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Abstract. In this paper we study a random walk on an affine building of type Ãr , whose radial part, when suitably normalized,
converges toward the Brownian motion of the Weyl chamber. This gives a new discrete approximation of this process, alternative to
the one of Biane (Probab. Theory Related Fields 89 (1991) 117–129). This extends also the link at the probabilistic level between
Riemannian symmetric spaces of the noncompact type and their discrete counterpart, which had been previously discovered by
Bougerol and Jeulin in rank one (C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 785–790). The main ingredients of the proof are a
combinatorial formula on the building and the estimate of the transition density proved in Anker et al. (2006).

Résumé. Dans cet article nous étudions une marche aléatoire sur un immeuble affine de type Ãr , dont la partie radiale renor-
malisée, converge vers le mouvement Brownien de la chambre de Weyl. Cela fournit une nouvelle discrétisation de ce processus,
alternative à celle de Biane (Probab. Theory Related Fields 89 (1991) 117–129). En même temps cela étend en rang supérieur la
correspondance à un niveau probabiliste entre les espaces symétriques Riemanniens de type non compact et leur version discrète,
les immeubles affines, qui fut mise en évidence par Bougerol et Jeulin en rang 1 (C. R. Acad. Sci. Paris Sér. I Math. 333 (2001)
785–790). Les principaux ingrédients de la preuve sont une formule combinatoire sur l’immeuble et les estimations du noyau de
transition démontrées dans Anker et al. (2006).
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1. Introduction

The Brownian motion of the Weyl chamber, or intrinsic BM, considered by Biane in [3], has brought recently growing
attention, due to his apparition in many branches of the probability theory. In dimension 1 for instance it is the Bessel 3
process, whose importance is well known. More generally it appears in particular in the theory of random matrices,
of particles systems, in queuing theory, in oriented percolation (see [19] for an overview), but also in the theory of
stochastic processes on Riemannian symmetric spaces [1], and more recently in the theory of Dunkl and Heckman–
Opdam processes [15,24]. It takes values in a Weyl chamber, denoted here by a+, which is a cone of the Euclidean
space R

r delimited by hyperplanes satisfying some conditions. More precisely it may be defined as the Brownian
motion killed on the boundary of a+ and conditioned (in the sense of Doob) never to escape the cone.

A basic question is to find a natural discrete version of this process, i.e. some random walk on some lattice of R
r

which after renormalization converges toward this process. An example of such random walk has been introduced
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and first studied by Biane [4–6] and then by Biane, Bougerol and O’Connell [7]. It is defined on the so-called weight
lattice, actually its positive part P +, which is a natural choice, well known in the theory of root systems, since it
has roughly the same geometric structure as a+ (see the next section for details). So this random walk is defined
analogously, as the simple random walk on P +, killed on the boundary of P +, and conditioned never to touch it. One
can compute explicitly its transition kernel, with the help of the reflexion principle, and then prove its convergence,
after the usual renormalization, toward the intrinsic BM [7]. In fact [4,6] this random walk appears naturally in the
context of quantum random walks on the dual of a compact Lie group.

In this paper we study another discrete version of the intrinsic BM, when the cone a+ is associated to a root system
of type Ar (see the next section). In this case the intrinsic BM identifies with the process of eigenvalues of Hermitian
matrices with zero trace, whose coefficients are Brownian motions (also called GUE process). Our random walk is
also defined on the weight lattice but indirectly. It is the so-called radial part of some nearest neighbor random walk
(Xn,n ≥ 0) on an affine building of type Ãr . To be short, let say simply that a building is some graph containing
copies, called apartments, of the weight lattice. Once a vertex O , an apartment containing O , and its positive part P +,
have been fixed, then the radial part of a vertex x is its projection x, in some sense, onto P +. This notion of radial
part generalizes the usual notion of distance between two vertices in regular trees, which are buildings of type Ã1.
Call A the transition operator of the random walk (Xn,n ≥ 0). Let F0 be some eigenfunction of A at the bottom of its
spectrum. Let (Yn,n ≥ 0) be the relativized F0-random walk in the sense of Doob. For N ≥ 0, let (YN

t , t ≥ 0) be the
continuous time normalized F0-random walk defined by YN

t = Y[Nt]/
√

N for all t ≥ 0. Then the main result of this
paper is that the sequence (YN

t , t ≥ 0) converges in law in the path space toward the intrinsic BM, when N → +∞.
The idea of this result goes back to the work of Bougerol and Jeulin [10]. They proved it in the tree case, which as

we already mentioned are particular examples of buildings (they are affine buildings of rank one). In the same time
they proved an analogue version on Riemannian symmetric spaces of the noncompact type of rank one (in particular
on complex and real hyperbolic spaces), which are continuous versions of regular trees. Then they managed to extend
their result with Anker [1,9] on Riemannian symmetric spaces of higher rank. The author also proved it in the general
context of Heckman–Opdam’s theory [24]. So the present paper investigates the higher rank case on the discrete space
level. However this story may not be finished yet, since here we consider essentially only one particular random walk
and only on a particular type of affine buildings (those associated to root systems of type A). The main reason for
this is that we need good estimates of the transition densities of the random walk, which for the moment are known
only in few cases [2]. Random walks on buildings have already been studied so far. In particular Cartwright [13] and
Parkinson [22] prove a law of large numbers, central and local limit theorems.

This paper is organized as follows. In the next section we recall some definitions and basic properties of the main
objects of study. In Section 3 we define precisely the F0-random walks and show that they appear naturally as limits of
random bridges when the length of the bridge tends to infinity. Then in Section 4, we compute explicitly the transition
densities of the radial part of nearest neighbor random walks. This, in our opinion, is actually the main part of the proof
(once the results of [2] are known). It allows us to derive directly the result for all nearest neighbor random walks when
the starting point of the intrinsic BM lies inside the Weyl chamber. For this we have to renormalize also the starting
point of the random walks and use a general criteria of Ethier and Kurtz [14] on the convergence of generators. We
explain all this in Section 5. In the last section we consider the case where the intrinsic BM starts from the origin.
This case is more difficult, since the criteria of Ethier and Kurtz is not sufficient. We need in addition estimates of the
transition densities of the random walk to control its norm in small times. These estimates, as we already mentioned
were proved recently in [2].

2. Preliminaries

The root system

We denote by a the Euclidean space of dimension r , endowed with its scalar product 〈·, ·〉. We denote by aC := a + ia
its complexification. Let R ⊂ a be a root system of type Ar . One can define it (see [11]) as the set of vectors ei −ej , for
1 ≤ i 
= j ≤ r + 1, where (e1, . . . , er+1) is the canonical basis of R

r+1 and a is the hyperplane {〈x, e1 + · · · + er+1〉 =
0}, endowed with the restriction of the canonical scalar product on R

r+1. We denote by | · | the associated norm.
A subset of positive roots R+ is defined as follows: one first chooses arbitrarily u ∈ a such that 〈u,α〉 
= 0 for all
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α ∈ R. Then one set R+ = {α ∈ R | 〈α,u〉 > 0}. For instance one can take the set of vectors ei − ej , where i < j . The
positive Weyl chamber associated to a+ is defined by

a+ = {
x ∈ a | 〈α,x〉 > 0 ∀α ∈ R+}

.

We denote by a+ its closure and by ∂a+ its boundary. If α ∈ R, we denote by rα the orthogonal reflexion with respect
to the hyperplane orthogonal to α. The Weyl group W0 is the finite subset of the orthogonal group generated by the
rα’s with α ∈ R. In fact, R is generated by the set Π := {α1, . . . , αr}, where αi = ei − ei+1 (these elements are called
the simple roots). Furthermore W0 is generated by the ri := rαi

, i = 1, . . . , r . Any w ∈ W0 can be written under the
form ri1 · · · ril . The smallest possible l in such writing is called the length of w, and is denoted by l(w). The dual
basis of Π is denoted by {λ1, . . . , λr}. More precisely we assume that 〈αi, λj 〉 = δi,j for all i, j . The elements of the
dual basis are called the fundamental weights. The weight lattice P is by definition the Z-lattice generated by the
fundamental weights. We denote by P + the subset of positive weights, i.e. P ∩ a+, and by P ++ the subset of regular
positive weights, i.e. P ∩ a+. The lattice P generates a simplicial complex, called the Coxeter complex (see [20] for
a more precise definition), which is denoted by P . We attribute labels lying in the set {0, . . . , r} to the elements of P

as follows: we attribute the label i to λi , and for any simplex of maximal dimension we assume that the set of labels
of its extremal vertices is exactly {0, . . . , r}. We denote by W the affine Weyl group, which is generated by W0 and
the translations by elements of P . We denote by W̃ the extended affine Weyl group, which is generated by W and
the group Ω which acts by circular permutation on the fundamental weights and 0 (see [11]). The group W is in fact
generated by Π and the orthogonal reflexion r0 with respect to the hyperplane {〈x,α1 +· · ·+αr 〉} = 1. This allows us
to define the length of w ∈ W analogously as in W0. Then we set qw = ql(w). This definition extends to W̃ : if w̃ = wg,
with w ∈ W and g ∈ Ω , then we set qw̃ = qw . One can prove (see [20]) that if tλ is the translation by λ ∈ P +, then

qtλ = q
∑

α∈R+〈α,λ〉.

It will be convenient to extend this formula to any λ ∈ P . So we set:

q̃tλ := q
∑

α∈R+〈α,λ〉 ∀λ ∈ P.

The affine building

An affine building (see [20] or [23]) of type Ãr is a nonempty simplicial complex containing sub-complexes, called
apartments, such that:

• Any apartment is isomorphic (see [20]) to the Coxeter complex P .
• Given two chambers (simplex of maximal dimension) there exists an apartment containing both.
• Given two apartments having at least one common chamber there exists a unique isomorphism between them fixing

pointwise their intersection.

We denote by X the set of vertices (simplexes of dimension 0) of the building and we fix one, called O . The preceding
definition allows us to attribute labels to elements of X such that O has label 0 and isomorphisms in the definition
preserve labels.

Let us mention, to avoid any ambiguity, that chambers of the building, also called alcoves, which are compact
simplexes, must not be confused with the positive Weyl chamber, which is a chamber of the root system and in
particular an unbounded open cone of a.

Two chambers of the building are called adjacent if they are distinct and have a common face (simplex of co-
dimension 1). A gallery is a sequence of chambers (C0, . . . ,Cn), where for all i ≤ n − 1, Ci and Ci+1 are adjacent.
The integer n is called the length of the gallery. We define the distance between two chambers C and C′ as the minimal
length of a gallery starting from C and ending in C′, and we denote it by d(C,C′). If F is a face of a chamber C, we
will assume that the number q of chambers adjacent to C and containing F is independent of F and C (we say that
the building is regular). For r = 1 for instance, X is a tree where each vertex has q + 1 neighbors.

If x ∈ X there exists by definition an apartment containing x and O , and an isomorphism between this apartment
and P sending O on 0 and x on an element of P +. The image of x by this isomorphism, let say x, is uniquely defined
and called the radial part or coordinate of x. When r = 1 for instance P + identifies with N and x is the distance (in
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the usual sense) between x and O . For λ ∈ P +, we denote by Vλ(O) the set of vertices of coordinate λ and we call
it the sphere of radius λ centered in O . Given a vertex x we define also the sphere Vλ(x) of radius λ centered in x,
as the set of vertices y ∈ X such that there exists an apartment A containing x and y and an isomorphism between
A and P , preserving labels up to translation, and sending x on 0 and y on λ. For all λ ∈ P +, Vλ(x) is a finite subset
of X , whose cardinality Nλ is independent of x. If λ ∈ P , let W0λ be the stabilizer of λ under the action of W0. Then
we have the formula (see [20], Formula (1.5)):

Nλ = W0(q
−1)

W0λ(q−1)
qtλ ,

where V (q−1) = ∑
w∈V q−1

w for any subgroup V of W0. We define also the function π on P by

π(λ) =
∏

α∈R+
〈α,λ〉.

The Macdonald polynomials

The functions c and h are defined for z ∈ aC by

c(z) =
∏

α∈R+

1 − q−1e−〈α,z〉

1 − e−〈α,z〉

and

h(z) =
r∑

i=1

∑
λ∈W0λi

e〈λ,z〉.

We set also h̃ := h/h(0). Macdonald’s polynomials are defined (see for instance [12,17,18] or [20]) for λ ∈ P + and
z ∈ aC by

Pλ(z) = q
−1/2
tλ

W0(q−1)

∑
w∈W0

c
(
w−1z

)
e〈wλ,z〉. (1)

The function F0 is defined on P + by

F0(λ) = Pλ(0).

We recall the estimate in P + (see [2]):

F0(λ) � q
−1/2
tλ

∏
α∈R+

(
1 + 〈α,λ〉). (2)

Moreover when 〈α,λ〉 → +∞ for all α ∈ R+, then

F0(λ) ∼ const · q−1/2
tλ

π(λ). (3)

Symmetric nearest neighbor random walk

By definition it is a Markov chain (Xn,n ≥ 0) on X whose transition densities are equal to

p(x, y) =
{

pi if y ∈ Vλi
(x),

0 otherwise,
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where the pi ’s satisfy the condition
∑r

i=1 piNλi
= 1. Let

ρ̃ =
r∑

i=1

piq
1/2
tλi

|W0λi |,

be the spectral gap (the fact that ρ̃ is well the spectral gap results from Formula (2) in [2]). The radial random walk is
by definition the Markov chain (Xn,n ≥ 0) on P +. We denote by p its transition kernel. A particular example is the
so-called simple random walk. Its transition probabilities are determined by

pi =
q

−1/2
tλi∑r

i=1 q
−1/2
tλi

Nλi

, (4)

for all i ≤ r . For this random walk we have a relatively simple integral formula for the transition kernel (see for
instance [22], Formula (1.10) and [2], Formula (2)): if

U = {
θ ∈ a | 〈α, θ〉 ≤ 2π ∀α ∈ R

}
,

and if pn(O,x) denotes the probability, starting from O , to arrive in x ∈ Vλ(O) in n steps, then

pn(O,x) = const ·ρ̃n

∫
U

h̃n(iθ)Pλ(iθ)
dθ

|c(iθ)|2 . (5)

The Brownian motion of the Weyl chamber

This process is also called the intrinsic Brownian motion. There are many ways to define it. We will only recall some
of them here. Before this, to avoid some (linear) time change in Theorem 6.1, we define another norm on a:

‖x‖2 := 1

h(0)

r∑
i=1

∑
λ∈W0λi

〈λ,x〉2.

Since any homogeneous W0-invariant polynomial of degree 2 is proportional to | · |2 (see [16]), one knows that ‖ · ‖ is
proportional to | · |. An elementary calculus shows that in fact ‖ · ‖2 = 2r−2(2r − 1)−1| · |2. We will denote by 〈〈·, ·〉〉
the scalar product associated to ‖ · ‖, and we set c := 2r−2(2r − 1)−1.

Now one can define the intrinsic BM (see [3] or [1]) as the π -process, in the sense of Doob, of the standard
Brownian motion in (a,‖ ·‖) killed on the boundary of a+. In fact, as Biane noticed, π is the unique positive harmonic
function which vanishes on ∂a+. So one can also interpret this process as the Brownian motion killed on ∂a+ and
conditioned to never touch ∂a+ (or to escape a+ at infinity). From this point of view it is a natural generalization of the
Bessel-3 in higher dimension. In fact, Biane, Bougerol and O’Connell [7] proved a deeper result which reinforces this.
They proved that this process can be obtained by some transformation of the Brownian motion on a, which generalizes
the Pitman transform 2S −B in dimension 1. But one can also define it as the Dunkl process with parameter k = 1 (see
[15]). In particular it is a Feller process with generator D (see [24]) defined for a regular and W0-invariant function f

by

Df (x) = 1

2
�f (x) + 〈〈∇ logπ,∇f 〉〉(x) ∀x ∈ a+,

where � is the usual Laplacian on (a,‖ · ‖). Finally, since our definition coincides with the definition in [1] up to a
linear time change, one can deduce from Formula (3.5) in [1] that the law of this process starting from 0 has density

pt(0, x) = const · 1

t |R+|+r/2
π(x)2e−|x|2/(2ct),

for all t ≥ 0 and all x ∈ a+.
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3. The F0-random walk

Let (Xn,n ≥ 0) be a symmetric nearest neighbor random walk, with transition kernel p. The function F0 is an eigen-
function of its transition operator (see [20], Theorem 3.22):∑

y∈X
p(x, y)F0(y) = ρ̃F0(x),

for all x ∈ X . Then the F0-random walk (Yn,n ≥ 0) is the Markov chain on X with transition kernel q

q(x, y) = p(x, y)
F0(y)

F0(x)
ρ̃−1.

We denote by (X
N,0
n , n ≥ 0) the bridge of length N around O , i.e. the random walk starting from O and conditioned

to come back in O at time N . The next proposition shows that the F0-random walk can be seen as a loop of infinite
length around O . There is an analogue result on Riemannian symmetric spaces G/K [1] and in Heckman–Opdam’s
theory [24].

Proposition 3.1. When N → +∞, (X
N,0
n , n ≥ 0) converges in law, in the path space, toward (Yn,n ≥ 0).

Proof. Let P be the law of (Xn,n ≥ 0) and let Fn := σ(Xk, k ≤ n) be its natural filtration. Let P
N,0 be the law of

(X
N,0
n , n ≥ 0). The following absolute continuity relation holds:

P
N,0
|Fn

= pN−n(O,Xn)

pN(O,O)
P|Fn

, (6)

for all n ≥ 0. To simplify, assume first that (Xn,n ≥ 0) is the simple random walk. Then from (5), we deduce that for
all λ ∈ P + and all x ∈ Vλ(O),

pN−n(O,x)

pN(O,O)
= ρ̃−n

∫
U

h̃N−n(iθ)Pλ(iθ)|c(iθ)|−2 dθ∫
U

h̃N(iθ)P0(iθ)|c(iθ)|−2 dθ
.

Next in the above integrals we make the following change of variables: θ → θ/
√

N − n, respectively θ → θ/
√

N .
Then one can observe that

h̃N

(
i

θ√
N

)
→ e−1/(2h(0))

∑
λ〈λ,θ〉2 = e−‖θ‖2/2,

when N → +∞. Moreover c−1(iθ) is equivalent (up to some constant) to π(iθ) near 0. Thus we get the following
convergence result:

pN−n(O,x)

pN(O,O)
→ ρ̃−n Pλ(0)

P0(0)
,

when N → +∞. Together with the relation (6) this proves the proposition for the simple random walk. In general
h̃ has to be replaced by some sum of exponentials but whose coefficients are not necessarily equal (see [22], For-
mula (1.10) and [2], Formula (2)). However the same proof applies as well. �

4. Transition probabilities of the radial random walk

In this section we give explicit formulas for the transition probabilities of radial part of nearest neighbor random
walks. We will use them in the next section to prove Theorem 5.1. These formulas are derived from a combinatorial
calculus (Proposition 4.1) which could be of independent interest. One can find a similar result in [13], Lemma 2.1,
and at the end of Parkinson’s thesis [21] for all affine buildings of rank 2.
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Proposition 4.1. For all λ ∈ P ++, xλ ∈ Vλ(O), w ∈ W0 and i ∈ {1, . . . , r},∣∣Vλ+wλi
(O) ∩ Vλi

(xλ)
∣∣ = q

1/2
tλi

q̃
1/2
twλi

.

Proof. Let us fix λ ∈ P ++ and xλ ∈ Vλ(O). Let w′ ∈ W0 be of maximal length such that w′λi = wλi . Since the
desired formula does not change when we replace w by w′, one can always assume that w = w′. Now by definition
of q , we know that if we fix a face F containing xλ, then there are exactly q + 1 chambers containing F . Equivalently,
if we fix a chamber C and one of its faces F , there are exactly q vertices x ∈ X , such that (F, x) defines a chamber
adjacent to C. Denote by C+ and C− the chambers (in P ) containing λ and all weights λ + λi , respectively λ − λi ,
for i = 1, . . . , r . We set also Cw := tλwt−λC+. We know (see [20], Lemma B.2) that for all i,∣∣Vλ−λi

(O) ∩ Vλj
(xλ)

∣∣ = 1, (7)

if −λi ∈ W0λj . In other words there exists a unique chamber in the building, also denoted by C−, containing xλ and
whose vertices have coordinate λ,λ − λ1, . . . , λ − λr . The same argument shows that for any vertex x ∈ X , there
exists a unique chamber of the building, let say Cx , containing x and at minimal distance from C−. Now we claim
that ∣∣Vλ+wλi

(O) ∩ Vλi
(xλ)

∣∣ = qlw , (8)

where lw = d(C−,Cw). If lw = 0 then the claim follows from (7). So assume that lw > 0. Let G be a gallery in P of
length lw starting from C− and finishing in Cw . From the preceding discussion we see that there exist qlw galleries
in the building, starting from C− and whose radial part coincides with G. Let (C− = C0,C1, . . . ,Clw ) be one of
them. Let x be the unique vertex of Clw which does not belong to Clw−1. Let us show that x ∈ Vλ+wλi

(O) ∩ Vλi
(xλ).

First observe that the sequence of vertices x1, . . . , xlw = x defined by xk ∈ Ck and xk /∈ Ck−1 has for radial part the
analogue sequence for G. In particular xλ does not belong to this sequence (so xλ ∈ Cx ) and x ∈ Vλ+wλi

(O). Thus
there exists an apartment containing xλ and x, and an isomorphism between this apartment and P sending xλ and
x respectively on λ and λ + wλi . If one composes this isomorphism with the transformation w−1t−λ, we obtain an
isomorphism sending xλ on 0 and x on λi , which proves that x ∈ Vλi

(xλ). Therefore x ∈ Vλ+wλi
(O) ∩ Vλi

(xλ). Next
observe that two different galleries with the same radial part starting from the same chamber cannot have the same
last chamber. So they necessarily finish by two different vertices x and x′, which proves already one inequality in (8).
To show the other one, it suffices to observe that for x in Vλ+wλi

(O) ∩ Vλi
(xλ), the associated chamber Cx is well the

last chamber of a gallery starting from C− with radial part G. To see this, notice that (7) implies that any apartment
containing xλ and O contains C−. In particular from the definition of the building we conclude that there exists an
apartment containing Cx , C− and O . Any copy of G in this apartment is well a gallery starting from C− finishing in
Cx and with radial part G. This concludes the proof of (8). Remember that l(w) denotes the length of w. It is well
known (see [11], Ch. 6, Section 1.6) that it is also equal to d(C+,Cw), and that

l(w) = ∣∣R+ ∩ w−1 R−∣∣.
Moreover, from Theorem 2.15(iv) in [23] we get,

d(C−,Cw) + d(Cw,C+) = d(C−,C+) = ∣∣R+∣∣.
Thus

lw = ∣∣R+∣∣ − l(w) = ∣∣R+ ∩ w−1 R+∣∣.
Furthermore, by our choice of w,∣∣R+ ∩ w−1 R+∣∣ =

∑
α∈R+∩w−1 R+

〈α,λi〉.

Indeed, for all α ∈ R+, 〈α,λi〉 is equal to 0 or 1. If there exists α ∈ R+ ∩ w−1 R+ such that 〈α,λi〉 = 0, then by
decomposing α in the basis Π , we see that we can always assume α ∈ Π . But rαλi = λi . Thus wrαλi = wλi . Since
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α ∈ Π , rα establishes a bijection from R+ ∩ w−1 R+
� {α} onto R+ ∩ (wrα)−1 R+. Therefore l(wrα) = l(w) + 1

and we get an absurdity. We conclude that 〈α,λi〉 = 1 for all α ∈ R+ ∩ w−1 R+. Since α → −α is a bijection from
R+

� R+ ∩ w−1 R+ onto w−1 R+
� R+ ∩ w−1 R+, we get∑

α∈R+∩w−1 R+
〈α,λi〉 = 1

2

{ ∑
α∈R+

〈α,λi〉 +
∑

α∈R+
〈α,wλi〉

}
.

This concludes the proof of the proposition. �

We can deduce from this proposition the transition probabilities of a radial random walk:

p(λ,λ + wλi) = q
1/2
tλi

q̃
1/2
twλi

pi,

for all λ ∈ P ++. In particular for the simple random walk, Formula (4) gives

p(λ,λ + wλi) =
q̃

1/2
twλi∑r

i=1 q
−1/2
tλi

Nλi

. (9)

5. Convergence toward the intrinsic BM starting from the interior of the Weyl chamber

Let x ∈ X and let (Xx
n,n ≥ 0) be a nearest neighbor symmetric random walk starting from x. Denote by (Y x

n , n ≥ 0)

the F0-random walk starting from x.
If a ∈ a+, we denote by [a] one of the weight (it does not matter which one) in P + at minimal distance from a.

For N ∈ N and t ∈ R
+, we set

Y
N,a
t = Y

[√Na]
[Nt]√

N
.

We have the following theorem.

Theorem 5.1. When N → +∞, the sequence of processes (Y
N,a
t , t ≥ 0) converges in law in D(R+,a+) toward the

intrinsic Brownian motion starting from a, up to some linear time change.

Proof. We first recall that the intrinsic Brownian motion starting from a ∈ a+ takes values a.s. in a+. Moreover it is
a Feller process with generator D and core C∞

c (a+), the space of C∞ functions with compact support inside a+ (see
[24] for instance). Let (Nt , t ≥ 0) be a Poisson process with parameter 1, independent of (Yt , t ≥ 0). Let (Z

N,a
t , t ≥ 0)

be the homogeneous Markov process defined by

Z
N,a
t = Y

[√Na]
NNt√

N
∀t ≥ 0.

From the calculus of the preceding section, we see that the generator AN of this process is defined for f ∈ C∞
c (a+)

by

ANf (λ) = ρ̃−1N

{
r∑

i=1

q
1/2
tλi

pi

∑
λ∈W0λi

q̃
1/2
twλi

F0(
√

Nλ + wλi)

F0(
√

Nλ)
f

(
λ + wλi√

N

)}
− Nf (λ),

for all λ ∈ P +/
√

N . Thus (3), implies that for any function f ∈ C∞
c (a+), ANf converges uniformly on a+ toward

π−1p(∂)(πf ), where p is the polynomial

p(x) = 1

2
ρ̃−1

{
r∑

i=1

q
1/2
tλi

pi

∑
λ∈W0λi

〈λ,x〉2

}
.
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In particular p is homogeneous, W0-invariant and of degree 2. Thus it is proportional to ‖ · ‖2. Since �π = 0,
�(πf )/π = 2Df . The claim of the theorem follows from Corollary 8.7, p. 232 in [14]. �

6. Convergence toward the intrinsic BM starting from the origin

Now we want to obtain a result of convergence toward the intrinsic Brownian motion starting from 0. It happens to
be more difficult to prove than Theorem 5.1, since in this case the criteria of Ethier and Kurtz does not apply directly.
Indeed a core of the intrinsic BM starting from 0 may contain functions which do not vanish in 0. But for such function
f it is not so clear if ANf converges uniformly toward Df on a+. However, since the intrinsic BM takes values in
a+ for t > 0 (see [1]), the criteria applies for t ≥ η for any η > 0. Then it only remains to obtain a control of what
happens in small time. One way for this is to get good estimates of the transition kernel. But, except when r = 2, the
only known convenient estimates [2] concern the simple random walk on buildings of type Ãr . This explains why in
the next result we restrict ourselves to this particular case.

We set YN
t := Y

N,0
t for all t ≥ 0, and we denote by (It , t ≥ 0) the intrinsic BM starting from 0.

Theorem 6.1. The sequence (YN
t , t ≥ 0) converges in law in D(R+,a+) toward (It , t ≥ 0), when N → +∞.

Proof. The proof is divided into two parts. We first prove the convergence in law at a fixed time (Lemma 6.1). With
the criteria of Ethier and Kurtz this allows us to deduce the convergence in law on [η,+∞) for any η > 0. Then we
prove a tightness result, which allows us to conclude by general theorems.

Lemma 6.1. For all t ≥ 0, YN
t converges in law toward It , when N → ∞.

Proof. Let f = 1K be the indicator function of a compact K ⊂ a+, and let qn(O, ·) be the transition kernel of
(Yn,n ≥ 0). Then

E
[
f

(
YN

t

)] =
∑

λ∈P+
q[Nt](O,λ)Nλf

(
λ√
N

)

= 1

Nr/2

∑
u∈(P+/

√
N)∩K

Nr/2q[Nt]
(
O,

√
Nu

)
N√

Nu.

We will show that for all u ∈ P++√
N

,

Nr/2q[Nt]
(
O,

√
Nu

)
N√

Nu → const · π(u)2

t |R+|+r/2
e−|u|2/(2ct), (10)

when N → ∞. The limit being precisely the density of It , we will deduce the lemma by a usual argument of integral
approximation by series, and Sheffé’s lemma. First remember that

qn(O,λ) = pn(O,λ)
F0(λ)

F0(0)
ρ̃−n,

for all λ ∈ P + and all n ≥ 0. Moreover by (5) and W0-invariance of h, we get

pn(O,λ) = const ·ρ̃nq
−1/2
tλ

∫
U

h̃n(iθ)ei〈λ,θ〉 dθ

c(−iθ)
.

Next we make the change of variables θ → θ/
√[Nt] in the integral. Then as in Lemma 3.1 we use the convergence of

h̃[Nt](iθ/
√[Nt]) toward e−‖θ‖2/2, which is moreover dominated by e−ε|θ |2 for ε small enough and |θ | ≤ const ·√[Nt].

Thus we can apply the dominated convergence theorem, and using (3), we get

Nr/2q[Nt]
(
O,

√
Nu

)
N√

Nu → const · π(u)

t |R+|/2+r/2

∫
e−‖θ‖2/2+i〈θ,u/

√
t〉π(−iθ)dθ.
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Then we make the change of variables θ → θ + iu/(c
√

t) and we get the limit

const · π(u)

t |R+|/2+r/2
e−|u|2/(2ct)

∫
e−‖θ‖2/2π

(
−iθ + u

c
√

t

)
dθ.

We conclude as follows: observe that the polynomial defined for x ∈ a by

r(x) :=
∫

e−‖θ‖2/2π(−iθ + x)dθ

is skew W0-invariant, and of degree exactly |R+|. Thus it is equal (up to a constant) to π (see Corollary 3.8, p. 362
in [16]). This proves (10) and finishes the proof of the lemma. �

The next step is the following tightness result.

Proposition 6.1. Let α > 0 and ε > 0. There exists η > 0 such that

lim sup
N→∞

P

[
sup
t≤η

∣∣YN
t

∣∣ ≥ α
]

≤ ε.

Proof. The set

A :=
{

sup
k≤[Nη]

|Yk| > α
√

N
}
,

is equal to the disjoint union:

A =
[Nη]∐
k=1

Ak,

where

Ak = {|Y1| ≤ α
√

N, . . . , |Yk−1| ≤ α
√

N, |Yk| > α
√

N
}
.

For ε ∈ (0,1), k ≤ [Nη], K > 0 and η ∈ (0,1) such that α/
√

η > K , set

Bk =
{
|Y[Nη]−k| ≤

(
α√
η

− K

)√
Nη

}
and

Dε,k = {∀i ∈ {([
N1−ε

] − k
)+

,
([

2N1−ε
] − k

)+
, . . . , (N − k)+

}
,Π(Yi) ≥ N(|R+|−ε)/2},

where u+ = u ∨ 0 for any u ∈ R, and

Π(λ) :=
∏

α∈R+

(
1 + 〈α,λ〉) ∀λ ∈ P +.

Set also Nε := [N1−ε/2|R+|], and

Dε = {∀i ∈ {[
N1−ε

]
,
[
2N1−ε

]
, . . . ,N

} ∩ [Nε,+∞), Π(Yi) ≥ N(|R+|−ε)/2}.
Note first that for any ε ∈ (0,1),

P[A] ≤ P
[
Bc

0 ∪ Dc
ε

] +
Nε∑
k=1

P[Ak] +
[Nη]∑

k=Nε+1

P[Ak ∩ B0 ∩ Dε].
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Then Markov property implies that for all k ≥ Nε

P[Ak ∩ B0 ∩ Dε] ≤ E
{
1Ak

PYk
[Bk ∩ Dε,k]

}
,

where for any x, Px denotes the law of Y starting from x. So

P[A] ≤ P
[
Bc

0 ∪ Dc
ε

] +
(

Nε∑
k=1

P[Ak]
)

+ P[A] × sup
k,x

Px[Bk ∩ Dε,k], (11)

where the sup is over integers k ∈ (Nε, [Nη]) and vertices x such that |x| = [α√
N ] + 1. Now we need the following

lemma:

Lemma 6.2. For ε small enough,

lim sup
N→+∞

sup
k,x

Px[Bk ∩ Dε,k] < 1,

where the sup is over integers k ≤ [Nη] and x’s such that |x| = [α√
N ] + 1.

Proof. Let x be such that |x| = [α√
N ] + 1. We first claim that

the probability of the event{
Y travels a distance larger than α

√
N/2 in less than N1−ε steps

}
(12)

decays exponentially fast to 0 when N → +∞.

This is due to the Gaussian factor in the transition kernel of Y . More precisely estimates from [2] show that for any
λ ∈ P +, any y ∈ Vλ(x) and any l ≥ 1,

ql(x, y) ≤ C
F0(y)F0(λ)

F0(x)l|R+|+r/2
e−c|λ|2/l . (13)

On the other hand for any μ ∈ P +, we have∣∣Vλ(x) ∩ Vμ(0)
∣∣ ≤ CF0(x)q

1/2
tλ

q
1/2
tμ

. (14)

This follows from [20] Formula (1.7) and Lemma 6.1. Then the estimate (2) of F0, (13) and (14) prove our claim (12).
Now on Dε,k we know that Y (starting from x) will enter the set

Eε,N := {
Π(λ) ≥ N(|R+|−ε)/2}

before time N1−ε . So if we denote by x′ the position of Y at his first entrance in this set, we can assume by (12) that
|x′| ≥ α

√
N/2. By using next the Markov property, it is enough to prove the lemma with x′ in place of x. Actually in

the following, for notation convenience, we will assume that x already lies in the set Eε,N .
Then let T∂a+ be the first time the (radial part of) the random walk reaches ∂a+. We claim that for ε small enough

and N large enough,

Px

[
Bk ∩ Dε,k ∩ {

T∂a+ ≤ [Nη] − k
}] ≤ 1

4
∀k ≤ [Nη]. (15)

To see this we need to describe the behavior of Y on P ++. Denote by q(·, ·) its one-step transition kernel, and
remember that p(·, ·) denotes the one of the radial part of the simple random walk on X . First by definition

q(λ,μ) = F0(μ)

F0(λ)
ρ̃−1p(λ,μ)
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for all λ ∈ P ++ and μ ∈ P + such that |λ − μ| = 1. Denote by c0 the inverse of the number of neighbors (in P +) of
any weight λ ∈ P ++. By using the explicit formula (9) of p(λ,μ), we see that

q(λ,μ) = c0
F0(μ)q

1/2
tμ

F0(λ)q
1/2
tλ

. (16)

Let now y ∈ X be such that y ∈ Eε,N and |y| ≤ N(1+ε/|R+|)/2. If λ = y, then by (16) we get

Py

[
T∂a+ ≤ N1−ε

] =
∑ F0(μ)q

1/2
tμ

F0(λ)q
1/2
tλ

cl
0, (17)

where the sum is over all l ≤ N1−ε and all paths (λ = λ1, . . . , λl = μ) in P + of length l, going from λ to some
μ ∈ ∂a+ ∩P +. But if μ ∈ ∂a+ ∩P +, then at least one positive root vanishes in μ. If moreover μ is at distance at most
N1−ε from λ = y, then |μ| ≤ C|λ| and thus

Π(μ) ≤ CN(|R+|+ε−1)/2.

So in (17) the ration F0(μ)q
1/2
tμ

/F0(λ)q
1/2
tλ

is always bounded by CNε−1/2. This shows that

Py

[
T∂a+ ≤ N1−ε

] ≤ CNε−1/2P
(
T∂a+ ≤ N1−ε

)
≤ CNε−1/2, (18)

where P denotes the law of the simple random walk on P + (say reflected on ∂a+). On the other hand, thanks again
to the Gaussian factor in (13), we know that (except on an event of probability decaying exponentially fast to 0 when
N → +∞) for all i ∈ {([N1−ε] − k)+, ([2N1−ε] − k)+, . . . , (N − k)+}, |Yi | ≤ N(1+ε/|R+|)/2. Thus (18), applied (at
most) [ηNε] times, proves our claim (15), if ε is small enough (e.g. ε < 1/4).

Consider now |μ| ≤ |x|, and some path f = (x = λ1, . . . , λl = μ) going from x to μ and not intersecting ∂a+. Set
α0 := α1 + · · · + αr , and let Hx be the affine hyperplane containing x and orthogonal to α0. Call f ′ the path obtained
by reflecting orthogonally the last excursion of f out of Hx on the other side of Hx . Then f ′ does not intersect ∂a+
and the map f �→ f ′ is one to one. Moreover, under P , f and f ′ have the same probability. Thus by using again (16)
and (3), we see that the probability (for Y ) to arrive at some time t below level |x|/2 without touching ∂a+ is at most
1/2 + o(1), where o(1) tends to 0 when N → +∞. Thus for N large enough,

Px

[
Bk ∩ Dε,k ∩ {

T∂a+ ≥ [Nη] − k
}] ≤ 2

3
∀k ≤ [Nη].

This concludes the proof of the lemma. �

We can finish now the proof of Proposition 6.1. Coming back to (11) and applying the previous lemma, we see that
for ε small enough and N large enough,

P[A] ≤ C

(
P
[
Bc

0

] + P
[
Dc

ε

] +
Nε∑
k=1

P[Ak]
)

.

But the cardinality of a sphere of radius λ is of order qtλ . So estimate (13) with x = O (and y = λ) shows that
the right-hand term in the above inequality tends to 0 when K and N tend to +∞. This finishes the proof of the
proposition. �

Theorem 6.1 is now a consequence of standard theorems (see, for instance, [8] or [14], Theorem 7.2, p. 128). �

Remark 6.1. As mentioned previously, when r = 2 the estimates in [2] hold for all symmetric nearest neighbor random
walks. So slight modifications of the previous proof show that Theorem 6.1 extend to all these random walks when
r = 2.
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