T = T0.
Then βT0 has the same distribution as β . Let QT0 denote the set of subsequential limits of βT0(t) as t → ∞. Then
QT0 = ψ(T0,Q) − ξ(T0).

Since x0 is swallowed at time T0, so ξ(T0) = d(T0) and b(T0) ≥ x0. Since the extremal distance (cf. [1]) between
(−∞, a(T0)) and (b(T0),∞) in Sπ \ L(T0) is not less than the extremal distance between them in Sπ , so from the
properties of fT0 , we have d(T0) − c(T0) ≥ b(T0) − a(T0). Thus,

c(T0) − ξ(T0) = c(T0) − d(T0) ≤ a(T0) − b(T0) ≤ −b(T0) ≤ −x0 ≤ −Rε − 1.

If Q ∩ (−∞, a(T0)] �= ∅, then since QT0 = ψ(T0,Q) − ξ(T0), so QT0 ∩ (−∞, c(T0) − ξ(T0)] �= ∅, which happens
with probability less than ε since βT0 has the same distribution as β , and c(T0)− ξ(T0) ≤ −Rε − 1. From Lemma 7.1,
for every x ∈ (a(T0), b(T0)), L(T0) contains a neighborhood of x in Sπ . Since β does not cross its past, so Q ∩
(a(T0), b(T0)) = ∅. Thus, the probability that Q∩ (−∞, b(T0)) �= ∅ is less than ε. Since b(T0) ≥ x0, and x0 ≥ Rε +1
is arbitrary, so the probability that Q ∩ R �= ∅ is less than ε. Since ε > 0 is arbitrary, so a.s. Q ∩ R = ∅. �

Corollary 7.1. Let κ > 4 and ρ ≥ κ/2 − 2. Suppose γ∗(t), 0 ≤ t < ∞, is a chordal SLE(κ;ρ) trace started from
(0;1). Then a.s. γ∗ has no subsequential limit on R.

Proof. This follows from the above lemma and Proposition 2.2. �

Theorem 7.1. Let κ > 4 and ρ ≥ κ/2 − 2. Suppose γ (t), 0 ≤ t < ∞, is a chordal SLE(κ;ρ) trace started from
(0;0+) or (0;0−). Then a.s. limt→∞ γ (t) = ∞.

Proof. By symmetry, we only need to consider the case that the trace is started from (0,0+). Let Q be the set of
subsequential limits of γ . From Proposition 2.1, for any a > 0, (aγ (t)) has the same distribution as (γ (a2t)). Thus,
aQ has the same distribution as Q for any a > 0. To prove that a.s. Q = {∞}, we suffice to show that a.s. 0 /∈ Q.

Let ζ(t) and ϕ(t, ·), 0 ≤ t < ∞, be the driving function and chordal Loewner maps for γ . Let X(0) = 0 and
X(t) = ϕ(t,0−) − ζ(t) for t > 0. Then (X(t)/

√
κ) is a Bessel process with dimension 2

κ
(2 + ρ) + 1 ≥ 2. So a.s.

lim supt→∞ X(t) = ∞. Let T be the first time that X(t) = 1. Then T is a finite stopping time. Let γ∗(t) = ϕ(T , γ (T +
t)) − ζ(T ), t ≥ 0. Then γ∗ is a chordal SLE(κ;ρ) trace started from (0;1). From the last corollary, γ∗ has no sub-
sequential limit on R. Let gT = ϕ(T , ·)−1. Then gT extends continuously to H, and γ (T + t) = gT (γ∗(t) + ζ(T )).
From the property of ϕ(T , ·), we have gT (z) = z + o(1) as z → ∞, so g−1

T (0) − ζ(T ) ⊂ R is bounded. If 0 ∈ Q, then
γ∗ has a subsequential limit on g−1

T (0) − ζ(T ) ⊂ R, which a.s. does not happen. Thus, a.s. 0 /∈ Q. �

Corollary 7.2. Let γ∗ be as in Corollary 7.1. Then a.s. limt→∞ γ∗(t) = ∞.

Proof. Let γ be a chordal SLE(κ;ρ) trace started from (0;0+). Let ζ(t) and ϕ(t, ·), 0 ≤ t < ∞, be the driving
function and chordal Loewner maps for γ . Let X(0) = 0 and X(t) = ϕ(t,0−) − ζ(t) for t > 0. Let T be the first time
that X(t) = 1. Then T is a finite stopping time. Let γ1(t) = ϕ(T , γ (T + t)) − ζ(T ), t ≥ 0. Then γ1 has the same
distribution as γ∗. Since a.s. limt→∞ γ (t) = ∞, so a.s. limt→∞ γ1(t) = ∞. Since γ1 has the same distribution as γ∗,
so a.s. limt→∞ γ∗(t) = ∞. �

Theorem 7.2. Proposition 2.5 also holds for κ > 4.

Proof. This follows from the above corollary and Proposition 2.2. �

Let κ > 4, p0 = x0 + πi ∈ Rπ , ρ+, ρ−, ρ0 ∈ R, and ρ+ + ρ− + ρ0 = κ − 6. Let β(t), 0 ≤ t < ∞, be a strip
SLE(κ;ρ+, ρ−, ρ0) trace started from (0;+∞,−∞,p0). Let ξ(t), ψ(T , ·) and L(t), 0 ≤ t < ∞, be the corresponding
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driving function, strip Loewner maps and hulls. Then there is some Brownian motion B(t) such that ξ(t) satisfies the
SDE:

dξ(t) = √
κ dB(t) − ρ+ − ρ−

2
dt − ρ0

2
coth2

(
ψ(t,p0) − ξ(t)

)
dt.

Let

X(t) = Reψ(t,p0) − ξ(t), 0 ≤ t < ∞. (7.1)

Then X(t) satisfies the SDE:

dX(t) = −√
κ dB(t) + ρ+ − ρ−

2
dt +

(
κ

2
− 2 − ρ+ + ρ−

2

)
tanh2

(
X(t)

)
dt.

Define h on R such that

h′(x) = exp

(
1

κ
(ρ− − ρ+)x

)
(cosh2 x)−(4/κ)·(κ/2−2−(ρ++ρ−)/2), x ∈ R.

Let Y(t) = h(X(t)), 0 ≤ t < ∞. From Itô’s formula, Y(t) satisfies the SDE: dY(t) = −h′(X(t))
√

κ dB(t). For 0 ≤
t < ∞, let u(t) = ∫ t

0 κh′(X(s))2 ds. Then Y(u−1(t)), 0 ≤ t < u(∞) := supu([0,∞)), is a partial Brownian motion.
The behavior of X(t) as t → ∞ depends on the values of ρ+ and ρ−. Now we suppose that ρ+, ρ− ≥ κ/2−2. Then h

maps R onto R. If u(∞) < ∞, then a.s. Y(u−1(t)) is bounded on [0, u(∞)), so X(t) is bounded on [0,∞). This then
implies that u′(t) is uniformly bounded below by a positive constant, and so u(∞) = ∞, which is a contradiction.
Thus, a.s. u(∞) = ∞, and so lim supt→u(∞) Y (u−1(t)) = ∞ and lim inft→u(∞) Y (u−1(t)) = −∞, which implies that
lim supt→∞ X(t) = ∞ and lim inft→∞ X(t) = −∞.

Lemma 7.4. Let β be as above. If ρ+, ρ− ≥ κ/2 − 2, then a.s. β has no subsequential limit on R ∪ {+∞,−∞} ∪
Rπ \ {p0}.

Proof. Let Q denote the set of subsequential limits of β(t) as t → ∞. Let L(∞) = ⋃
t≥0 L(t). From Theorem 5.3

and Proposition 2.2, a.s. p0 ∈ L(∞), and L(∞) is bounded by two crosscuts in Sπ that connect p0 with a point on
(−∞,0) and a point on (0,∞), respectively. Thus, a.s. Q∩ (Rπ ∪ {+∞,−∞}\ {p0}) = ∅. Moreover, for any ε > 0,
there is Rε > 0 such that the probability that L(∞) ∩ R ⊂ [−Rε,Rε] is at least 1 − ε.

For r ∈ (0,1), let Ar = {z: r < |z − p0| < π}. If dist(p0,L(t)) ≤ r , then any curve in Sπ \ L(t) that connects the
arc [p0,+∞) ⊂ Rπ with (−∞, a(t)) must connect the two boundary components of Ar . Thus, the extremal distance
between [p0,+∞) and (−∞, a(t)) in Sπ \ L(t) is at least (ln(π) − ln(r))/π. So the extremal distance between
[ψ(t,p0),+∞) and (−∞, c(t)) in Sπ is at least (ln(π) − ln(r))/π, which tends to ∞ as r → 0. This implies that
Reψ(t,p0) − c(t) → ∞ as dist(p0,L(t)) → 0. Similarly, d(t) − Reψ(t,p0) → ∞ as dist(p0,L(t)) → 0. Fix ε > 0.
There is r ∈ (0,1) such that if dist(p0,L(t)) ≤ r , then Reψ(t,p0) − c(t), d(t) − Reψ(t,p0) ≥ Rε + |x0| + 1. Let T0
be the first t such that dist(p0, β(t)) = r . Since a.s. p0 ∈ L(∞), so T0 is a finite stopping time.

Let X(t) be defined as in (7.1). Let T be the first t ≥ T0 such that X(t) = x0 = Rep0. Since lim supt→∞ X(t) =
+∞ and lim inft→∞ X(t) = −∞, so T is also a finite stopping time. Let βT be defined as in Lemma 7.2, then
βT has the same distribution as β . So the probability that βT ([0,∞)) ∩ R ⊂ [−Rε,Rε] is at least 1 − ε. Since
dist(p0,L(T )) ≤ dist(p0,L(T0)) = r , so Reψ(T ,p0) − c(T ), d(T ) − Reψ(T ,p0) ≥ Rε + |x0| + 1. Since X(T ) =
Reψ(T ,p0) − ξ(T ) = x0, so ξ(T ) − c(T ), d(T ) − ξ(T ) ≥ Rε + 1, and so [−Rε,Rε] ⊂ [c(T ) − ξ(T ), d(T ) − ξ(T )].
Thus, the probability that βT ([0,∞)) ∩ R ⊂ [c(T ) − ξ(T ), d(T ) − ξ(T )] is at least 1 − ε. Since for every x ∈
(a(T ), b(T )), L(T ) contains a neighborhood of x in Sπ , and β does not cross its past, so Q∩(a(T ), b(T )) = ∅. If Q∩
(−∞, a(T )] ∪ [b(T ),∞) �= ∅, then βT has a subsequential limit on (−∞, c(T ) − ξ(T )] ∪ [d(T ) − ξ(T ),∞), which
happens with probability at most ε. Thus, the probability that Q ∩ R �= ∅ is at most ε. Since ε > 0 is arbitrary, so a.s.
Q ∩ R = ∅. �

Corollary 7.3. Let κ > 4, ρ+, ρ− ≥ κ/2 − 2, and p− < 0 < p+. Let γ1(t), 0 ≤ t < ∞, be a chordal SLE(κ;ρ+, ρ−)

trace started from (0;p+,p−). Then a.s. γ1 has no subsequential limit on R.
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Proof. This follows from the above lemma and Proposition 2.2. �

Theorem 7.3. Let κ > 4 and ρ+, ρ− ≥ κ/2−2. Let γ (t), 0 ≤ t < ∞, be a chordal SLE(κ;ρ+, ρ−) trace started from
(0;0+,0−). Then a.s. limt→∞ γ (t) = ∞.

Proof. Let Q be the set of subsequential limits of γ . From Proposition 2.1, for any a > 0, (aγ (t)) has the same
distribution as (γ (a2t)). Thus aQ has the same distribution as Q for any a > 0. So we suffice to show that a.s. 0 /∈ Q.

Let ϕ(t, ·) and ζ(t) be the chordal Loewner maps and driving function for the trace γ . Then for t > 0, ϕ(t,0−) <

ζ(t) < ϕ(t,0+). Let p± = ϕ(1,0±) − ζ(1). Let γ1(t) = ϕ(1, γ (1 + t)) − ζ(1). Then conditioned on γ (t), 0 ≤ t ≤ 1,
γ1 is a chordal SLE(κ;ρ+, ρ−) trace started from (0;p+,p−). From the argument in the proof of Theorem 7.1, we
see that if 0 ∈ Q, then γ1 has a subsequential limit on R. From Corollary 7.3, this a.s. does not happen. Thus, a.s.
0 /∈ Q. �

Theorem 7.4. Let β be as in Lemma 7.4. Then a.s. limt→∞ β(t) = p0.

Proof. Let γ (t), 0 ≤ t < ∞, be a chordal SLE(κ;ρ+, ρ−) trace started from (0;0+,0−). Let ϕ(t, ·) and ζ(t) be the
chordal Loewner maps and driving function for the trace γ . Let γ1(t) = ϕ(1, γ (1 + t)) − ζ(1). Let p± = ϕ(1,0±) −
ζ(1). Then conditioned on γ (t), 0 ≤ t ≤ 1, γ1 is a chordal SLE(κ;ρ+, ρ−) trace started from (0;p+,p−). Choose
W that maps H conformally onto Sπ such that W(0) = 0 and W(p±) = ±∞. Let p∗ = W(∞) ∈ Rπ , and ρ0 =
κ − 6 − ρ+ − ρ−. From Proposition 2.2, there is a time-change function u(t) such that β∗(t) := W(γ1(u

−1(t))),
0 ≤ t < ∞, is a strip SLE(κ;ρ+, ρ−, ρ0) trace started from (0;+∞,−∞,p∗). Let ξ∗(t) and ψ∗(t, ·), 0 ≤ t < ∞,
denote the driving function and strip Loewner maps for the trace β∗. Let X∗(t) = Reψ∗(t,p∗) − ξ∗(t), 0 ≤ t <

∞. Let T be the first time such that X∗(t) = x0 = Rep0. Since ρ+, ρ− ≥ κ/2 − 2, so lim supt→∞ X∗(t) = ∞ and
lim inft→∞ X∗(t) = −∞. Thus T is a finite stopping time. Let βT (t) = ψ∗(T ,β∗(T + t)) − ξ∗(T ), t ≥ 0. Then βT

is a strip SLE(κ;ρ+, ρ−) trace started from (0;+∞,−∞,p0). From Theorem 7.3, we have a.s. limt→∞ γ (t) = ∞,
which implies that limt→∞ γ1(t) = ∞, and so limt→∞ β∗(t) = p∗. Thus, a.s. limt→∞ βT (t) = ψ(T ,p∗) − ξ∗(T ) =
X∗(T ) + πi = p0. Since (βT (t)) has the same distribution as (β(t)), so a.s. limt→∞ β(t) = p0. �

Corollary 7.4. Let γ1 be as in Corollary 7.3. Then a.s. limt→∞ γ1(t) = ∞.

Theorem 7.5. Proposition 2.4 also holds for κ > 4.

Proof. This follows from Theorems 3.1 and 7.4. �

Theorem 7.6. Theorem 4.1 also holds for κ > 4.

Proof. The proof of Theorem 4.1 still works here except that Theorem 7.5 should be used instead of Proposi-
tion 2.4. �

Theorem 7.7. Theorem 4.2 also holds for κ > 4.

Proof. The proof of Theorem 4.2 still works here except that Theorems 7.2 and 7.4 should be used instead of Propo-
sitions 2.5 and 2.7. �

Let γ be as in Theorem 7.7. Let K(t), 0 ≤ t < ∞, be the chordal Loewner hulls generated by γ . Let K(∞) =⋃
t≥0 K(t). Let κ ′ = 16/κ , ρ′±m = C±m(κ ′ − 4), 1 ≤ m ≤ N±, �ρ′± = (ρ′±1, . . . , ρ

′±N±), C± = ∑N±
m=1 C±m, W(z) =

1/z, p′±m = W(p±m), 1 ≤ m ≤ N±, and �p′± = (p′±1, . . . , p
′±N±). In Lemma 5.1, if we take N∓ + 1 force points, one

of which is x+
1 , on (x1, x2), and take N± + 1 force points, one of which is x−

1 , outside [x1, x2], then we have the
following theorem.
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Theorem 7.8. (i) If N+ ≥ 1, then W(∂+
H

K(∞)) has the same distribution as a chordal SLE(κ ′; (1 − C+)(κ ′ −
4), (1/2−C−)(κ ′ −4), �ρ′+, �ρ′−) trace started from (0;0+,0−, �p′+, �p′−). And ∂+

H
K(∞) is a crosscut in H that connects

∞ with some point that lies on (0,p1).
(ii) If N− ≥ 1, then W(∂−

H
K(∞)) has the same distribution as a chordal SLE(κ ′; (1/2−C+)(κ ′−4), (1−C−)(κ ′−

4), �ρ′+, �ρ′−) trace started from (0;0+,0−, �p′+, �p′−). And ∂−
H

K(∞) is a crosscut in H that connects ∞ with some point
that lies on (p−1,0).

Let β(t), X(t) and h(x) be defined as before Lemma 7.4. Then (h(X(t))) is a local martingale. Let I1 = [κ/2 −
2,∞), I2 = (κ/2 − 4, κ/2 − 2) and I3 = (−∞, κ/2 − 4]. Let case (jk) denote the case that ρ+ ∈ Ij and ρ− ∈ Ik . We
have studied case (11). In cases (12) and (13), h maps R onto (−∞,L) for some L ∈ R, and we conclude that a.s.
limt→∞ X(t) = ∞. Symmetrically, in cases (21) and (31), a.s. limt→∞ X(t) = ∞. In cases (22), (23), (32) and (33),
h maps R onto (L1,L2) for some L1 < L2 ∈ R, and we conclude that for some p ∈ (0,1), with probability p,
limt→∞ X(t) = ∞; and with probability 1 − p, limt→∞ X(t) = −∞. Now we are able to prove the counterpart of
Theorem 3.5 in [9] when κ > 4.

Theorem 7.9. In case (11), a.s. limt→∞ β(t) = p0. In case (12), a.s. limt→∞ β(t) ∈ (−∞,p0). In case (21), a.s.
limt→∞ β(t) ∈ (p0,+∞). In case (13), a.s. limt→∞ β(t) = −∞. In case (31), a.s. limt→∞ β(t) = +∞. In case (22),
a.s. limt→∞ β(t) ∈ (−∞,p0) or ∈ (p0,+∞). In case (23), a.s. limt→∞ β(t) = −∞ or ∈ (p0,+∞). In case (32),
a.s. limt→∞ β(t) ∈ (−∞,p0) or = +∞. In case (33), a.s. limt→∞ β(t) = −∞ or = +∞. And in each of the last four
cases, both events happen with some positive probability.

Proof. This follows from the same argument as in the proof of Theorem 3.5 in [9] except that here we use Theo-
rems 7.2, 7.4 and 7.5. �

We believe that for any chordal or strip SLE(κ; �ρ) trace β(t), 0 ≤ t < T , it is always true that a.s. limt→T β(t)

exists.
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