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Abstract. Uniqueness of the martingale problem corresponding to a degenerate SDE which models catalytic branching networks
is proven. This work is an extension of the paper by Dawson and Perkins [Illinois J. Math. 50 (2006) 323-383] to arbitrary catalytic
branching networks. As part of the proof estimates on the corresponding semigroup are found in terms of weighted Holder norms
for arbitrary networks, which are proven to be equivalent to the semigroup norm for this generalized setting.

Résumé. On prouve I'unicité d’un probléme de martingale correspondant a une EDS dégénerée, qui apparait comme un modele
de réseaux avec branchement catalytique. Ce travail est une extension des résultats de Dawson et Perkins [[llinois J. Math. 50
(2006) 323-383] au cas de réseaux généraux. On obtient en particulier des estimées pour le semi-groupe des réseaux généraux,
sous forme de normes de Holder pondérées; et on établit I’équivalence de ces normes avec des normes de semi-groupe dans ce
contexte général.
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1. Introduction
1.1. Catalytic branching networks

In this paper we investigate weak uniqueness of solutions to the following system of stochastic differential equations
(SDEs):For je RC{l,...,d}and C; C{L,...,d}\{j}:

dx? = b (x)dr + 2y,-(x,)<zx§i>>x§f) dB/ (1)
iECj
and for j ¢ R
de” = b e+ /2y 0e)x dB] 6)
Here x; € R‘_{_ and bj,y;,j=1,...,d are Holder-continuous functions on Rf{_ with y;(x) > 0, and b;(x) > 0 if
Xj =0.
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The degeneracies in the covariance coefficients of this system make the investigation of uniqueness a challenging
question. Similar results have been proven in [1] and [4] but without the additional singularity Zl eC; () in the
covariance coefficients of the diffusion. Other types of singularities, for instance replacing the addmve form by a
multiplicative form [, ec; ( ) , are possible as well, under additional assumptions on the structure of the network (cf.
Remark 1.9 at the end of Sectlon 1.5).

The given system of SDEs can be understood as a stochastic analogue to a system of ODEs for the concentrations
yj,j=1,...,dof atype T;. Then y;/y; corresponds to the rate of growth of type T; and one obtains the following
ODE:s (see [9]): for independent replication y; = b;y;, autocatalytic replication y; = y; yJZ. and catalytic replication
vi=v;i eC; ¥i)yj. In the catalytic case the types T;,i € C; catalyze the replication of type j, i.e. the growth of
type j is proportional to the sum of masses of types i, i € C; present at time ¢.

An important case of the above system of ODEs is the so-called hypercycle, firstly introduced by Eigen and
Schuster (see [8]). It models hypercyclic replication, i.e. y; = y;y;—1y; and represents the simplest form of mutual
help between different types.

The system of SDEs can be obtained as a limit of branching particle systems. The growth rate of types in the ODE
setting now corresponds to the branching rate in the stochastic setting, i.e. type j branches at a rate proportional to the
sum of masses of types i,i € C; at time ¢.

The question of uniqueness of equations with non-constant coefficients arises already in the case d = 2 in the
renormalization analysis of hierarchically interacting two-type branching models treated in [6]. The consideration of
successive block averages leads to a renormalization transformation on the diffusion functions of the SDE

A = (6 —x")dt + 28 () dB], i=1.2

with 6; > 0,i = 1, 2 fixed. Here g = (g1, g2) with g;(x) = x;;(x) or g;(x) = x1x2¥;(x), i = 1,2 for some positive
continuous function y; on Ri. The renormalization transformation acts on the diffusion coefficients g and produces
a new set of diffusion coefficients for the next order block averages. To be able to iterate the renormalization transfor-
mation indefinitely a subclass of diffusion functions has to be found that is closed under the renormalization transfor-
mation. To even define the renormalization transformation one needs to show that the above SDE has a unique weak
solution and to iterate it we need to establish uniqueness under minimal conditions on the coefficients.

This paper is an extension of the work done in Dawson and Perkins [7]. The latter, motivated by the stochastic
analogue to the hypercycle and by [6], proved weak uniqueness in the above mentioned system of SDEs (1) and (2),
where (1) is restricted to

A = b (x) dt + /2y (e)x P x D dBy

i.e. Cj ={c;} and (2) remains unchanged. This restriction to at most one catalyst per reactant is sufficient for the
renormalization analysis for d = 2 types, but for more than 2 types one will encounter models where one type may
have two catalysts. The present work overcomes this restriction and allows consideration of general multi-type branch-
ing networks as envisioned in [6], including further natural settings such as competing hypercycles (cf. [8], p. 55 resp.
[9], p. 106). In particular, the techniques of [7] will be extended to the setting of general catalytic networks.

Intuitively it is reasonable to conjecture uniqueness in the general setting as there is less degeneracy in the diffusion
coefficients; x.*/’
singularity.

For d = 2 weak uniqueness was proven for a special case of a mutually catalytic model (y; = y» = const.) via a
duality argument in [10]. Unfortunately this argument does not extend to the case d > 2.

changes to ), eC; xt(’), all coordinates i € C; have to become zero at the same time to result in a

1.2. Comparison with Dawson and Perkins [7]

The generalization to arbitrary networks results in more involved calculations. The most significant change is the
additional dependency among catalysts. In [7] the semigroup of the process under consideration could be decomposed
into groups of single vertices and groups of catalysts with their corresponding reactants (see Fig. 1). Hence the main
part of the calculations in [7], where bounds on the semigroup are derived, i.e. Section 2 of [7] (“Properties of the basic
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Fig. 1. Decomposition from the catalyst’s point of view: Arrows point from vertices i € N¢ to vertices j € R;. Separate points signify vertices
J € Np. The dotted arrows signify arrows which are only allowed in the generalized setting and thus make a decomposition of the kind used in [7]
inaccessible.

semigroups”), could be reduced to the setting of a single vertex or a single catalyst with a finite number of reactants.
In the general setting this strategy is no longer available as one reactant is now allowed to have multiple catalysts (see
again Fig. 1). As a consequence we shall treat all vertices in one step only. This results in more work in Section 2,
where bounds on the given semigroup are now derived directly.

We also employ a change of perspective from reactants to catalysts. In [7] every reactant j had one catalyst ¢; only
(and every catalyst i a set of reactants R;). For the general setting it turns out to be more efficient to consider every
catalyst i with the set R; of its reactants. In particular, the restriction from R; to R;, including only reactants whose
catalysts are all zero, turns out to be crucial for later definitions and calculations. It plays a key role in the extension
of the definition of the weighted Holder norms to general networks (see Section 1.6).

Changes in one catalyst indirectly impact other catalysts now via common reactants, resulting for instance in new
mixed partial derivatives. As a first step a representation for the semigroup of the generalized process had to be found
(see (15)). In [7], (12) the semigroup could be rewritten in a product form of semigroups of each catalyst with its
reactants. Now a change in one catalyst resp. coordinate of the semigroup impacts in particular the local covariance
of all its reactants. As the other catalysts of this reactant also appear in this coefficient, a decomposition becomes
impossible. Instead the triangle inequality has to be often used to express resulting multi-dimensional coordinate
changes of the function G, which is closely related with the semigroup representation (see (16)), via one-dimensional
ones. As another important tool Lemma 2.6 was developed in this context.

The ideas of the proofs in [7] often had to be extended. Major changes can be found in the critical Proposition 2.25
and its associated Lemmas (especially Lemma 2.29). The careful extension of the weighted Holder norms to arbitrary
networks had direct impact on the proofs of Lemma 2.19 and Theorem 2.20.

1.3. The model

Let a branching network be given by a directed graph (V, £) with vertices V = {1, ..., d} and a set of directed edges
E ={ey, ..., er}. The vertices represent the different types, whose growth is under investigation, and (i, j) € £ means
that type i “catalyzes” the branching of type j. As in [7] we continue to assume:

Hypothesis 1.1. (i,i) ¢ £ foralli e V.

Let C denote the set of catalysts, i.e. the set of vertices which appear as the 1st element of an edge and R denote
the set of reactants, i.e. the set of vertices that appear as the 2nd element of an edge.
For j € R, let

Cj =iz (i.j) €€}
be the set of catalysts of j and fori € C, let

Ri={j: (i, ) €&}
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be the set of reactants, catalyzed by i. If j ¢ Rlet C; =@ andif i ¢ C,let R; = @.
We shall consider the following system of SDEs:
For j e R:

dx =bj(x)dr + |2y, (m(Z xl(i)>x,(j) dB/
iEC_/'

and for j ¢ R
B _yp. , () gpi
dx,"" =b;(x;)dr ++/2y;(x)x,” " dB; .
Our goal will be to show the weak uniqueness of the given system of SDEs.

1.4. Statement of the main result
In what follows we shall impose additional regularity conditions on the coefficients of our diffusions, similar to the
ones in Hypothesis 2 of [7], which will remain valid unless indicated to the contrary. |x| is the Euclidean length of
x € R? and for i € V let ¢; denote the unit vector in the ith direction.
Hypothesis 1.2. Fori eV,

yi iR — (0, 00),

b; ZRi —- R
are taken to be Holder continuous on compact subsets of Ri such that |b; (x)| < c¢(1+ |x|) on RZ, and

bi(x) >0 ifx; =0. In addition,
bi(x)>0 ifieCURandx; =0.

Definition 1.3. If v is a probability on RZ, a probability P on C(R., Ri) is said to solve the martingale problem
MP(A, v) if under P, the law of xo(w) = wy (x;(w) = w(t)) is v and for all f € C3(RY),

t
M0 = £ = o) = [ Af s
is a local martingale under P with respect to the canonical right-continuous filtration (F;).

Remark 1.4. The weak uniqueness of a system of SDEs is equivalent to the uniqueness of the corresponding martin-
gale problem (see for instance, [12], V.(19.7)).

For f € Cg (Ri), the generator corresponding to our system of SDEs is

Af(x) =AY f(x)

= Zy,-(x)(z xi>xjfjj(x> + ) v fii() + Y bj(x) fi(x).

jeR i€C; jéR jev

Here f;; is the second partial derivative of f w.r.t. x; and x;.
As a state space for the generator A we shall use

S:{xem: ]‘[(in+x,->>o}. 3)

JER “ieC;
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We first note that S is a natural state space for A.
Lemma 1.5. If P is a solution to MP(A, v), where v is a probability on R4 ,then x, € S forallt >0 P-a.s.

Proof. The proof follows as for Lemma 5, [7] on p. 377 via a comparison argument with a Bessel process, using
Hypothesis 1.2. U

We shall now state the main theorem which, together with Remark 1.4 provides weak uniqueness of the given
system of SDEs for a branching network.

Theorem 1.6. Assume Hypothesis 1.1 and 1.2 hold. Then for any probability v, on S, there is exactly one solution to
MP(A,v).

1.5. Outline of the proof

Our main task in proving Theorem 1.6 consists in establishing uniqueness of solutions to the martingale problem
MP(A, v). Existence can be proven as in Theorem 1.1 of [1]. The main idea in proving uniqueness consists in under-
standing our diffusion as a perturbation of a well-behaved diffusion and applying the Stroock—Varadhan perturbation
method (refer to [13]) to it. This approach can be divided into three steps.

Step 1: Reduction of the problem. We can assume w.l.0.g. that v = § 0. Furthermore it is enough to consider unique-
ness for families of strong Markov solutions. Indeed, the first reduction follows by a standard conditioning argument
(see p. 136 of [3]) and the second reduction follows by using Krylov’s Markov selection theorem (Theorem 12.2.4 of
[13]) together with the proof of Proposition 2.1 in [1].

Next we shall use a localization argument of [13] (see e.g. the argument in the proof of Theorem 1.2 of [4]), which
bas1ca11y states that it is enough if for each x° € S the martingale problem MP(A, s 0) has a unique solution, where
b; = b; and y; = 7; agree on some B(x’, rg) N Rd Here we used in particular that a solution never exits S as shown
in Lemma 1.5.

Finally, if the covariance matrix of the diffusion is non-degenerate, uniqueness follows by a perturbation argument
as in [13] (use e.g. Theorems 6.6.1 and 7.2.1). Hence consider only singular initial points, i.e. where either

{x(()j)=00r Zx(()i)zOforsomejeR} or {(])—0f0r50m6]¢R}
ieCj

Step 2: Perturbation of the generator. Fix a singular initial point x° € S and set (for an example see Fig. 2)

NR:{jeR:Zx?:O};

ieC;
Nc = U Cj;
JENR
= V\(Nr U N¢);
R; = R; N Ng,

i.e. in contrast to the setting in [7], p. 327, N3 can also include zero catalysts, but only those whose reactants have at
least one more catalyst being non Z€ro.

Let Z=Z(x"={ieV: x =0} (if i ¢ Z, then x > 0 and so x(') > ( for small s a.s. by continuity). Moreover,
ifx®c S, then Ny NZ = @and

NrRUNcUN,=V

is a disjoint union.
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6

2:903:0
2 € Ne *6 € Np
*:cg>0
3:20=0 %6 € R;,i=1,2,3
*3 € N¢

*7 ¢ Ng
*achO
*6 € R3
%6 ¢ R3

Fig. 2. Definition of Ng, Nc and R;. The #’s are the implications deduced from the given setting.

Notation 1.7. In what follows let
RA=(f.f:A—>R) resp. RA={(f f:A—> Ry}
for arbitrary AC V.

Next we shall rewrite our system of SDEs with corresponding generator .4 as a perturbation of a well-understood
system of SDEs with corresponding generator A, which has a unique solution. The state space of .A° will be S(x?) =
So={x eR%: x; >0foralli ¢ Ng}.

First, we view {x(/)} jeNg U {x®D};c N 1.€. the set of vertices with zero catalysts together with these catalysts, near
its initial point {x?} jeNg U {)cio},-e N¢ as a perturbation of the diffusion on RN# x Ri’c , which is given by the unique
solution to the following system of SDEs:

>

ieC;
v =p0de +/2p0x" aB,  x) =x0 forieNc, @

where for j € Ng, b? =b; (x% e R and yJQ =y (xo)x? > (0 as x? > ( if its catalysts are all zero. Also, b? =b;(x% >0

w? =tars |2 T A)as A= orjeNe and

as x? =0fori € N¢c and )/io =y (x9) Zkec,- x,? > 01ifi € Nc N R as i is a zero catalyst thus having at least one non-
zero catalyst itself, or yl.o =1;(x%) > 0if i € Nc\R. Note that the non-negativity of b?, i € N¢ ensures that solutions

starting in {x? > 0} remain there (also see definition of Sp).
Secondly, for j € N we view this coordinate as a perturbation of the Feller branching process (with immigration)

where b? = (b; (x%) v 0) (at the end of Section 3 the general case b; (x% e R is reduced to b I x% >0 by a Girsanov
transformation), y](.) =vj (x9) Die c; x? > 0if j € R by definition of Ny, i.e. at least one of the catalysts being positive,

or )/JQ =y (x%) > 0if j ¢ R. Asfori € Nc, the non-negativity of b, j € N, ensures that solutions starting in {x? > 0}
remain there (see again definition of Sp). '
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Therefore we can view A as a perturbation of the generator

d
0_2:0

jev

2

3? 3
S ()t X v ©
JENR ieCj Y ieNcUN, i

The coefficients b?, yio found above for x° € S now satisfy

yj(.)>0 for all j,
BY>0 ifj¢ N, (7
b§?>0 ifje (RUC)N Z,

where
NrNZ=0. (®

In the remainder of the paper we shall always assume the conditions (7) hold when dealing with .A° whether or not it
arises from a particular x* € S as above. As we shall see in Section 2.1 the .A° martingale problem is then well-posed
and the solution is a diffusion on

SOES(xO):{xeRd: x,-zOforallieV\NR:NcUNz}. )
Notation 1.8. In the following we shall use the notation
Ncy2 = Nc U Ns.

Step 3: A key estimate. Set

Bf = (A-A"f
. Bf _ 82f _ 32f
= Z(bj(x) - b?)a_x, + Z ()/j(x) - J/jo)<z )ﬁ)ﬁ + Z (J/,-(x) - yio)xiﬁ,
Jjev ; JENR lECj J i€ENco 1
where

forjeV, bj(x)=b;j(x),
for je Ng, y;j(x)=y;(x)x;, and

fori € Nc2, ¥i(x) = ljeryvi(x) Z Xk + Ligryyi ().
kEC,‘

By using the continuity of the diffusion coefficients of A and the localization argument mentioned in Step 1 we
may assume that the coefficients of the operator  are arbitrarily small, say less than 7 in absolute value. The key step
(see Theorem 3.3) will be to find a Banach space of continuous functions with norm || - ||, depending on x°, so that
for n small enough and Xy > O large enough,

1
IBR;. fI < Ellfll VA > ho. (10)
Here
o
&fzf e ™ Py fds (1)
0
is the resolvent of the diffusion with generator A® and P, is its semigroup.

The uniqueness of the resolvent of our strong Markov solution will then follow as in [13] and [4]. A sketch of the
proof is given in Section 3.
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Remark 1.9. Under additional restrictions on the structure of the branching network our results carry over to the
system of SDEs, where the additive form for the catalysts is replaced by a multiplicative form as follows. For j € R
we now consider

dx =b;(x)dr + |2y, (xt)<l_[ x,f"))x§” dB/

ieCj

instead and for j ¢ R

dx” = b (x)dr + /2y (x)x dB]

as before. Indeed, if we impose that for all j € R we have either
ICil=1 or
|Cjl =2 andforalliy #iz,i1,i € Cj:i; € Cjy oriz € Cyy,

and if we assume that Hypothesis 1.2 holds, then we can show a result similar to Theorem 1.6.
For instance, the following system of SDEs would be included.

ax = by (e dt + 21 e x PP d B!,

2 3) .4 2
52 = ba(x) dt 4y 2 e x D dB2,

dx® = b3 (x,) dr + \/23/3 G Vx VP B,

dxl(4) =by(x;) dt + \/2y4(x,)x,(1)x,(2)xt(4) dB,4.

Note in particular, that the additional assumptions on the network ensure that at most one of either the catalysts in
C; or j itself can become zero, so that we obtain the same generator AL as in the setting of additive catalysts if we
set yJQ =y, x% l_[ie{j}UCj 2050 x? (cf- the derivation of (4)).

Remark 1.10. In [5] the Holder condition on the coefficients was successfully removed but the restrictions on the
network as stated in [ 7] were kept. As both [ T] and [5] are based upon realizing the SDE in question as a perturbation
of a well-understood SDE, one could start extending [5] to arbitrary networks by using the same generator and
semigroup decomposition for the well-understood SDE as considered in this paper.

1.6. Weighted Holder norms and semigroup norms

In this section we describe the Banach space of functions which will be used in (10). In (10) we use the resolvent
of the generator A° with state space So =S (x% ={x e R?: x; > 0foralli € Nc»}. Note in particular that the state
space and the realizations of the sets Ng, R; etc. depend on x°.
Next we shall define the Banach space of weighted a-Holder continuous functions on Sp, Co (So) C Cp(Sp), in two
steps. It will be the Banach space we look for and is a modification of the space of weighted Holder norms used in [4].
Let f:S80 — R be bounded and measurable and o € (0, 1). As a first step define the following seminorms for

ieNc:
| Flai = sup{| £ +h) = £ (1R174xE> V [R]742): k| >0, hy = 0if k ¢ {i} UR;, x, h € Sp).
For j € N, this corresponds to setting

| Flaj = sup{ | £ (e + 1) — | (1175 v [17/2): hj > 0,h =0if k # j.x € So}.
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Fig. 3. Decomposition of the system of SDEs: unfilled circles, resp. filled circles, resp. squares are elements of Ng, resp. Nc, resp. Np. The
definition of | f1q,;,i € Nc allows changes in i (filled circles) and the associated j € R; (unfilled circles), the definition of | f|y, j, j € N allows
changes in j € Ny (squares). Hence changes in all vertices are possible.

This definition is an extension of the definition in [7], p. 329. In our context the definition of | f |y ;, i € N¢ had to be
extended carefully by replacing the set R; (in [7] equal to the set R;) by the set R; C R;. Observe that the seminorms
fori € Nc and j € N, taken together still allow changes in all coordinates (see Fig. 3). The definition of | fq, j, j € N2
furthermore varies slightly from the one in [7]. We use our definition instead as it enables us to handle the coordinates
i € Nc, j € Ny without distinction.

Secondly, set I = N¢3. Then let

|f|Cg=r;1§;(|f|a,js I flleg = 1fleg +11.flloo

where || floo is the supremum norm of f. || f|lcy is the norm we looked for and its corresponding Banach subspace
of Cp(Sp) is

Ci(So) = {f € Co(S0): 1 fllcg, < oo},

the Banach space of weighted «-Holder continuous functions on Sp. Note that the definition of the seminorms
| fla,j» J €1 depends on N¢, R; etc. and hence on x°. Thus I /llce depends on x0 as well.

The seminorms | f|,; are weaker norms near the spatial degeneracy at x; = 0 where we expect to have less smooth-
ing by the resolvent.

Some more background on the choice of the above norms can be found in [4], Section 2. Bass and Perkins [4]
consider

|fI5 = sup{| £+ hep) — FOIRI™xE: b > 0,x e RLY,
Ifle = suglfli,i and [Ifllg=1flg + 1 flleo
1<

instead, where ¢; denotes the unit vector in the i-th direction in R, They show that if f € Cp (Ri) is uniformly Holder
of index « € (0, 1], and constant outside of a bounded set, then f € C3* ={f € (Rﬁ): | f1I% < oo}. On the other
hand, f € C%* implies f is uniformly Holder of order or/2.

As it will turn out later (see Theorem 2.20) our norm || f||c is equivalent to another norm, the so-called semigroup
norm, defined via the semigroup P; corresponding to the generator .A° of our process. As we shall mainly investigate
properties of the semigroup P; on Cp(Sp) in what follows, it is not surprising that this equivalence turns out to be
useful in later calculations.

In general one defines the semigroup norm (cf. [2]) for a Markov semigroup {P;} on the bounded Borel functions
on D where D cR? and « € (0, 1) via

Pif = flioo
le=sup LTy gy =l e (12)

t>0
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The associated Banach space of functions is then

S“={f:D—R: f Borel, || flla <oo}. (13)

Convention 1.11. Throughout this paper all constants appearing in statements of results and their proofs may depend
on a fixed parameter o € (0, 1) and {b(}, y/(.): jeVyaswellason|V|=d. By (7)

MO =MO(»°,b°) = Ov (0 v R0 v p)) ! < . 14
(0,07 =max{y?v () v i} v, max (7)< oo (14)
Given o € (0, 1), d and 0 < M < oo, we can, and shall, choose the constants to hold uniformly for all coefficients
satisfying M® < M.

1.7. Outline of the paper

Proofs only requiring minor adaptations from those in [7] are usually omitted. A more extensive version of the proofs
appearing in Sections 2 and 3 may be found on the arXiv at arXiv:0802.0035v2.

The outline of the paper is as follows. In Section 2 the semigroup P; corresponding to the generator .A? on the
state space Sy, as introduced in (6) and (9), will be investigated. We start with giving an explicit representation of the
semigroup in Section 2.1. In Section 2.2 the canonical measure Ny is introduced which is used in Section 2.3 to prove
existence and give a representation of derivatives of the semigroup. In Sections 2.4 and 2.5 bounds are derived on the
L norms and on the weighted Holder norms of those differentiation operators applied to P; f, which appear in the
definition of .A°. Furthermore, at the end of Section 2.4 the equivalence of the weighted Holder norm and semigroup
norm is shown. Finally, in Section 3 bounds on the resolvent R of P; are deduced from the bounds on P; found in
Section 2. The bounds on the resolvent will then be used to obtain the key estimate (10). The remainder of Section 3
illustrates how to prove the uniqueness of solutions to the martingale problem MP(A, v) from this, as in [7].

2. Properties of the semigroup
2.1. Representation of the semigroup

In this subsection we shall find an explicit representation of the semigroup P; corresponding to the generator ,A°
(cf. (6)) on the state space So and further preliminary results. We assume the coefficients satisfy (7) and Conven-
tion 1.11 holds. ‘ _

Let us have a look at (4) and (5) again. For i € N¢ or j € N, the processes xt(l) resp. x,(] ) are Feller branching
processes (with immigration). If we condition on these processes, the processes x,(j ), Jj € Nk become independent
time-inhomogeneous Brownian motions (with drift), whose distributions are well understood. Thus if the associated

process is denoted by x; = {xt(j ) }jeNRUNCy = {x,(j )} jev, the semigroup P, f has the explicit representation

Pif(x)= ( (124 P)[ fR | (i) iene: Y iene) T1 Pyou (@ =% —b?t)dz,}, (15)

ieNc2 JENR

where P)éi is the law of the Feller branching immigration process x> on C(R., R,), started at x; with generator

. B] 92
i _ 1.0 0
‘AO_bi_x—i_yixﬁ’
. t )
19 = / 3 1 ds,
0 jec;

and for y € (0, co0)
=2/ 2y

Pr@ = i
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Remark 2.1. This also shows that the A° martingale problem is well-posed.

For (y,2) = ({y;}jeNg» {Zitiene,) and xVB = {x;} jeny, let
G(yv Z) = Gt’xNR (yv Z) = G[,XNR ({yj}jENRs {Zi}iEch)
0
= /R'NR‘ F({uj}jeng. {zitiene,) l_[ P02y, (uj—xj— bjt) du;. (16)
JENR
Notation 2.2. In the following we shall use the notations
Nca j Ng _ 17D Nea ()
E CZ_<® Pé;)’ Il R_{If }jeNR’ Xt CZ_{XI }iech
ieNc2

and we shall write E whenever we do not specify w.r.t. which measure we integrate.

Now (15) can be rewritten as
P f(x) = EN2[G, e (1'%, xY%)] = EVN[G (1%, x]<)]. (7

Lemma 2.3. Let j € Ng, then
(a)

ENc2 Zx(l)i| Z X; —I—b?t),

-ieCj ieCj

()T (£) BT BTy

keC; keC;

ENe (Z(xt(')—xl ) :| 22)/1 xlt—}—Z((Z b,?—i—yﬁ)b?)tz
- NieC; ieCj ieCj keC;
and
) by
Ech[Il ENc2|:'/ Zx(z)dsi| Z(x,t—i— 2’ )
ieCj ieCj
(b)

EY(1) "] = oy min{(e+x) ") ¥p >0
el

Note. Observe that the requirement b? > 0ifi e (RUC)NZ asin (7) is crucial for Lemma 2.3(b). Asi € Cj, j € Ng
implies i € C N Z, (7) guarantees b? > 0. The bound (b) cannot be applied to i € N> in general, as (7) only gives
b? > 0 in these cases.

Proof of (a). The first three results follow from Lemma 7(a) in [7] together with the independence of the Feller-
diffusions under consideration. (]

Proof of (b). Proceeding as in the proof of Lemma 7(b) in [7] we obtain

Neaf (7(Dy=P ©  NerF—u-l1D7 _p_1 ° e
E [(Iz ) ]Sc,,e E C2[e : ] p- du<cpemlcn Px,-[e i ]u r=lay
0 i€
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as I,(j ) = > e fot xPds = Ziecj It(i), where the Feller-diffusions under consideration are independent. Now we
can proceed as in Lemma 7(b) of [7] to obtain the desired result. O

Lemma 2.4. Let G, Nk be as in (16). Then

(a) for j € Ng

BG Ngp Ng —1/2

(W} eves Laitienes)| = ’ S ()| < I f oo (v ys) (18)
X; 0x;
and more generally for any k € N, there is a constant cy such that
ak G, k)2
37,(()’ . 2) <Ck||f||ooy/ .
(b) For j € Ng

aG, .~y

—= =y, 9| <cill fllooy; (19)
dy;

More generally there are constants ci, k € N such that for 11, 15, j1, j» € Ng,

8m1+m2+k1+k2G Ng

m|/2 m2/2 7k1 71{2
kz (».2)| =

= Cmy+mo+ky+ky ”f”ooyll i W Y

8xll ! ax,;ayjl 8y

forallmy,ma, ki, ky e N.
(c) Let yNR ={yj}jeng and ZNe2 — {zi}iene,, then for all ZNe2 with zi >0, i € Ncp we have that (xNR7 yNR) N
Gt,xNR ()’NR, ZNCZ) is C3 on RINRI (0, Oo)‘NR|.

Proof. This proceeds as in [7], Lemma 11, using the product form of the density. ]
Lemma 2.5. If f is a bounded Borel function on Sg and t > 0, then Py f € Cp(Sp) with
|Pef @) = Pof (&) < ell flloot ™ |x = |-

Proof. The outline of the proof is as in the proof of [7], Lemma 12. We shall nevertheless show the proof in detail as
it illustrates some basic notational issues, which will appear again in later theorems. Note in particular the frequent
use of the triangle inequality resulting in additional sums of the form »_ Jiieks in the second part of the proof.

Using (17), we have for x, x’ € RVk,

|P,f(x,xNC2) — P,f(x/,xNC2)|

= |G (1% 51) = G (1.5

lxj — x| .
<l Y —=LEY (7)) (by (18))
JENR \/Z
Ix]~—x5|712 . —1,2
<clfloe Y ——=51""min{(t +x)""?} (by Lemma 2.3(b))
jGNR \/y»j() lGCj

<cllflloct™ D Jxj — ). (20)

JENR
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Next we shall consider x, x’ = x +he;, € RNe2 where ig € N> is arbitrarily fixed. Assume /# > 0 and let x" denote
an independent copy of x 0 starting at & but with b?o = 0. Then x 4 x" has law P;‘,’ 4, (additive property of Feller
o

branching processes) and so if I, (1) = [y x! ds,
| f (xVB, x") = Py f (xV®, x)|
=|EN?[G, i ({1 + Ligec (D} ey {xi + 1{i=i0}xth}ieNc2) — G v ({Il‘<j)}jeNR’xf )]l
For what follows it is important to observe that
{j € Ngiio € Cjh = {jt j € Rig),

having made the definition of R; necessary. Next we shall use the triangle inequality to first sum up changes in the
Jjth coordinates (where j € Ng s.t. ig € C;) separately in increasing order, followed by the change in the coordinate
ig. If T, = inf{t > 0: xth = 0} we thus obtain as a bound for the above (recall that ¢; denotes the unit vector in the kth
direction):

3 el fllooEN (1) (1) ]+ 211 flloo ELTy > 1]
jIJERiO
=Y cll flloo EN [, EN[(197) '] + 211 flloo EL T3 > 1]
ICJERiO

by (19) and as ||Gllco < || fllco by the definition of G. Next we shall use that E[T}, > t] < tyLO (for reference see Eq.

io

(26) in Section 2.2). Together with Lemma 2.3(a), (b) we may bound the above by

1. _ h _
> cllflloohtt™ min{(+x)7"} +20flloe—5 = ¢l floht L
jiieRy, ! io
The case x’ = x + he;j, i € N¢» follows similarly. Note that for i € N, only the second term in the above bound is

nonzero as the sum is taken over an empty set (R = @ for i € N»). Together with (20) (recall that the 1-norm and
Euclidean norm are equivalent) we obtain the result via triangle inequality. (]

Finally, we give elementary calculus inequalities that will be used below.
Lemma 2.6. Let g:R% — R be C2. Thenforall A,A' >0,y eR% and I, I, C {1,...,d},

I8+ A e e A X e ein) =8+ A cpei) =8+ A" Y opei) + 80

(A4")
32
< sup 5580
{y,enie[l d}[Yi’yi+A+A/]}i1€[1izelz Yir 0Yip

Also let f:RY — R be C3. Then for all Ay, Ay, A3 >0,y eRL and I, I, I3 C {1,...,d)},

‘f<y+A1 Zei1+AZZ€i2+ASZei3)

irel ihelp izel3

—f<y+A1 Zei1+A3Z€i3>+f(y+A2Zeiz>

1€l izelz irel
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_f<Y+AZZei2+A3Zei3>+f(y+A3Zei3)

ihrelh izelz izelz
f<y+A1 dYoentAry elz) + f<y+A1 > ell) f(y)‘/(AlAzAs)
i1el; irelh i€l

- )BPIP ) EE

{Y’El_[zgn [yt V1+A|+A2+A3]}llell irelyizelz

FON|

ayi, 3y123y13

Proof. This is an extension of [7], Lemma 13, using the triangle inequality to split the terms under consideration into
sums of differences in only one coordinate at a time. (]

2.2. Decomposition techniques

In this subsection we cite relevant material from [7], namely Lemma 8, Proposition 9 and Lemma 10. Proofs and
references can be found in [7]. Further background and motivation on the processes under consideration may be
found in [11], Section I1.7.

Let {P)?: x > 0} denote the laws of the Feller branching process X with no immigration (equivalently, the
0-dimensional squared Bessel process) with generator £° f(x) = yxf”(x). Recall that the Feller branching process
X can be constructed as the weak limit of a sequence of rescaled critical Galton—Watson branching processes.

If we C(R4+,Ry) let ¢ (w) =inf{r > 0: w(t) = 0}. There is a unique o -finite measure Ny on

Cox = [0 € C(R4, Ry): 0(0) =0, L(w) > 0,0(1) =0V > {(w)) 1)

such that for each & > 0, if £" is a Poisson point process on C,, with intensity 4Ny, then
X= / vE"(dv) haslaw P. (22)

Citing [11], Ng can be thought of being the time evolution of a cluster given that it survives for some positive length
of time. The representation (22) decomposes X according to the ancestors at time 0.
Moreover we also have

No[vs > 0] = (y8)~" (23)

and fort > 0
/ vy dNo(v) = 1. (24)
Cex

For ¢t > 0 let P;* denote the probability on C,, defined by

X _ No[A N {v; > 0}]
P[A] = —NO[W S0 25)

Lemma 2.7. Forallh >0

h
Pl >11=PlX,>0l=1—e ") < vt (26)

Proposition 2.8. Let f:C(Ry,Ry) — R be bounded and continuous. Then for any § > 0,

%h—lE,?[f(X)l{XPo}]:fC J (W) 10y dNo(v).
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The representation (22) leads to the following decompositions of the processes xt(i),i € Ncy that will be used

below. Recall that xt(i) is the Feller branching immigration process with coefficients b? >0, yl.o > ( starting at x; and

with law P)i[_ . In particular, we can make use of the additive property of Feller branching processes.
Lemma2.9. LerO0<p<1.
(a) We may assume

where X, is a diffusion with generator Aj f (x) = yioxf” (x) —l—b?f’(x) starting at px;, X is a diffusion with generator
yl.ox f"(x) starting at (1 — p)x; >0, and X{, X1 are independent. In addition, we may assume

Ny
Xl(t)=/C vtE(dv)=Zej(t), (27)

J=1

where E is a Poisson point process on Cey with intensity (1 — p)x;No, {e;, j € N} is an i.i.d. sequence with common
law P}, and Ny is a Poisson random variable (independent of the {e;}) with mean %.

(b) We also have

t t '
/ Xi1(s)ds = / / vy ds 1,20 & (dv) + / / Vs ds iy, =0y & (dv)
0 ex J0 Cex J0

Ni
= ri+h)

j=1

i

and

Ny

t
f xDds =Y "rj() + L), (28)
0

Jj=1

where rj(t) = [y ej(s)ds, () = 1 (1) + [y X (s)ds.
(¢) Let B be a Poisson point process on Cex with intensity hiNo(h; > 0), independent of the above processes. Set
Eth =5+ E" and X" = [v; 5" (dv). Then

Xt = x4 xh (1) = / v &5 (dv) + x| (1) (29)

ex
is a diffusion with generator A6 starting at x; + h;. In addition

N

/c v E (V) =) e (), (30)

j=1

where N/ is a Poisson random variable with mean ((1 — p)x; + hi)(yiot)_l, such that {e;} and (N, N/) are indepen-
dent.
Also

t Nt/
/ Xt ds =Y "rj(0) + L) + 11 (), o
0

j=l1

where I}(t) = fcex f(; vy ds 1{y,—0) & (dv).
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2.3. Existence and representation of derivatives of the semigroup
Let A and P, be as in Section 2.1. The first and second partial derivatives of Py f w.r.t. x, x;, k,l € Ncp will be
represented in terms of the canonical measure Ny.
Recall that by (17)
P f(x) = EY[G (1M " 2)],

where []* = (117} jey, with 117 = [§ 37,0 2 ds.

Notation 2.10. If X e C(Ry, Rﬁcz)’ n,1,0,0" € Cex (for the definition of C,y see (21)) and k,l € N¢», let

t
Gj_fNR <X,/ Usdsvgt)
’ 0

t t
= G[’XNR ({/ Z X.ds+ l{keCj}/ Ns ds} , {X; + l{l-:k}et}ieNm)
0 0 jENR

lECj

t t
ij;vf(x; /0 s ds. 0r, /O n;ds,9;>

t
=G, M ({f Z X + Likec;yns + Lyecyng dS} )

ieC,- JENR

and

{Xf + 1(i=)6; + 1{i=l}91/}iech>'

Note that if k € Ny in the above we have 1{keCj} =0for j € Np, i.e.

t
G v (X; /0 s ds,ez) =G (X:0.6)),

t t t
ijgj(X;/ nsds,e,,/ ) ds,eg) =Gji<~;1j(x;o, et,/ n, ds,9;> (32)
’ 0 0 ’ 0
and forl € Ny
t t t
fo;vf(x;/o nsds,e,,/o n, ds,e;> =Gj:f;\,41;l<X;/0 15 ds, 6,0, 9;). (33)

If X eC(Ry, Rfcz), v,V €Cey and k,l € N2, let
t
k k k
AGI, (X, ) =G, (X;/O vy ds, vt> — Gy, (X:0,0)
and
t t t
AG:)ICC’NZI(X’ v, u’) = G;f;\j: (X; /0 v ds, v,,/o v, ds, vt’> — G;"’i‘;\,:l <X; 0,0, /0 vids, v{)

t
— Gk (x; /O vy ds, vy, 0, 0) +G/i (X:0,0,0,0). ey

xNR
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Proposition 2.11. If f is a bounded Borel function on Sg and t > 0 then P, f € C,% (So) and fork, 1 e V =A{1,...,d}

Il f lloo
2

|2 Pou|,, <c

Moreover if f is bounded and continuous on Sy, then for all k,l € Nca
(P, r(x) = ENe [ f G v (172, v) dNo<v)], (35)

(P Pu(x) = EN[/ / AGH( NCZ,v,W)dNo(v)dNo(v/)} (36)

Proof. The outline of this proof is similar to the one for [7], Proposition 14. We shall therefore only mention some
changes due to the consideration of more than one catalyst at a time.

With the help of Lemma 2.5 and using that P, f = P;/2(P;2 f) one can easily show that it suffices to consider
bounded continuous f. In [7], Proposition 14 one only proves the existence of (P f)ri(x), k,I € Nc2 and its repre-
sentation in terms of the canonical measure as in (36) based on (35). From the methods used it should then be clear
how the easier formula (35) may have been found.

Hence, let us also assume (P; f); exists and is given by (35) for k € N¢a. Let 0 < 6 < t. The role of § will be
explained at the end of this proof. In the first case where vy = v, = 0, use Lemmas 2.6 and 2.4(b) to see that for
k,l € Nc

|AG:—kN—;l( ch7 v, 1)/)|

t F) 5
‘G+k f( NCZ;/O Vs dS’O’/O vAids,O) —thf’N*,;’(xNCZ;o, 0,/0 v ds,0>

t
G*kN+Rl< NCZ;/ vsds,0,0,()) + G, (x NCZ;o,o,o,o)‘
0

)
‘Gt Vg <{/ Zx(l)ds-l-l{kec }/ \);ds-l-l{]ecj / v, ds} ’x[ch)
0 JENR

ieC;

8
—GthR< / Zx(')ds+1{lec }/ v ds} tN 2)
’ 0 JENR

ieC;

_Gt,xNR< f Zx(l)ds+1{kec }f Vg ds} th2>
ieC;j 0 JENR
+GthR< / Zx(')d?} ,x,NC2>‘
’ JENR

ieC;

. ) B
< Z Z C||f||oo(1;(jl))_1(I;(]Z))_l/ !

t
v,ds/ Vg ds (37)
Lo T 0 0
Jiij1€Rk joijp€Ry

(compare to (49) in [7]).
For k or I € N, we obtain via (32) and (33)

|AG T (Ve v, =0

"l:his is consistent with (37) if we consider the sum over an empty set to be zero (recall that Ry = Ry N Ng and thus
Ry, =@ if k € N,). Hence (37) is a bound for all k,/ € N¢».
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The other cases are proven as in [7] (for the last case use the trivial bound |AG+k (xN 2 v, V)| <4 floo) With
the same modifications as just observed. Combining all the cases we conclude that

4G (Ve )

{1{V§—Vt 0}< Z Z I(”) I(m / vy ds/ vsds>

J1j1€RE jo:j2€R;

N 8
+1{v(§_0,u,>0}< Z (It(j)) IA V; ds)

jijeR;

t
N —1
+1{vg>o,u,:m< > (1) /0 vsds)+1{v3>o,u,>0}}c||f||oo

Jii€Rs

¢ -1 t -1 p8 t
< {l{vézv,=0} (/0 x® ds) (/0 x{ ds) /0 v ds/O Vg ds
x{ ds) / v, ds
N 0 N

—1
(k) dS) /(; Vg ds + 1{y8>0 ut>0}}c||f”00

S—

+ 1{v(§_0,u,>0}<

+ 1{v(§>0,v,

h

=&ra(<, v, v)
The remainder of the proof works similar to the proof in [7]. Some minor changes are necessary in the proof of
continuity from below in x, (now to be replaced by x¢2) following (59) in [7], by considering every coordinate on
its own. Also, new mixed partial derivatives appear, which can be treated similarly to the ones already appearing in

the proof of Proposition 14 in [7]. Other necessary technical changes will reappear in later proofs where they will be
worked out in detail. They are thus omitted at this point. O

Remark 2.12. The necessity for introducing § only becomes clear in the context of a complete proof. For instance, the
derivation of (36) starts by defining X f’, independent of x© and satisfying

t
X?=h+/0 V2r XhdB,  (h>0)

(i.e. X" has law P,?), so that xO + X" has law P)i,-s-h' Therefore (35) together with definition (34) implies
1
—[(Prf)k(x + hep) — (P f)i(x)]

+k, +l N h N, 0
/ffAGt i (Ve 0, XM (1 gy + 1) dNo(v) APV Y.

Now the first term can be made arbitrarily small for t fixed and § |, 0. The second term can be further rewritten with
the help of Proposition 2.8 and will finally yield the representation (36) by first taking h |, 0% and then § | 0.

2.4. L bounds of certain differentiation operators applied to P; f and equivalence of norms
We continue to work with the semigroup P, on the state space Sy corresponding to the generator A°. Recall the

definitions of the semigroup norm | f|, from (12) and of the associated Banach space of functions S* from (13) in
what follows.
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Proposition 2.13. If f is a bounded Borel function on Sy then for j € Ng

cll flloo
\/—maxlécj{\/t—"_xl}

Pif(x)| =

‘ dx;

and

82
max{xi}—szf(x)‘ < WMlleo.
i 8xj t

lECj

If f €8%, then

|f|atot/2—1/2
maxleC {1+ xi}

2—-1
<C|f|a a/ ’

8P
ijt

and

82
?é%’f{x"}ﬁfp’f(x)

<c|flat®?* "

Proof. The proof proceeds as in [7], Proposition 16, except for minor changes.

961

(38)

(39)

(40)

(41)

The estimate in (38) can be obtalned by mimicking the calculation in (20). (39) follows from a double application

of (38), where we use that P; and 57— commute.
Xj
If f € S, we proceed as in [2] and write

‘ip 2 p
Pl ) = 5P (0

J

a
= ‘_Pt(Ptf — )|
ax]'
Applying the estimate (38) to g = P; f — f and using the definition of | /|, we get

cliglloo el flat®?

ad
‘—Pth(x) _Ptf(x)

\/—maxlec {(Vt+xi} \/—maxleC {\/t+-xl}

This together with

d
(38) = lim‘—P,f(x)zo
t—00 axj

implies that

o]

2

k=0

o
_ c
< |f| (Zk[)a/z 1/2
a;; max;ec; {v/ 25t + x;}

c

max;ec; {7+ %}

d
E(sztf - P2<k+1)tf)(x)

‘_Ptf(x)

<|fla2®/>1/2

This then immediately yields (40). Use (39) to derive (41) in the same way as (38) was used to prove (40).

O

Notation 2.14. If w > 0, set p;j(w) = W, For{rj(t)} and {e;(t)} as in Lemma 2.9, let Rk—Rk(t)—Zj 17 (0)

and Sy = Sk(t)—Z] 1ej(®).
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Notation 2.15. If X € C(RJF,RﬁCZ), Y.Y,Z,Z €CR;,Ry), 1,10,0,0 €Coy and m,n, k,l € Ncy, where m #n
let

t t
GT;;V’:k,+Z<X, Yth,Yt’,Z;;f mds,et,/ r)éd_g@{)

t
=G, Mg ({/ Z X! ¢ ds + Tmecy Ys + lnec ¥/ +/ l{kecj}ns+1{lecj}n§d8}_ ,
i€Cj\{m,n} JENR

{1{,-¢{m,n}}X§ + Yiz=m) Zt + Vi=m} Z, + li=t)6; + l{i:l}Q[},-GNC2)-

The notation indicates that the one-dimensional coordinate processes fot X'ds, X[ resp. f(; X ds, X} will be re-
placed by the processes Yy, Z; resp. Y/, Z; (note that for m € Ny this only implies a change from X" into Z;).
Additionally, we add fé v ds, 6;, fot v, ds and 6] as before. The terms

m,+k,+l1 m,+k m,n,+1 m,n m
Gt xNR ’Gt xNR’Gt xR 7Gt xNR’G

AG™TRH e, (42)

t,xNR? 1,xNR

will then be defined in a similar way, where for instance G:’fx vy only refers to replacing the processes f(; X'ds, X"

via Y;, Z; but does not involve adding processes.

Proposition 2.16. If f is a bounded Borel function on Sy, then fori € Nca

9 cll flloo
—P —_— 4
8)6,’ tf(-x)’ S \/;m’ ( 3)
and
32 exill flloo <l flloo
x,a—xithf(x)‘ e @4

If f € S, then

C|f|at(x/2—l/2

N o]

0 _
—sz(x)‘ < <c|flat®*",
3)6,'

and

2
x1—2Ptf(x)

i

<cl|flat®?7".

Proof. The outline of the proof is the same as for [7], Proposition 17. Part of the proof will be presented here with
its notational modifications since some care is needed when working in a multi-dimensional setting and the formulas
become more involved.

As in the proof of Proposition 2.11 we assume w.l.o.g. that f is bounded and continuous. In what follows we
shall illustrate the proof of (44) as (43) is easier. Consider second derivatives in k. The representation of (P f)ix in
Proposition 2.11 and symmetry allow us to write for k € Ncp (i.e. [ =k)

(P Fia(x) = EN“[ / / AGHH (Mo, V/)l{u,=0,u,’=0}dNO(U)dNO(V/)}

+2ENC2[// G chavvV/)]{u,_O,U,’>0}dNO(U)dNO(U/)}
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Ech |:// G;i—kN+Rk ch, v, V/)l{v,>0,u,’>0} dNy(v) dNo(\)/):|
=FE|{+2E)+ Ej.

The idea for bounding |E||, |E>| and |E3| is similar to the one in [7]. In what follows we shall illustrate the
necessary changes to bound | E3|.

Notation 2.17. We have Ng[- N {v; > 0}] = (yt)_lP,*[-] on {v; > 0}, where we used (25) and (23). Whenever we

change integration w.r.t. Ny to integration w.r.t. P;* we shall denote this by (;)

The decomposition of Lemma 2.9 (cf. (27) and (28)) with p =0 gives

t t
E[//{Gf;ﬁfk (xNCZ, Ry, + Ix(1), SN, + Xé(t);/(; v, ds, U,,fo v, ds, vé)

(x) €
B3| =

k+k+k
t NR

t
ch, Ry, + L(), SN, + X(’)(t); 0, O,/ v; ds, v,’)
0

k+k+k
t NR

t

-Gy +k< Ne2 Ry, +12<t),SN,+X6(r);f vsds,v,,o,o>
0

( (45)

Nex Ry, + (1), Sy, + X((1); 0,0,0, 0) } dP}(v) dP,*(v’)] ,

where for instance

t t
G~ +"R+"< ch,RN,+12(t),SN,+X()(t);/ vsds,v,,f u;ds,v,’>
0 0

' '
=Gt,xNR<{/(; Z X;ds+1{kecj}(RN,+I2(f))+/0 1{kecj}(vs+v;)ds} ,

ieC;\(k} JjENR
{ Tty X1+ L=ty (Sw, + Xo(0)) + L=ty (v + Vz’)},-ezvcz)

by Notation 2.15 and the comment following it.
Recall that Ry = Ry (t) = Z (i) and Sp = Sk(1) = Zj e (1) with {r;(#)} and {e;(7)} as in Lemma 2.9. In

particular, {e;, j € N} is i.i.d. with common law P;* and r;(t) = fo ej(s)ds.
We obtain (recall the definition of Gf VR from (42))

¢ k N,

|E3| = o) |E[G,’XNR (xV2, Ry,42 + L (1), Sn,42 + X ()
- 2Gk VR (XNCZ, Ry, +1+ L(1), Sn,41 + X[ (1))
+GE g (V2 Ry, 4 (1), Sy, + X ()]

Observe that in case k € N, the above notation Gk VR (xNe2 R N, + L(?), Sy, + X{ o(2)) only indicates that x gets

changed into Sy, + X o(8); for k € N; the mdlcated change of fo ® ds into Ry, + I>(¢) has no impact on the term

under consideration.
Let w = x/(¥{1). The independence of N, from ({fy x\"ds,i € C;\{k}, j € N&}, x" " Ly, X)), {er),
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{r1}) yields

E C
| 3|_t_2

(0.¢]

Y PaE[GY v (Y, Ruya + B(0), Spp2 + X(0))
n=0

—2G! v, (N, Ryt + L(D), Syt + X (1))

+ Gf’xNR (xNe2, Ry + L(1), Sy + X((1))]

Sum by parts twice and use |G| < || f||co to bound the above by

w(3po(w) + pr(w)) + Y w(pa—2(w) = 2pu—1(w) + pa(w))

n=2

1 o
cliflloo— ‘
Xyt

1 00 2
= c”f”OOx_kt <U)p0(w) +wp(w) + an(w)W>

n=2
1 ad (w—n)+n 1
< c||f||oo—<2p1(w> +) ) ———— | =cll flloo—-
Xt e w Xyt

We obtain another bound on |E3| if we use the trivial bound |G| < || f |l in (45). This yields |E3| < ¢|| f|loot >
and so

c
_ el

E .
| 3|_t(t+xk)

Combine the bounds on |E||, |E>| and | E3| to obtain (44).
The bounds for f € §% are obtained from the above just as in the proof of Proposition 2.13. (]

Recall Convention 1.11, as stated in (14), for the definition of M° in what follows.

Notation 2.18. Set 1" =y %217, j € Np.

Lemma 2.19. Foreach M > 1,0 € (0,1) andd € N thereis a c = c(M, a,d) > 0 such that thO <M, then

Ifgle < clflegliglloo + 11 flloolgle (46)

and
Ifglle < C(Ilfllc,f;gllglloo + 1 £ lloolgle)- 47

Proof. Compared to the proof of [7], Lemma 18, the derivation of a bound for the second error term E, below
becomes more involved. Again the triangle-inequality has to be used to express multi-dimensional coordinate changes
via one-dimensional ones.

Let (xV&, xNc2) € RIVRL 5 RIN! and define f(y) = f(y) — £(x). Then (15) gives

[P (f&)(x) = (f)(0)]

<[P (fo )|+ |f)||Prgx) — gx)|

< llglloc ENe2 [ /R ol FE ) TT pyo (e —x; — %) dz ,} + 11 f lloolglat®’>. (48)
R t
JENR
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The above expectation can be bounded by three terms as follows:

e [/’f(zNR,xtNCZH [T py(es —x; =) dz/}

JENR

< ENe |:f{|f~'(ZNR’xtNC2) _ f(ZNR’xNC2)|

[ £ (& Ne2) — f (2N 4 b r x|
+ |f(xNR +b?vRt,xNC2) — f(xNR,xNC2)|}
X 1_[ pjt(j)(Zj—Xj _b(;t)de}
JENR
=E +Ex+ Es.

(49)

For all three terms we shall use the triangle inequality to sum up changes in different coordinates separately.
The definition of | f|,,; gives

Ev< 3 Ul EV[ (6 = il 27 A e — i)

i t
ieNc2

< Z |f|a,i((ENC2[|xt(i) _xi|2]a/2x.—a/2) /\ENCZHXt(i) _x'|2]o¢/4).

i l
ieNcr

We now proceed as in the derivation of a bound on E in the proof of Lemma 18 in [7], using Lemma 2.3(a) (alterna-
tively compare with estimation of E» below). We finally obtain

Ey<c Y |flait®?2%% <c| fleg /2772,
i€ENc)
Similarly we have

E; < Z min {|f|a,iENC2 [/((‘Zk — (x +b2t)|ax-_“/2)

.. ) i
keNRl'kER’

Al — (xk—i-bgt)]“ﬂ) l_[ pJ<j)(Zj —X;j —b?t)dzi“
JENR '

e 3 min {1l EY (020 2 50 ))

kENRl: EN;

<o 3 min (L7 (B O ]
keNg LReER;

as f 1z py(z2)dz < cJPB/? for B € (0,1). Next use Lemma 2.3(a) which shows that ENC2[Jt(k)] = y,?ZENCZ[I,(k)] <
Zleck cMz(t2 + x;t). Put this in the above bound on E» to see that £, can be bounded by

Ckgv:Ri:I]‘?ei%i{|f|“~i<<<Z(t2 +x1t))a/2x;a/2> A (Z(ﬂ +x1t))a/4)}

leCy 1eCy.

€Ng 2+ xr \Y? 5 a/4
= C|f|Cg, Z <<Z m) A Z(l + ¢ max xi)

keNg ™ MeCy 1eCy, ikeR;

k
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a/2 max..,_z x;i \%/*
kel c|f|Cat°‘/2 > ((max ¥ + 1> A (1 + #) )
ke i

keNRg

<c|fleat®/?2%2,

For the third term E3 we finally have

Ey< 3 min {1 fla (60| %) A (00 ) ) <l Fleg 3 00|

keNy KERi keNg
<clflegt*?.
Put the above bounds on E;, E> and E3 into (49) and then in (48) to conclude that
[P (f) @) = (f) )] = (Igllooe] fleg + 11 flloclgla)t*/?

and so by definition of the semigroup norm

If8la = clflegllglloo + 11 fllool8la-

This gives (46) and (47) is then immediate. ([l
Theorem 2.20. There exist 0 < ¢1 < ¢ such that

cilflee = 1fla = c2lflee- (50)
This implies that C3, = 8% and so 8 contains C U functions with compact support in So.

Proof. The idea of the proof was taken from the proof of Theorem 19 in [7]. The second inequality in (50) follows
immediately by setting g = 1 in Lemma 2.19. For the first inequality let x, i € Sp, t > 0 and use Propositions 2.13
and 2.16 to see that

|f(x+h)— fo)
<|Pfx+h) = fx+h)|+ [P fx)— fOO|+]|Pfx+h) — P f(x)]
<2/ flat®? +|P f(x +h) — P f(x)]

_ || h;
<2|flat®? +c| flat®/? W( + , (51)
“ * Z maxec; {/1 + xi} iEXN; A+ xi

JENR

where we used the triangle inequality together with #; > 0,1 € C; C N¢3 forall j € Ng.
By setting ¢ = || and bounding (maxlecj {Vt + xl})_1 and (VT Fx;) 1 by (v1)~! we obtain as a first bound on
(51

cl flalh|®/?. (52)

Next only consider & € Sp such that there exists i € N¢2 and j € {i} U R; such that hj#0and hy =0if k ¢ {i} U R;.
(51) becomes

|fx+h)— f(x)

_ 7] hi
<2 ta/2+c ta/Z l/2< J +
<2|fla | fla 2% maXleCj{\/t+xl} N
JJER;

_ 1
<2/ flat®? +c| flat®* 2 ——]nl.
t+ x;
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In case x; > 0 set r = /- and bound (/7 +x;)~! by (Vxi)~ ! to get as a second upper bound
el flax; “/2|h|°‘. (53)
The first inequality in (50) is now immediate from (52) and (53) and the proof is complete. U

Note. Special care was needed when choosing h € Sy in the last part of the proof as it only works for those h which
are to be considered in the definition of | - |ca . Note that this was the main reason to define the weighted Holder norms

for R; instead of R;.

Remark 2.21. The equivalence of the two norms will prove to be crucial later in Section 3, where we show the
uniqueness of solutions to the martingale problem MP(A, v) as stated in Theorem 1.6. All the estimates of Section 2
are obtained in terms of the semigroup norm. In Section 3 we shall further need estimates on the norm of products
of certain functions. At this point we shall have to rely on the result of Lemma 2.19 for weighted Holder norms. The
equivalence of norms now yields a similar result in terms of the semigroup norm.

2.5. Weighted Holder bounds of certain differentiation operators applied to P; f
The x;, j € Ng derivatives are much easier.

Notation 2.22. We shall need the following slight extension of our notation for ENc2:
Nca _ N2 i
ETC = ExNC2 - < ® PXi)‘
ieNc2
Notation 2.23. To ease notation let

Tfl/Z(t xer) = {minleck{(t +x)72}, ke Ng,
Lo (t +x)7"/2, k € Nc.

Proposition 2.24. If f is a bounded Borel function on So, then for all x, h € Sy, j € Ng,i € Cj and arbitraryk €'V,

‘—Ptf(x—i-thk)—a—sz( )‘ ”tf/”;ﬂh T (e xVe2) (54)
]
9% P 3P f
<x+hkek>,-T;f<x+hkek)—xl '« >‘ ”,f/”f"lh 172 (e, M), (55)
J
If f €8Y, then
0
‘—Ptf<x+hkek>—a—af<x> < ol flat®> 2 TP (1, xNe2) (56)
and
P f 32Pf (/2-3/2 -1/2(, N,
O+ k)i — 5=+ hier) = xi ——=(0)| < el flat el T, 2 (2, xNe2). (57)
J J

Proof. The focus will be on proving (55) as (54) is simpler. Again, it suffices to consider f bounded and continuous.
For increments in xj, k € Ng the statement follows as in the proof of [7], Proposition 22.
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Consider increments in xi, k € Nca. We start with observing that for #; > 0

2P f 2P f
(% + 8ii) =5 (x + her) — xXi ———(x)
0x*
Y J
N, 9? Nz N N N 92 Nk N
2 2 2 2 2
= SkihiExf\(’jcz-i-hkek[axg Gt,xNR (It 8 Xy ¢ )] + X (ExNCCZ-‘r/’lk@k B Ex1$C2)|:ax2_ Gt,xNR (It N Xy ¢ )]
j j
=FE|+ Ey,

by arguing as in the proof of [7], Proposition 22. The bound on E is derived as in that proof, using Lemmas 2.4(a)
and 2.3(b).

For E; we use the decompositions (29), (30), (31) and notation from Lemma 2.9 with p = % Recall the notation
Gi"x Ng from (42) and the definition of R; and S; as in Notation 2.14. Then

|E2| = x;

82
E [QGI:,XNR (chz, Ry, + L(1) + If ), Sy + X, ()
J

82
—9a Gy g (XN Ry, + B(0), Sw, + Xé(z))]’
j
32 k N h
=X [3sz e (T Ry D (1) + 15 (1), Sy + X(1))
j
82 k N,
= 530 v (FV Ry + B(0), Sy +X0(f)):H
J
82 k N, !/
+ x; E ﬁGI,XNR ()C C2,RNI’+12(I),SN/+XO(I))
J
82 k N,
_ ﬁGz,xNR (xV, Ry, + L(1), Sy, + X(’)(t))]‘
J
= Ey, + Eop.

E», can be bounded as in [7], using Lemmas 2.4(b) and 2.3(b), and the independence of x™V¢2 and I;z (t). Next turn
to Eop. Recall that S, = S,(t) = Y1, e/(t), Ry = Ry (t) = Y 1, ri(¢) and py(w) = e ¥ w*/k!. In the first term of
E»;, we may condition on N as it is independent from the other random variables and in the second term we do the

same for N;. Thus, if w' =w + L and w = =& then by Lemma 2.4(a) and Lemma 2.3(b),
k
Exp=xi| Y (pa(w) — pn(w))E[@ G} g (N2 Ry + 1), Sy + xg(t))] ‘
n=0 J
o0 w’
<en 3| [ p difi
w

n=0

3 : ()], keC), }

miniecj\{k}{EN”[(fé xPds) T} A E[(Jy Xp()ds) ], ke

/ P () dult

<cllfllooxi Y

n=0

Imlcn{(t +x)” 1}
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where we used that X (’) starts at %" and thus by Lemma 2.3(b)

t -1 —1
E|:(/ X6(s)ds> i| §ct_1<t+%k> <ct N +x)7
0

We therefore obtain with i € C;

Ex < c||f||oox,/ Zmu)

([ S ([ )

where we used Y 2 Opn(u)l" ul — 1E|N u| < 5\/E|N—u|2 = ﬁ and Y 02 pn(u) ‘";”‘ < > 2o pnu) x

G+Dh= % + 1 =2 with N being Poisson distributed with parameter u. Hence

Egp < || flloo(w' — w)(ﬁ Az)t—l =c||f||ooht—k(% A2>f‘

As (\/L J) < \/7 we finally get

dut—‘(z +x;)7 !

Ep < cll flloot > hi(t 4 x1) 2.

The bounds (56) and (57) can be derived from the first two by an argument similar to the one used in the proof of
Proposition 2.13 (alternatively refer to the end of the proof of Proposition 22 in [7]). O

In what follows recall Notation 2.23.

Proposition 2.25. If f is a bounded Borel function on Sy, then for all x, h € Sy, i € Ncp and arbitrary k € V,

0 d cll flloo ~1/2(, N
a—xl_Ptf(x'f'hkek)—a—xiPtf(x)'S S T () (58)
and
3P, 2P f clfl _
(x+hkek>iT’2f<x+hkek>— 7 (x )’ tf/;”m T2 (. xe2), (59)

i

If f €8Y, then

0 0 _
S P (et e = 5= Pof ()| < el flat® 7R | T (1,Ve2)
Xi Xi

and

92 P
(x + hker)i T;f(x + hkek) — xi o tzf (x)

i

< el flat P3P T2 (1, xVe2).

Proof. Proposition 2.25 is an extension of Proposition 23 in [7]. The last two inequalities follow from the first two
by an argument similar to the one used in the proof of Proposition 2.13 (alternatively refer to the end of the proof of
Proposition 22 in [7]). As the proof of (58) is similar to, but much easier than, that of (59), we only prove the latter.
As usual we may assume f is bounded and continuous.
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Recall the notation AG?)’(,{,;’ (X, v,v’) from (34). Proposition 2.11 gives
4

(Pif)ii(x) = EN[A,G, v (xV€)], (60)

n=1

where
MG (0= // Gt (Xovo V) 1y, —yy—o) dNo(v) dNo (V).
MG, vy (X) = / / AGT (X, 0) 1 y20./=0) dNo (1) dNo (V).

A3G, wp(X) = // G;H,TR’ (X, v, V)l{u,=0,u,’>0} dNo(v) dNp (V')

and
A4G g (X)) = /[AG:r;AJf;l(X v, V) 1y, 0,00y dNo () dNo ()
(*) C AG-H i X 1 dp* aP* (v
X NR v, V) {v:>0,v;>0} 447 () t (V)

Let us consider first the increments in x, k € N¢;. Increments in xi, k € Ng will follow at the end of this section
in Lemma 2.30. Let iz > 0 and use (60) to obtain

|(x + hrew)i (Pr fii (x + hrex) — x; (Pr f)ii ()]

4
< D P (ENG e~ Eoven) [4n Gy (x72)]|

n=1

+ hic| (Pt ik (x + hie)|. (61)
The last term on the right hand side can be bounded via (44) as follows:

cll flloo

=32 12
G tx )_ cll fllooh (t+xp)~

hic|(Py f(x + hie)| < hg————
where we used A > 0.

In the following Lemmas 2.26, 2.27 and 2.29 we again use the decompositions from Lemma 2.9 with p = % to
bound the first four terms in (61).

Lemma 2.26. For k € Ny (and i € N¢o) we have

N N clfl
15 (E 05 ey — Eevea) [81G, v (xV2)]| = T +;:)1/2 k

Proof. This Lemma corresponds to Lemma 24 in [7]. In [7] one considered AGTFi (1) as a second order difference,

thus obtaining terms involving (¢ + x;)~2. In our setting this method will not work for i # k as we do in fact need

terms of the form (¢ + x;) ™1 (¢ + x¢) L. Instead, we shall bound the left hand side by reasoning as for the E>-term

in Proposition 22 of [7] (part of the proof can be found in this paper in the proof of Proposition 2.24), but with

2Z.G(). j € Ng replaced by AG++ (). i € Nea. O
J
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Lemma 2.27. Fork € N¢y (andi € N¢o) and n =2, 3 we have

N, N cllfll
BN, ey~ BN 30G e (Y9)] = 5, 2

Proof. By symmetry we only need to consider n = 2. As before let w = %, w=w+ %, Sy =Y j_,e(t) and
k k

R, =Y "/_, ri(t). Let Qj, be the law of I;l () as defined after (31). As this random variable is independent of the others
appearing below we may condition on it and use (29), (30) and (31) to conclude

Xi E)Icv]gCZZJrhkek [AZGt’xNR (chz)]

L t t
:xiE[///{Gi;x:l (xNCZ»12(f)+Z+RN,’vX(/)(t)+SN{;/O vsds,v,,/o v;ds,O)

t
kit
_ Gt,;\;:l (chz, (1) +z+ Ryy, Xo(t) + Syr; 0,0, /(; vy ds, 0)

. . t
_ Glt";j;f’ (chz,Iz(z)JerrRN;,X(’)(t)+SN;;/ vgds, vy, 0, O)
’ 0

t,xNR

+ Ghtiti (chz, L(t)+z+ RNt/, X(’)(t) + SN;; 0,0,0, O)}

X l{Ut>0} 1{";:0} dNo(v) dNp (V/) dQy (Z)j| .

When working under Eiv,\,cgz there is no I3h (¢) term. Hence we obtain the same formula with z replaced by 0 and N,

replaced by N;. The difference of these terms can be bounded by a difference dealing with the change from z to 0
and the change from N, to N; separately. For the second term we recall that p, (1) = e "u" /n! and observe that N; is
independent of the other random variables. Hence we may condition on its value to see that the 1.h.s. of (62) is at most

L , ,
E[/f/{AGf’;Nl}f’(xN“,Iz(t)+z+RN;,X5(t)+SN;;/ vsds,v,,/ v;ds,o>
, i 0

t t
it
—AGt’j,JRJ”(xNCZ,Ig(t)+RN;,X6(t)+SN;;/O vsds,vt,/o v;ds,o)}

Xi

X 1,50} 1y =0y dNo (v) dNp (V') th(z)”

o0

> (pn(w') = pa(w))

n=0

< [ [ ackii (e no 4 Ruxoo +5: [

t t
Vg ds, vt,/ vy ds, 0)
0 0

+x,~

x 1y, =01 (v =0} dNp(v) dNy (V/)il ‘

=E,+Ep.
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The first term can be rewritten as the sum of two second order differences (one in z, one in fé v} ds). Together with
Lemmas 2.3(b), 2.4(b) and 2.6 we therefore obtain (terms including empty sums are again understood as being zero)

(19, cec,
Eo = 2xcl /] gl ) )
o=l 2. 2 [im‘“mecjl\{k}{(féxs(m)ds) YA (I xps)ds) T, kecy

J11€R; joija€Ry

t -1 t
X </ Xo(s) ds) :|// vy ds dNo(v')No[v, > O]/deh(Z)
0 0

< xicll flloot ™2t 4+ x0) 7 e 4 x1) et gt

< cll flloohxt =3/t + x) V2.

Turning to Ej observe that we have the sum of two first order differences (both in fot v} ds). Together with the triangle
inequality, Lemma 2.4(b) and Lemma 2.3(b) we therefore obtain

/ P, () du
w

([t(./'l))717 k¢ Cj,
E _ _
gy [{minmecjl\{k}{(féxﬁ’")ds) YAl xds) Tl kec,

Jrj1eR;

[e.e]

Ebfcxiz

n=0

I1f oo

t
x// v;dsto(v’)No[v,>0]
0
o0 /

w
<cx; Z / p;, (u)du
w

n=0
Now proceed again as in the estimation of E»p in the proof of Proposition 2.24 to get

I flloot ™ (2 4 x) e

Ep < cxit™ Pt + 30721 flloot ! @+ )™
< cll flloohrt (¢ + x) 712,
The above bounds on E, and E}, give the required result. |

Notation 2.28. Let

montm o | O (XY 20 Y] Z0)ifntm,
G N, (X7YI’ZI’Yt’Zt): m :
t,xVR Gt xNR(X’ Y:, Z;) ifn=m.

Expressions such as Gm’n¢m’+k’+l(X, Yi,Z:, Y], Z}; f(; ng ds, 6;, fot 1. ds, 8/) will be defined similarly.

t,xNR

Lemma 2.29. Fork € N¢y (and i € Nco) we have

N, N cllfl
‘xi (Ex1‘§622+hkek - EXNCC%Z)[A“GLXNR (chz)jH = [3/2(l +;:)1/2 fe-
Proof. Let
E=x]| (Efﬁ(fuhm — ENC)[A4G, o (xV2)]]. (63)
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We use the same setting and notation as in Lemma 2.27. Proceeding as in the estimation of the Lh.s. in (62), thereby
not only decomposing x® but also x@ (the respective parts of the decomposition of x* and x@ are designated via
upper indices k resp. i and are independent for k # i), we have

ENE, LT8G, g (6)]

xNC2 4 hyer

k,i#k,+i, k k
”"E[///AGLLE - +'< e, B0 2+ R, X600

t t
S(k/)(k>, I(l)(t) +RY N /(l)(t) + S(’(,); /0 v ds, vy, [) v, ds, vt/)

X T >0) 1{v,’>0} dNo(v) dNo (V/) dQn (Z)i| .

Now let for k =i
Gu(@ = E[G} x, (", 70 + 2+ RP, X0V () + 51)],
respectively for k # i,

Gulz. N/®) = E[GH

t,xNR

( Nc2 I(k)([)+Z+R( /(k)’ /(k)(l)+5( /(k),l(i)(t)+R(l) X’(l)([)+s(l))]

Note that the expectation in the definition of G (z, N; Ik )) excludes the random variable N; '® Use w'® = zx" + Ju
(i.e. p =1/2) to obtain for k =i

ENE 446, iy (6] ©

xNC2+h ek
() xk
. an O) (G2 = 26011+ G @ 40
and use w® = % to obtain for k # i

i

NG, TAWG, g (6)]

xNC2 4 hye

@ cx—’ Z ‘”)E[ / (Gry2 = 2Gus1 + G (2, N ©) th<z>]. (65)

A similar argument holds for xlE Neo [A4G VR (xNe2)]. Indeed, if k =i replace z by 0 and replace w'® by
w® = #]E)’ in (64). If k # i replace z by 0 and replace N/® by N® in (65).
Let us first investigate the case k = i. Define
Hy(2) = Gu(2) = Gu(0)

to get for E as in (63),

E<cy Zp w'®) /(Hn+z—2Hn+1 + H,)(2) 40 (2)
Xk > A N o
+¢3 | 2 (Pn (@) = pu () (Griz = 2Gns1 + Gu)(O)
n=0

=FE 4+ E;.
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We can bound E; by

Z|(pn 2= 2pp—1+ pn )( /(k) Sup

n>0

/H (2)dQn(2)|

where p,(w) =0 if n < 0. By using g, (w) = wp,(w) and Y2 [(gn—2 — 2qn—1 + ga)(w)| <2 (see [7], (109)) we
obtain

E / H,(2)dQ(2)|.

- xp 1
C————Su
=Cay® nzg

Next observe that H (z) is zero for k € N, (recall that for k € N; the indicated change from fo ® ds into I, () (1) +

z+ R,(,k) resp. Iz(k) )+ R,(,k) has no impact on the terms under consideration) and is a first order difference for k € N¢
for which we obtain as usual

Vﬁn@dgh(z) 5c||f||oof1<r+xk>*‘fdeh(m

<l flloot ™1t 4 x0) " hgt
< ¢l flloohat ™V (t 4+ xp) V2.

i (k) — X k) — X 4 Mk this o
Together with w 20 and w 20 + i this gives

Er <l flloohxt =3t 4 xx) V2,

For E> we obtain with ||G||co < || f|lco and Fubini’s theorem

o
E < c||f||oof—§ Y 1 on—2=2pn1+ ) (W ™) = (Pa—2 = 2pn—1 + pu) (w®)| (66)
n=0
w'® oo

<clflns [ 31 (pha =200y + pr) w0
w =0

u

As p,(u)y=e" ’2—’: we have p (u) = —p, (1) + pn—1(u) and thus we obtain in case 0 < u < 1 for the integrand

0
D (phoa 2P+ pp) )] <38.
n=0

For u > 1 we obtain for the integrand as an upper bound

l oo
3~ 1‘ + > palu)

n=2

nn—1)mn-2) nn—1)
3 -3
u

+3%
u? u

pou) + pi1(u)

1 o0
<e “(14+34u)+ —32p,1(u)’(n —u)’ = 3nn —u)+2n‘
u n=2

1 3
(4+u)+ (EIN, —ul> +3,/EN2E(N, —u)?>+2EN,),

where N, is Poisson with mean u. Note that E|N,, — u|™ < cmu™/? form € N and u > 1. We also have EN, = u and
E NM2 = u? + u. This yields as an upper bound for the integrand in (66) for u > 1

w2 1 (e 3,/ (w2 + w)eau +2u) < cu 2.
u
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We thus get for E;
(k) —3/2 -3/2

X [ ! w _ (k)( w1 )
E, <c — u—+—= <c +
2=cllflloey fm ( 2)/]?) I flloc ! ! 27

-3/2
Xp hy (xp+1 _ _
scnfuoo—z—(—o) <cll flloohit ™2t +x1) 72,
1t \ 2yt

Together with the bound on E| the assertion now follows for k =i.
Next investigate the case k # i. Define

A

A (2 N9) = G (e N[O — G, (0, N®),

AZ(N[®, NP) = G, (0. NJ®) — G,,(0. N¥)

to get

w®)E U( —2A , +H] )(z,N;(k))th(z)}

o]

an(w(i))E[/( 12, — 282, + BY)(NY, Nt(k))th(z)] ‘

n=0

+Ct_2

Recall that the expectation in the definition of Gn (z, N,/(k)) and thus of I:I,,l (z, Nt/(k)) excludes the random variable
Nt/<k). To bound E we thus take expectation w.r.t. Nt/(k), too. Rewriting this yields

E<c 22:|(pn 2= 2pu—1 + p) (W)

n=0
x supO{EH/ﬁ,} (z. N/¥)d0(2) } +EH/131,3(N;<"),N}"))th(z) “

and by using g, (w) = wp, (w) and Z;’;O [(gn—2 — 2gn—1 + qn)(w)| <2 again we obtain

x; 1 A N
E<c ‘w(,) sup{ H/Hn‘ (2. N/¥)d0(2) } —i—EHfH”Z(N,/(k),N,(k))th(z)

It

Next observe that ﬁnl (z, N,/ (k)) is zero for k € N, and is a first order difference for k € N¢ for which we obtain

‘ / Al (2. N/®)d0s(2)

< ell flloot™ (¢ + 30! /deh@

<l flloohit ™ 2 (t + x1) 712,

The other term can be bounded as follows:

o
|I:I,%(Nt’(k), Nt(k))i < Z|pN(w/(k)) _ pN(w(k))|
N=0

x |E[GY (xNer, 10 (1) + RY . xP 0 + 5§, 1P @) + RD, x(P (1) + 5P|

tNR

o0

Z w'®@) = pn (wO)[1G e,
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where w® = ﬁ and w'® = % + % As done before in the proof of Proposition 2.24 we use
k k k

oo

2

N=0

w'®

() du
fw@ py @)

to finally get with ||G|loo < || fllco

<ct ™ VPh(t +xp)” V2

‘ / A2V NP Q@] < et Pt + 3072 flloo-

Plugging our results into our estimate for £ we get
E < c;%ﬁcnfnoohkf”z(r o072 < ell flloohit 2@ 420712,
]
which proves our assertion. (]
Finally we consider the increments in x, k € Ng.

Lemma 2.30. If f is a bounded Borel function on Sy, then for all x,h € Sy, i € Ncy and k € Ng

PP f 0> P f cllflloo |
L v h — X < ——1h 1 t -1/2 .
Xi ox2 (x + hkex) — x; )| = =575 | k|{2g;{( +x) "7

2
X

Proof. Except for the necessary adaptations, already used in the proofs of the preceding assertions, the proof proceeds
analogously to Lemma 27 in [7]. ]

Continuation of the proof of Proposition 2.25. Use Lemmas 2.26, 2.27 and 2.29 in (61) together with the calculation
following (61) to obtain the bound for increments in xi, k € Nc2. Lemma 2.30 gives the corresponding bound for
increments in xx, k € Ng which completes the proof of (59). U

3. Proof of uniqueness

As in Section 3, [7], it is relatively straightforward to use the results from the previous sections on the semigroup P;
to prove bounds on the resolvent R; of P;.

We shall then use these bounds to complete the proof of uniqueness of solutions to the martingale problem
MP(A, v) satisfying Hypothesis 1.1 and 1.2, where v is a probability on

S:{xeRi: H(in—l—xj) >O}
JER “ieC;
(recall (3) and Lemma 1.5) and
Af) =Yy (x)(Z xl-)xjf,-,- () + Dy 0)x; £ + > bj(x) £ (x). (67)
JjER ieC; Jj¢R jev

The proof of uniqueness is identical to the one in [7] except for minor changes such as the replacement of x.; by
Ziecj x; at the appropriate places. Note in particular the change in the definition of the state space S.

In what follows we shall give a sketch of the proofs and indicate where statements have to be modified. For explicit
calculations the reader is referred to [7], Sections 3 and 4.
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Notation 3.1. Fori € N¢ let

yi=(0j}jek vi). Fiei=Y_ yjej+yie; and Ri=RFIxR,, (68)
JER;

where we understand this to be y; = (y;) in casei € N», i.e. R; = &. For fe Cg(&)) let

of _ (2 0 | _5 |0
0% ({ 9x; f}jek,’ 9xi f)’ 9% ‘ f‘ ' ©
and
‘i =sup{’i(x):xe$o}, (70)
axi 00 8xl-

where Sy = {x € RY: x; > Oforalli € Nc3} as defined in (9). Also introduce

32
wr=(pgar} i)

Define |A; f| and || A; f||co similarly to (69) and (70).

With the help of these notations AY (see (6)) can be rewritten to

Afe =Y 0w+ Yy (Zx,-)f,j<x)+ > vlxifiix) (1)

jev JjENg ieC; i€Ncy
=y <_,, —(x)> > <y_°,., A,-f<x>>,
i€ENc) iENC2

where (-, -) denotes the standard scalar product in R¥, k € N. To prevent overcounting in case Ru N 15,2 #* & for

i1 #1i3,11,i2 € Nc (see also definition (68)) the vector bo was replaced by b” bO in the above formula where bO has
certain coordinates set to zero so that the above equality holds. The same apphes to the vector y_ ; The details are left
to the interested reader.

Theorem 3.2. There is a constant ¢ such that for all f € C%(So), A >1andk,i € Nc2,

3Rxf
(a) H H + | AR flloo <A™ ?| flca.
R f
(b) P +AkRy flce =clflce.
Xk Cﬁ‘,

Note. This result is slightly weaker than the corresponding Theorem 34 in [7] as | f|a i is replaced by | f|ce in (a).

Proof of Theorem 3.2. Firstly we obtain a result similar to Proposition 30 in [7]. This is an easy consequence of
Propositions 2.13 and 2.16, using the equivalence of norms shown in Theorem 2.20 and states that there is a constant
¢ such that

(a) Forall f € C%(Sp),t>0,x €Sp,and i € Nca,

P f
%

(x)

<clflegt®* 12t +x)" V2 < el fleat®/* 7, (72)



978 S. Kliem

and

1A; P flloo < ¢l float®/*7". (73)

(b) For all f bounded and Borel on Sy and all i € N¢»,

ob f
0x;

—1
H =cllflloot ™.
00

Note in particular that Theorem 2.20 gave C5 = S“ and that every function in Cg (Sp) is by definition bounded.

Secondly, an easy consequence of Propositions 2.24, 2.25 and the triangle inequality, using the equivalence of
norms shown in Theorem 2.20 and the equivalence of the maximum norm and Euclidean norm of finite dimensional
vectors, is a result similar to Proposition 32, [7]: There is a constant ¢ such that for all f € Cj(So), i,k € Nc2 and
h,‘ € R,’,

@ |2 ey — 2L ) <l Flegr ™+ xy Pl (74)
0X 0Xf w
®)  |Ak(Pf)(x + higi) — Au(P f)@)| < el flegt ™22+ xi) 72 k). (75)

Finally recall that R;, f(x) = fooo e Mp f(x)dt is the resolvent associated with P;. Now the remainder of the proof
works as in the proof of Theorem 34 in [7]: Part (a) of Theorem 3.2 is obtained by integrating (72) resp. (73) over
time. Part (b) follows by integrating (72) resp. (73) over the time-interval from zero to some fixed value 7 > 0 and (74)
resp. (75) over the time interval from  to infinity. Appropriate choices for 7 now yield the required bounds. Here the
choices of f are in fact easier due to the replacement of | - |o,; in [7] by | - lce . (|

Proof of Theorem 1.6. The existence of a solution to the martingale problem for MP(A, v) follows by standard
methods (a result of Skorokhod yields existence of approximating solutions, then use a tightness-argument), e.g. see
the proof of Theorem 1.1 in [1]. Note in particular that Lemma 1.5 ensures that solutions remain in S C Rﬁ. The
uniform boundedness in M of the term E[) ; |X y” |] that appears in the proof of Theorem 1.1 in [1] can easily be
replaced by the uniform boundedness in M of E [Zi ey (X ;’I 2] via a Gronwall-type argument.

At the end of this section we shall reduce the proof of uniqueness to the following theorem. The theorem investi-
gates uniqueness of a perturbation of the operator A° as defined in (6) (also refer to (71)) with coefficients satisfying
(7) and (8). A° is the generator of a unique diffusion on S(x) given by (9) with semigroup P, and resolvent R;, given
by (11). For the definition of M 0 refer to (14).

In what follows x° € S will be arbitrarily fixed.

Theorem 3.3. Assume that

Afy =" f,-(x)(Zx,-)fj,-(x) (76)

JENR ieCj
+ Y Fx i+ Y b fi). xeS(0),
JENC2 jev

where by : S(x°) — R and 7 : S(x°) — (0, 00),

d
r=>|n Hcg, + ku”cg, < o0
k=1

Let

d
fo= 17— 7o + 156 — B
k=1
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where b,?, yko, k € V satisfy (7). Let Bf = (A — A% f.

(a) There exists &1 = &1 (M®) > 0 and 2 = (MY, I") > 0 such that if &0 < &1 and A > A then BR, :C — C%
is a bounded operator with || BR, || < 1/2.

(b) If we assume additionally that 7y and by are Holder continuous of index o € (0, 1), constant outside a com-
pact set and 5k|{xk=0} > 0 for all k € V\NRg, then the martingale problem MP(A, v) has a unique solution for each
probability v on S(x0).

Proof. Let R; be the associated resolvent operator of the perturbation operator A. Using the definition B = A— A
and recalling (71) we get for f € Cy that

~ oR
IBR, flieg < Y <(b(x)—b0) 2o >>
i€Nca ! (&9
+ 2 G =¥ AR @) g -
ieNca

Using (46) (recall in particular the discussion on the reasons for using two different norms from Remark 2.21) we
obtain for instance for arbitrary i € Nc and j € R;

o 30 aRAf
‘(b,(x) b,-)—axj (x)

C

v

OR, f 8ka

<l =y | 52

Lo+l sl |52

]

by Theorem 3.2, (50) and the assumptions of this theorem. By arguing similarly for the other terms we get indeed
||BR;Lf||cﬁv < %||f||cﬁ for A big enough thus finishing the proof of part (a).

For part (b) we proceed as in the proof of [7], Theorem 37. The proof of Theorem 37 in [7] involves the proof of
Lemma 38 in [7], where one shows that for f € CZ

<c[(F+ MO)F“/ZIfICg + &0l flca ]

R.f =Ryf + R.BR,f. (77)

Note that the proof of Lemma 38 relies amongst others on an estimate, derived in Corollary 33 of [7], which we now
obtain for free in Proposition 2.11 as we treated all vertices in one step only.
The proof of Theorem 37 now concludes as follows. Iteration of (77) yields

Rif(x)=) Ri((BR)"f)(x).

n=0

Using [ BR; llcg < 1/2 from part (a) and || fllc < || f Iy e get
M R(BRO"f) o < [ BRI f | o < [BRO" f | e <2711 fllcy-

Thus the series converges uniformly and the error term approaches zero. The uniqueness of MP(A, v) now follows
from the uniqueness of its resolvents R;,. g

Continuation of the proof of Theorem 1.6. Recall “Step 1: Reduction of the problem,” in Section 1.5. The remainder
of the proof of uniqueness of MP(A, §,0) works analogously to [7] (compare the proof of Theorem 4 on pp. 380-382
in [7]) except for minor changes, making again use of Lemma 1.5. The main step consists in using a localization
argument of [13] (see e.g. the argument in the proof of Theorem 1.2 of [4]), which basically states that it is enough if
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for each x” € S the martingale problem MP(A, 8,0) has a unique solution, where b; = b; and y; = ; agree on some
neighborhood of x9. By comparing the definition of A (see (67)) and A (see (76)) one chooses

br(x) = bp(x) forallkeV,
7i(x)=xjyj(x) for j e Ng,

vi(x) = (Z x,~>yj(x) for j € R\Ng,

IGCj

vi(x)=yj(x) forj¢R.

By setting

b,? = by (xo) and y,? = (xo)

and choosing by and 7 in appropriate ways, the assumptions of Theorem 3.3(a), (b) will be satisfied in case b,? >0
for all kK € N> (and hence by Hypothesis 1.2 for all k € N¢2). In particular the boundedness and continuity of the
coefficients of A will allow us to choose & arbitrarily small. In case there exists k € N, such that b,? < 0 a Girsanov
argument as in the proof of Theorem 1.2 of [4] allows the reduction of the latter case to the former case. (]

Acknowledgements

I would like to thank my Ph.D. supervisor Ed Perkins for suggesting this problem to me and for providing helpful
comments and explanations. Further thanks go to a referee for a careful reading of the paper and a number of helpful
suggestions.

References

(1]
[2]

[3]
[4]

[3]
[6]
[7]

[8]
[9]

(10]
[11]

[12]

[13]

S. R. Athreya, M. T. Barlow, R. F. Bass and E. A. Perkins. Degenerate stochastic differential equations and super-Markov chains. Probab.
Theory Related Fields 123 (2002) 484-520. MR1921011

S. R. Athreya, R. F. Bass and E. A. Perkins. Holder norm estimates for elliptic operators on finite and infinite-dimensional spaces. Trans.
Amer. Math. Soc. 357 (2005) 5001-5029 (electronic). MR2165395

R. F. Bass. Diffusions and Elliptic Operators. Springer, New York, 1998. MR 1483890

R. F. Bass and E. A. Perkins. Degenerate stochastic differential equations with Holder continuous coefficients and super-Markov chains.
Trans. Amer. Math. Soc. 355 (2003) 373405 (electronic). MR1928092

R. F. Bass and E. A. Perkins. Degenerate stochastic differential equations arising from catalytic branching networks. Electron. J. Probab. 13
(2008) 1808-1885. MR2448130

D. A. Dawson, A. Greven, F. den Hollander, R. Sun and J. M. Swart. The renormalization transformation for two-type branching models.
Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 1038-1077.

D. A. Dawson and E. A. Perkins. On the uniqueness problem for catalytic branching networks and other singular diffusions. /llinois J. Math.
50 (2006) 323-383 (electronic). MR2247832

M. Eigen and P. Schuster. The Hypercycle: A Principle of Natural Self-organization. Springer, Berlin, 1979.

J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems. London Math. Soc. Stud. Texts 7. Cambridge Univ. Press,
Cambridge, 1988. MR1071180

L. Mytnik. Uniqueness for a mutually catalytic branching model. Probab. Theory Related Fields 112 (1998) 245-253. MR1653845

E. A. Perkins. Dawson—Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics (Saint-
Flour, 1999) 125-324. Lecture Notes in Math. 1781. Springer, Berlin, 2002. MR1915445

L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2. Reprint of the 2nd (1994) edition. Cambridge Univ.
Press, Cambridge, 2000. MR1780932

D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Grundlehren Math. Wiss. 233. Springer, Berlin, 1979.
MR0532498


http://www.ams.org/mathscinet-getitem?mr=1921011
http://www.ams.org/mathscinet-getitem?mr=2165395
http://www.ams.org/mathscinet-getitem?mr=1483890
http://www.ams.org/mathscinet-getitem?mr=1928092
http://www.ams.org/mathscinet-getitem?mr=2448130
http://www.ams.org/mathscinet-getitem?mr=2247832
http://www.ams.org/mathscinet-getitem?mr=1071180
http://www.ams.org/mathscinet-getitem?mr=1653845
http://www.ams.org/mathscinet-getitem?mr=1915445
http://www.ams.org/mathscinet-getitem?mr=1780932
http://www.ams.org/mathscinet-getitem?mr=0532498

	Introduction
	Catalytic branching networks
	Comparison with Dawson and Perkins r6
	The model
	Statement of the main result
	Outline of the proof
	Weighted Hölder norms and semigroup norms
	Outline of the paper

	Properties of the semigroup
	Representation of the semigroup
	Decomposition techniques
	Existence and representation of derivatives of the semigroup
	L bounds of certain differentiation operators applied to Pt f and equivalence of norms
	Weighted Hölder bounds of certain differentiation operators applied to Pt f

	Proof of uniqueness
	Acknowledgements
	References

