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Abstract. We consider a simple random walk of length N , denoted by (Si)i∈{1,...,N}, and we define (wi)i≥1 a sequence of

centered i.i.d. random variables. For K ∈ N we define ((γ −K
i

, . . . , γ K
i

))i≥1 an i.i.d sequence of random vectors. We set β ∈ R,

λ ≥ 0 and h ≥ 0, and transform the measure on the set of random walk trajectories with the Hamiltonian λ
∑N

i=1(wi +h) sign(Si)+
β

∑K
j=−K

∑N
i=1 γ

j
i

1{Si=j}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer
of width 2K around an interface between oil and water.

In the present article we prove the convergence in the limit of weak coupling (when λ, h and β tend to 0) of this discrete model
towards its continuous counterpart. To that aim we further develop a technique of coarse graining introduced by Bolthausen and
den Hollander in Ann. Probab. 25 (1997) 1334–1366. Our result shows, in particular, that the randomness of the pinning around
the interface vanishes as the coupling becomes weaker.

Résumé. On considère une marche aléatoire simple de taille N , que l’on note (Si)i∈{1,...,N}, et on définit (wi)i≥1 une suite de

variables aléatoires i.i.d. et centrées. Pour tous K ∈ N ∪ {0} on définit ((γ −K
i

, . . . , γ K
i

))i≥1 une suite de vecteurs aléatoires i.i.d.
On pose β ∈ R, λ ≥ 0 et h ≥ 0, et on transforme la mesure de l’ensemble des trajectoires de la marche aléatoire avec le hamilto-

nien λ
∑N

i=1(wi + h) sign(Si) + β
∑K

j=−K

∑N
i=1 γ

j
i

1{Si=j}. Cette mesure perturbée décrit un copolymère hydrophobe(phile) en
interaction avec une bande de taille 2K autour d’une interface huile-eau.

Dans cette article nous prouvons la convergence dans la limite d’un couplage faible (quand λ, h et β tendent vers 0) de ce modèle
discret vers son homologue continu. Dans ce but, nous développons une technique de coarse graining introduite par Bolthausen et
den Hollander dans Ann. Probab. 25 (1997) 1334–1366. Ce résultat montre en particulier que le caractère aléatoire de l’accrochage
autour de l’interface disparaît à mesure que le couplage s’affaiblit.
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1. Introduction and main results

1.1. A discrete model of copolymer with adsorption

We consider a copolymer of N monomers, and an interface separating two solvents (for example oil and water). The
interface runs along the x-axis. The possible configurations of the polymer are given by the trajectories of a simple
random walk S = (Si)i≥1 of length N such that S0 = 0 and (Si − Si−1)i≥1 is an i.i.d. sequence of Bernoulli trials
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satisfying P(S1 = ±1) = 1/2. We let Λi = sign(Si) when Si �= 0 and Λi = Λi−1 otherwise. In size N we take into
account the interactions between the polymer and the medium by associating with each trajectory S the Hamiltonian

H
w,γ

N,β,λ,h(S) = λ

N∑
i=1

(wi + h)Λi + β

K∑
j=−K

N∑
i=1

γ
j
i 1{Si=j}, (1.1)

where λ,h ≥ 0, β ∈ R, w = (wi)i≥1 is an i.i.d. sequence of bounded and symmetric random variables and γ =
((γ −K

i , . . . , γ K
i ))i≥1 is an i.i.d. sequence of random vectors (w and γ being independent). We stress that w and γ are

defined under the probability P and that the variables γ −K
1 , . . . , γ K

1 are independent but can have different laws. This
Hamiltonian allows us to define the polymer measure P

w,γ

N,β,λ,h as

dP
w,γ

N,β,λ,h

dP
(S) = exp(H

w,γ

N,β,λ,h(S))

Z
w,γ

N,β,λ,h

. (1.2)

This discrete model has already been investigated in physics (see [14] or [22]) and mathematics (see [13]) in the
case K = 0 and under the name copolymer with adsorption. This model is very natural, because it interpolates between
two classes of models that have received a lot of attention in the literature:

• The pure pinning model, which is obtained by setting λ = 0. In this case only the interaction with the layer around
the origin is activated. This model has been studied in the case K = 0, for instance in [2,3,15,17].

• The random copolymer model, which is obtained by fixing β = 0. In this case only the interaction between the
monomers and the two solvents is activated. It has been studied for instance in [4–6].

In general, these two models undergo a localization–delocalization phase transition, which results from an energy-
entropy competition. In fact, in both cases, some trajectories are energetically favored with respect to the others. In the
pinning case, it concerns the trajectories that remain close to the interface to touch the sites that carry a positive reward
βγ

j
i as often as possible. In the copolymer case, for every i ∈ {1, . . . ,N} wi + h > 0 (respectively wi + h < 0) means

that the ith monomer is hydrophobic (resp. hydrophilic) and therefore, the energetically favored trajectories cross the
interface often to put as many monomers as possible in their preferred solvent. In both cases, these favored trajectories
are localized in the neighborhood of the interface. Therefore, they carry much less entropy than the trajectories which
wander away far from the interface.

At this stage we introduce the free energy of the system that will be a key tool to define the localized and delocalized
regimes. Thus, for N ∈ N and every disorder (w,γ ) we define Φ

w,γ

N as

1

N
logZ

w,γ

N,β,λ,h = Φ
w,γ

N (β,λ,h). (1.3)

We recall that (w,γ ) are defined under the law P and we denote by ΦN(β,λ,h) the quantity E(Φ
w,γ

N (β,λ,h)).

Henceforth, we assume that E(exp(β|γ j

1 |)) < ∞ for every β ∈ R and j ∈ {−K, . . . ,K}.

Proposition 1.1. For every β ∈ R, λ ≥ 0, h ≥ 0, there exists a non random real number, denoted by Φ(β,λ,h), such
that P almost surely in (w,γ )

lim
N→∞Φ

w,γ

N (β,λ,h) = Φ(β,λ,h).

This convergence occurs also in L
1, which entails the convergence of ΦN(β,λ,h) to Φ(β,λ,h) as N tends to ∞. The

limit Φ(β,λ,h) is called the free energy of the model.

This proposition has been proven in different papers for quantities similar to Z
w,γ

N,β,λ,h (see [10] or [11] for example).
In our case, the difference comes from the fact that the disorder is spread out over a layer of finite width around
the interface, but the proof remains essentially the same and is left to the reader. We also notice that Φ(β,λ,h) is
continuous and separately convex.
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1.2. The continuous model

We define in this section the continuous counterpart of the discrete model. In size t , the configurations of the poly-
mer are given by the set of trajectories of the Brownian motion (Bs)s∈[0,t]. The Hamiltonian associated with every
trajectory B is

H̃
R,t
β,λ,h(B) = λ

∫ t

0
Λ(s)(dRs + hds) + βL0

t , (1.4)

where L0
t (or Lt when there is no ambiguity) is the local time spent at 0 by B between time 0 and time t . As in the

discrete case we set λ,h ≥ 0, β ∈ R and Λs = sign(Bs). We denote by P̃ the law of R = (Rs)s≥0, which is a standard
Brownian motion, independent of B such that dRs plays the role of wi .

As in the discrete case, we define the polymer measure of length t by perturbing the law P̃ of the Brownian motion
B as follows

dP̃
R,t
β,λ,h

dP̃
(B) = exp(H̃

R,t
β,λ,h(B))

Z̃
R,t
β,λ,h

. (1.5)

For every t > 0 and every disorder R we introduce the free energy of the system of size t , denoted by Φ̃R
t , as

1

t
log Z̃

t,R
β,λ,h = Φ̃R

t (β,λ,h). (1.6)

We also denote by Φ̃t (β,λ,h) the quantity Ẽ(Φ̃R
t (β,λ,h)).

Proposition 1.2. For every β ∈ R, λ ≥ 0, h ≥ 0, there exists a non random real number, denoted by Φ̃(β,λ,h), such
that P̃ almost surely in R

lim
t→∞ Φ̃R

t (β,λ,h) = Φ̃(β,λ,h).

As in the discrete case this convergence occurs also in L
1, and therefore Φ̃(β,λ,h), which is the free energy of the

model, is the limit of Φ̃t (β,λ,h) as t tends to ∞.

A proof of Proposition 1.2 in the case β = 0 is available in [10]. This proof is adapted in [18] to cover the case
β �= 0. We also notice that Φ̃(β,λ,h) is continuous, separately convex and non-decreasing in β .

1.3. Localized and delocalized regimes

In the discrete and the continuous model, the free energy gives us a tool to decide, for every (β,λ,h), whether
the system is localized or not. Observe that if we set DN = {S: Si > K ∀i ∈ {K + 1, . . . ,N}} and use P(DN) =
(1 + o(1))c/

√
N and the law of large numbers we have P-a.s.

Φ(β,λ,h) ≥ lim inf
N→∞

1

N
logE

[
exp

(
λ

N∑
i=1

(wi + h) + β

K∑
i=1

γ i
i

)
1{DN }

]
≥ λh. (1.7)

We will say that the polymer is delocalized when Φ(β,λ,h) = λh, because the trajectories in DN essentially de-
termine the free energy, and localized when Φ(β,λ,h) > λh. The (β,λ,h)-space is divided into a localized phase,
denoted by L, and a delocalized phase, denoted by D. It is now well understood (see in particular [11] and [13]) that
such a free energy dichotomy does correspond to sharply different path behaviors.

In the continuous case, by considering the subset D̃t = {B: Bs > 0 ∀s ∈ [1, t]}, a computation similar to (1.7)
shows that Φ̃(β,λ,h) ≥ λh. Therefore we can use the same dichotomy used in the discrete case to characterize L
and D.
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Critical curve
For γ , w, R, K and β fixed, both for the discrete and continuous models there exists a critical curve λ 
→ h

β
c (λ)

(̃hβ
c (λ) in the continuous case), which divides the (λ,h)-space into L = {(λ,h): h < h

β
c (λ)} and D = {(λ,h): h ≥

h
β
c (λ)}. In fact, by differentiating with respect to h we obtain for every N ≥ 1 and t > 0 that ΦN(β,λ,h) − λh and

Φ̃t (β,λ,h) − λh are non-increasing in h. Therefore Φ(β,λ,h) − λh and Φ̃(β,λ,h) − λh are also non-increasing in
h and we can simply define h

β
c (λ) = inf{h ≥ 0: Φ(β,λ,h) − λh = 0} and h̃

β
c (λ) = inf{h ≥ 0: Φ̃(β,λ,h) − λh = 0}.

The scaling property of the Brownian motion entails the equality Φ̃(aβ, aλ, ah) = a2Φ̃(β,λ,h) for every a ≥ 0.
From this it follows that h̃

λβ
c (λ) = λK

β
c with K

β
c = inf{h ≥ 0: Φ̃(β,1, h) − h = 0}. Notice that the quantity K

β
c can

be viewed as a critical curve in the (β,h)-plane for λ = 1 and is non-decreasing in β . Moreover, since (β,h) 
→
Φ̃(β,1, h) − h is convex, we prove easily that β 
→ K

β
c is convex.

Remark 1.3. Observe that for some values of λ and β the critical value h
β
c (λ) can be infinite. In Section 2.4, we give

certain conditions under which this happens. We prove also, for the continuous model, that K
β
c < ∞ and h̃

β
c (λ) < ∞

for all β ∈ R.

As a consequence, β 
→ K
β
c is continuous on R because it is convex and finite.

1.4. Discussion of the model and main results

Before studying more in depth the mathematical properties of the model, we recall that one of the physical situations
that can be modelled by such systems is a polymer put in the neighborhood of an interface between two solvents
(see [6]). Nevertheless, the models considered up to now do not take into account that such an interface has a finite
width, that is to say, a small layer in which the two solvents are more or less mixed together. In this sense, the model
developed here gives a more realistic image of an interface. Moreover, this model allows us to consider other physical
situations. For instance, a case in which micro-emulsions of a third solvent are spread in a thin layer around the
interface.

Former results about the model
We can roughly classify the results available for polymer models in two categories. On the one hand the results
concerning the path behavior of the polymer. In fact, the separation between the localized and delocalized phases has
an interpretation in terms of trajectories of the polymer. We refer to [1,5,11,13,23] for sharp results about the path
behavior of the copolymer in L and we refer to [12] for further results in D. On the other hand, the results concerning
the free energy (Φ): this problem arises only in L since Φ is constant in D. In this last category, we can mention for
instance the strong results about disordered pinning obtained recently in [2], in particular concerning the comparison
between quenched and annealed critical curve at weak disorder.

Regularity and scaling limit of the free energy
For both the copolymer and the pinning model the free energy Φ is complicated inside L and an important question
is to figure out if another phase transition can occur inside L. The answer is partially given for the case K = 0 in [13],
where a proof of the infinite differentiability of the free energy inside L is given. This proof is based on a result, that
was first given in [5] and [23] for the copolymer without adsorption and asserts that in L the laws of the polymer’s
excursions are exponentially tight. From this tightness, certain correlation inequalities are deduced that are sufficient
to prove the infinite differentiability of the free energy inside L. Therefore, there is no other phase transition, at least
of finite order, inside the localized phase.

The scaling limit of the discrete model is also a question that has been closely studied recently. In fact, in the case
of the copolymer without adsorption (β = 0), a continuous model is introduced in [6] and it turns out to be the limit
of the discrete model at high temperature, i.e., when the coupling parameters λ and h tend to 0. The results in [6] deal
with the case of w taking values ±1 and focus on the free energy, i.e,

lim
a→0

1

a2
Φ(0, aλ, ah) = Φ̃(0, λ,h). (1.8)
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This has been generalized in [12] to a large class of random variables w and it is of interest in terms of universality of
the Brownian limit as we are going to explain. Effectively, it shows that, when the coupling constants become weak,
the Brownian models “attract" any discrete model, regardless of its charge distribution. The proof is based on a coarse-
graining method. In fact, for fixed parameters (aλ, ah) the N steps of the polymer are partitioned into blocks of finite
and constant size L(a). It turns out that the characteristic size of the excursions for a small is of order 1/a2. Then,
by choosing L(a) of order 1/a2, one can, block by block, approximate the free energy per steps of the discrete model
by the one of the continuous model. When N tends to ∞ the number of blocks tends to ∞, but an ergodic property
of the blocks allows us to convert the approximation per block into the convergence (1.8) involving the discrete and
the continuous free energies in infinite size. In [6] it is shown that the convergence occurs for the slope of the critical
curve at the origin as well, i.e., limλ→0 h0

c(λ)/λ = K0
c .

Main results
In this article, we extend the scaling limit of the free energy given in [6] to the model of a copolymer with adsorption
introduced above. We aim particularly at understanding how the random pinning is modified at high temperature.
Some zones in the interacting layer around the origin carry a large number of high rewards and play a particular role
from the localization point of view. Indeed, the chain can target these zones when it goes back to the origin in order to
maximize the rewards. Consequently, some zones favor the localization of the polymer more than others (see [3] and
[17]). Here the question is whether the passage to a very weak coupling preserves the randomness of these rewards or
leads to a complete averaging of the disorder.

We answer this question in Theorem 1.4. In fact, by generalizing the limit (1.8) to the case β �= 0 we prove the
convergence of the discrete model to the continuous model, when the parameters tend to 0 at appropriate speeds.
The associated continuous model has a pinning term at the interface, given by the local time at 0 of the Brownian
motion B . Therefore, the randomness of the pinning term vanishes in the weak coupling limit.

In what follows, we will use the notation

Σ =
K∑

j=−K

E
(
γ

j

1

)
. (1.9)

With the limit (1.11) given in Theorem 1.4, we prove that the partial derivatives of (λ,β) 
→ h
β
c (λ) at the origin with

respect to any vector (1, β) (β ∈ R) are only determined by the quantity βΣ . This is also an important result in terms
of universality of the continuous limit with respect to the disorder γ . In fact, it shows that the shape of the critical
surface close to the origin only depends on Σ .

Before stating Theorem 1.4, we recall that the variables (γ
j

1 )j∈{−K,...,K} are allowed to have different laws, and we
assume without loss of generality that E(w2

1) = 1.

Theorem 1.4. Let β ∈ R, λ > 0, h ≥ 0 and Σ = ∑K
j=−K E(γ

j

1 ). Then

lim
a→0

1

a2
Φ(aβ,aλ, ah) = Φ̃(βΣ,λ,h) (1.10)

and

lim
δ→0

h
δβ
c (δ)

δ
= KβΣ

c . (1.11)

We can derive from Theorem 1.4 some relevant information concerning two particular cases of the model. In a first
part we consider the influence of a deterministic pinning term on the critical curve of a copolymer without adsorption.
In a second part we consider the case of an homopolymer with adsorption.
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Fig. 1. Phase diagram of the copolymer with the 3 regions L1, L2 and D introduced in Section 1.5.

1.5. Two particular cases

Influence of a depinning term on the critical curve
We consider here the copolymer model with a deterministic pinning term, i.e., K = 0, γ 0

1 = 1. Up to now the sensi-
bility of the critical curve λ 
→ h0

c(λ) to the presence of a pinning or depinning term is only very partially understood.

Effectively, in the case (λ,h) ∈ D, one can prove that choosing β large enough is sufficient to obtain h < h
β
c (λ),

namely to pass from a delocalized regime to a localized regime. It can be done for instance by restricting the compu-
tation of the free energy to the random walk trajectories that come back to the origin every second steps. This leaves
open the question whether a small β can transform the critical curve.

The situation does not get easier when (λ,h) ∈ L. In this case, it is useful to divide L into the two regions L1
and L2 separated by the curve λ 
→ h(λ) = (3/4λ) logE(exp(4λw1/3)) (see Fig. 1). In fact, the localization strategy
displayed in [4] to prove that h(λ) ≤ h0

c(λ) is not sensitive to the presence of a depinning term. This strategy consists
in coming back to the origin only to target rare stretches of negative wi . These rare stretches are of length l, and the
energetic contribution of each of them is of order l whereas the depinning term contributes an energy O(1). Thus, for
h < h(λ) (i.e., (λ,h) ∈ L2), we can not choose β < 0 such that h ≥ h

β
c (λ).

The case (λ,h) ∈ L1 is harder to investigate and we must recall that the strict inequality h(λ) < h0
c(β) is not

rigorously proven for the moment. However, some numerical evidences in [7] show that L1 is not an empty set and
contrary to what we just said about D and L2, the influence of a depinning term in the region L1 is not understood
at all. This leads to the following open problem: for (λ,h) ∈ L1, namely when h(λ) ≤ h < h0

c(λ), can we find a large

enough depinning term β < 0 that leads to a delocalization, i.e., h ≥ h
β
c (λ)?

From this point of view, Theorem 1.4 is an improvement in the knowledge of the depinning influence in L1. Indeed,
even if Theorem 1.4 does not directly answer this open problem, it connects it to another problem that may be easier to
solve. Effectively, if one can prove, for example with an exact computation in the Brownian setting, that the continuous
critical curve is sensitive to a depinning term, i.e., K

β
c < K0

c for certain β < 0, then Theorem 1.4 will entail that the

same β < 0 satisfies h
λβ
c (λ) = K

β
c λ(1 + o(1)). This would prove that L shrinks under the influence of a depinning

term, at least for λ small.

The homopolymer with adsorption
By fixing λ = 1 and wi ≡ 0 for i ≥ 1, we can model a homopolymer instead of a copolymer. Effectively, in this case
the polymer only consists of hydrophobic monomers, and its Hamiltonian is given by

h

N∑
i=1

Λi + β

K∑
j=−K

N∑
i=1

γ
j
i 1{Si=j}. (1.12)

This type of model, which we call h-model, with a pinning term at the interface in competition with a repulsion effect
(given here by h

∑N
i=1 Λi ), has already been investigated in the literature (see [8] or [14]). It has been proven, for

instance, that some properties of the h-model can be extended to the wetting model by letting the parameter h tend
to ∞ (see [18]).
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The free energy of the h-model is denoted by Φ(β,h) and the localization condition is as before: (β,h) ∈ L when
Φ(β,h) > h and (β,h) ∈ D when Φ(β,h) = h. The critical curve of the h-model, which separates the (h,β)-plane
into a localized and a delocalized phase, is denoted by κc(β). This curve is increasing, convex and satisfies κc(0) = 0.

At this stage, we must recall that w is assumed to satisfy E(w2
1) = 1 in Theorem 1.4. Therefore, this theorem can

not be applied directly to the h-model. However, the proof of Theorem 1.4, that we give in Section 3, can easily be
extended to the h-model, so that (1.10) can be restated in this case as

lim
a→∞

1

a2
Φ

(
aβ,a2h

) = Φ̃(βΣ,h), (1.13)

where Φ̃(βΣ,h) denotes the free energy of the continuous limit of the h-model. The Hamiltonian of this continuous
limit is given by

h

∫ t

0
Λs ds + βΣLt , (1.14)

which is remarkable because the disorder disappears. Thus, we can compute explicitly some quantities related to Φ̃ .
For instance, we state the following proposition for the case Σ = 1.

Proposition 1.5. Let β ∈ R and h ≥ 0. Then,

Φ̃(β,h) = h if h ≥ β2 and Φ̃(β,h) = h2

2β2
+ β2

2
if h < β2.

Since h2/(2β2) + β2/2 > h when h < β2, we obtain the continuous critical curve, i.e., κ̃c(β) = β2 for Σ = 1 (see
Fig. 2).

Thanks to Proposition 1.5 we can give the asymptotic behavior, as β tends to 0, of some quantities linked to the
discrete model. For instance, for the general h-model, i.e. with Σ not necessarily equal to 1, we can state the equivalent
of (1.11), that is

lim
β→0

κc(β)

β2
= Σ2. (1.15)

Proving (1.15) requires us to restate Theorem 2.3 (introduced below) for the h-model. This does not present any
further difficulty, that is why we will not give the details here. Notice that the limit 1.15 conforms to our intuition
that a stronger pinning along the interface enlarges the localized area and, consequently, increases the curvature of the
critical curve at the origin. It is also confirmed by the bounds on the critical curve found in [18].

Fig. 2. Phase diagram of the continuous homopolymer with adsorption.
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Still with Proposition 1.5, we can differentiate Φ̃(h,β) with respect to β and we find the asymptotic behavior of
the reward average in the weak coupling limit. Indeed, if h < β2, then by convexity of ΦN in β we can state that, a.s.
in γ ,

lim
a→0

lim
N→∞

1

aN
E

a2h,w
N,aβ

[
K∑

j=−K

N∑
i=1

γ
j
i 1{Si=j}

]
= β − h2

β3
.

The same derivative with respect to h gives an approximation, for a small, of the time proportion spent by the polymer
under the interface, i.e.,

lim
a→0

lim
N→∞E

a2h,w
N,aβ

[∑N
i=1 Δi

N

]
= β2 − h

2β2
.

1.6. Organization of the paper

In Section 2, we will state and prove some technical results that turn out to be useful in the proof of Theorem 1.4.
More precisely, in Section 2.1, we consider the local time spent by the random walk in a finite layer around the
interface after N steps. We rescale the latter by

√
N and we prove its convergence, in terms of exponential moments,

towards the local time spent at the origin by the Brownian motion between times 0 and 1. In Section 2.3 we introduce
the Theorem 2.3, from which Theorem 1.4 will be deduced. Theorem 2.3 is essentially technical and consists in
comparing the continuous free energy and the discrete free energy when the coupling is weak. Finally, in Section 2.4,
we provide some conditions of finiteness for hc and h̃c .

Section 3 is essentially dedicated to the proof of Theorems 1.4 and 2.3. Thus, in Section 3.2 we explain how
Theorem 1.4 is deduced from Theorem 2.3, whereas the rest of Section 3 is dedicated to the proof of Theorem 2.3.

The Appendix is dedicated to the exact computation of Φ̃ asserted in Proposition 1.5.

2. Preparation

2.1. Technical lemma

Lemma 2.1. For every K ∈ N and every (f−K,f−K+1, . . . , fK) in R
2K+1 the following convergence occurs:

lim
N→∞E

[
exp

(
1√
N

K∑
j=−K

fj

N∑
i=1

1{Si=j}

)]
= E

[
exp

((
K∑

j=−K

fj

)
L0

1

)]
, (2.1)

where L0
1 is the local time in 0 of a Brownian motion (Bs)s≥0 between 0 and 1.

Proof. First, we prove the following intermediate result. For every K ∈ N

lim
N→∞

1√
N

K∑
j=−K

f (j)

N∑
i=1

1{Si=j}
Law=

(
K∑

j=−K

fj

)
L0

1. (2.2)

For simplicity, we only prove that 1√
N

(
∑N

i=1 1{Si=0},
∑N

i=1 1{Si=1}) converges in law to (L0
1,L

0
1) as N ↑ ∞. The proof

for 2K + 1 levels is exactly the same. For this convergence in law, we use a result of [19], saying that we can build,
on the same probability space (W, A,P ), a simple random walk (Si)i≥0 and a Brownian motion (Bs)s≥0 such that P

almost surely

lim
n→∞ sup

j∈{0,1}
1√
n

∣∣Uj
n − L

j
n

∣∣ = 0 (2.3)
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with U
j
n = ∑n

i=1 1{Si=j} and Lx
n the local time in x of B between 0 and n. Equation (2.3) implies that 1√

n
(U0

n −
L0

n) and 1√
n
(U1

n − L1
n) tend a.s. to 0 as n ↑ ∞. Therefore, the proof of (2.2) will be completed if we show that

1√
n
(L0

n,L
1
n) converges in law to (L0

1,L
0
1). By the scaling property of Brownian motion, we obtain that, for every n ≥ 1,

1√
n
(L0

n,L
1
n) has the same law as (L0

1,L
1/

√
n

1 ). Thus, since Lx
1 is a.s. continuous in x = 0, we obtain immediately the

a.s. convergence of (L0
1,L

1/
√

n

1 ) towards (L0
1,L

0
1). This a.s. convergence implies the convergence in law and (2.2) is

proven.
Since the function exp(x) is continuous, (2.2) gives us the convergence in law of WN = exp( 1√

N

∑K
j=−K fj ×∑N

i=1 1{Si=j}) to exp((
∑K

j=−K fj )L
0
1) as N ↑ ∞. The uniform integrability of the sequence (WN)N≥1 will therefore

be sufficient to complete the proof of Lemma 2.1.
We will obtain this uniform integrability if we can prove that supN≥1 E(W 2

N) < ∞. By the Hölder inequality, it is
sufficient to prove that for every b > 0 and every j ∈ Z we have the inequality

sup
N≥1

E

(
exp

(
b√
N

N∑
i=1

1{Si=j}

))
< ∞. (2.4)

We let kN = ∑N
i=1 1{Si=0} and τj = inf{n ≥ 1: Sn = j}. Thus by the Markov property we can write

E

(
exp

(
b√
N

N∑
i=1

1{Si=j}

))
≤ E

(
exp

(
b√
N

1{τj ≤N}
N∑

i=τj

1{Si=j}

))
≤ E

(
e(b/

√
N)(1+kN )

)
, (2.5)

and it just remains to prove that for every b > 0 the sequence (E[exp(bkN/
√

N)])N≥0 is bounded from above inde-
pendently of N . To that aim, we notice that kN ≤ k2N ≤ N and write the obvious inequality

E

[
exp

(
bk2N√

N

)]
≤

�√N/2�∑
k=0

e
√

2b(k+1)P
(
k2N ∈ [

k
√

2N, (k + 1)
√

2N
[)

. (2.6)

With the help of [9] we can compute an upper bound of P(k2N ∈ [k√
2N, (k + 1)

√
2N [). Indeed, for every k ≤

�√N/2� we obtain

P
(
k2N ∈ [

k
√

2N, (k + 1)
√

2N
[) ≤

max(�(k+1)
√

2N�,N)∑
j=�k√

2N�
P(S2N = 0)

(1 − 1/N) · · · (1 − (j − 1)/N)

(1 − 1/(2N)) · · · (1 − (j − 1)/(2N))
. (2.7)

The function x → log(1 − x) + x is decreasing on [0,1) and consequently, for every j ∈ {�k√
2N�, . . . ,max(�(k +

1)
√

2N�,N)}, we have log(1 − j/N) − log(1 − j/2N) ≤ −j/2N . Therefore,

(1 − 1/N) · · · (1 − (j − 1)/N)

(1 − 1/(2N)) · · · (1 − (j − 1)/2N)
≤ exp

(
j−1∑
i=1

− i

2N

)
= exp

(
−j (j − 1)

4N

)
≤ exp

(
− (k − 1)2

2

)
.

Moreover �(k + 1)
√

2N� − �k√
2N� ≤ √

2N + 1 and there exists a constant c > 0 such that P(S2N = 0) ≤ c/
√

2N

for every N ≥ 1. That is why Eq. (2.7) becomes

P
(
k2N ∈ [

k
√

2N, (k + 1)
√

2N
]) ≤ 2c exp

(
− (k − 1)2

2

)
.

This result allows us to rewrite (2.6) as

E

[
exp

(
b

k2N√
N

)]
≤

∞∑
k=0

2ceb(k+1)e−(k−1)2/2,
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and the r.h.s. of this inequality is the sum of a convergent series. Therefore, the sequence (WN)N≥0 is uniformly
integrable and the proof of Lemma 2.1 is completed. �

2.2. Excess free energies

We define the quantities ΨN(β,λ,h) = ΦN(β,λ,h) − λh and Ψ̃t (β,λ,h) = Φ̃t (β,λ,h) − λh. They converge respec-
tively to Ψ (β,λ,h) = Φ(β,λ,h)−λh and Ψ̃ (β,λ,h) = Φ̃(β,λ,h)−λh, which are called excess free energies of the
polymer. Therefore, to decide whether the polymer is localized or not, it suffices to compare Ψ or Ψ̃ with 0. Moreover,
since

∑N
i=1(wi +h) = hN + o(N) when N ↑ ∞, P-a.s., we can subtract this quantity from the Hamiltonian (1.1) and

associate ΨN with

H
w,γ

N,β,λ,h = −2λ

N∑
i=1

(wi + h)Δi + β

K∑
j=−K

N∑
i=1

γ
j
i 1{Si=j},

with Δi = 1 if Λi = −1 and Δi = 0 otherwise. Similarly, Ψ̃t (β,λ,h) is associated with

H̃R
t,β = −2λ

∫ t

0
1{Bs<0}(dRs + hds) + βL0

t ,

and Ψ and Ψ̃ are continuous, separately convex and non-increasing in h. Moreover Ψ̃ is non-decreasing in β .

2.3. Technical theorem

Remark 2.2. Stating Theorem 2.3 requires a slight modification of the Hamiltonian. In fact, let (β1, β2) ∈ R
2 and

define

I1 = {
j ∈ {−K, . . . ,K}: E

(
γ

j

1

)
> 0

}
and I2 = {

j ∈ {−K, . . . ,K}: E
(
γ

j

1

)
< 0

}
.

Then, if E(γ
j

1 ) �= 0 for every j ∈ {−K, . . . ,K}, we define

H
w,γ

N,β1,β2,λ,h = β1

∑
j∈I1

N∑
i=1

γ
j
i 1{Si=j} + β2

∑
j∈I2

N∑
i=1

γ
j
i 1{Si=j} + λ

N∑
i=1

(wi + h)Λi. (2.8)

The associated free energy Ψ (β1, β2, λ,h) is defined as in Proposition 1.1, and satisfies Ψ (β,λ,h) = Ψ (β,β,λ,h).
Thus, in what follows, we will use the notation Ψ (β1, β2, λ,h) if β1 �= β2, otherwise we will use Ψ (β,λ,h). We let
Σ = Σ1 + Σ2, with Σ1 = ∑

j∈I1
E(γ

j

1 ) and Σ2 = ∑
j∈I2

E(γ
j

1 ).

Theorem 2.3. Suppose E(γ
j

1 ) �= 0 for every j ∈ {−K, . . . ,K}. If β1 �= 0, β2 �= 0, and (μ1,μ2) ∈ R
2 satisfy

μ1 > β1Σ1 + β2Σ2 > μ2,

and ρ > 0, h > 0, h′ ≥ 0, λ > 0 satisfy (1 + ρ)h′ < h, then there exists a0 > 0 such that for every a < a0

1

a2
Ψ (aβ1, aβ2, aλ, ah) ≤ (1 + ρ)Ψ̃

(
μ1, λ,h′)

Ψ̃ (μ2, λ,h) ≤ 1 + ρ

a2
Ψ

(
aβ1, aβ2, aλ, ah′). (2.9)
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2.4. Conditions of finiteness for hc and h̃c

One particular discrete model
We give here some more details about one particular case, namely K = 0 and γ 0

1 = 1. We let ζ(λ) = log(E(exp(λw1)).
The Jensen’s inequality allows us to write

Ψ (β,λ,h) ≤ lim
N→∞

1

N
logE

[
exp

(
N∑

i=1

(
ζ(−2λ) − 2λh

)
Δi + β

N∑
i=1

1{Si=0}

)]
. (2.10)

The limit in the right-hand side of (2.10) is computed in [17] and is equal to 0 for h large enough, as long as β < log 2.
This means that h

β
c (λ) < ∞ for β < log 2. In the same spirit we can let h tend to ∞ and write the lower bound

Ψ (β,λ,h) ≥ lim
N→∞

1

N
logE

[
exp

(
β

N∑
i=1

1{Si=0}

)
1{Si≥0 ∀i∈{1,...,N}}

]
. (2.11)

The r.h.s. of (2.11) is strictly positive for β > log 2, and therefore h
β
c (λ) = ∞ when β > log 2.

The continuous case
In the continuous case we can assert the following general result.

Proposition 2.4. For every β ∈ R we have K
β
c < ∞. As a consequence, for every β ∈ R and λ > 0 we have

h̃
β
c (λ) < ∞.

The proof of this proposition involves the discrete case mentioned above and the Theorem 2.3.

3. Proof of theorems and propositions

3.1. Proof of Proposition 2.4

In this section we assume that Theorem 2.3 is satisfied. Since β → K
β
c is non-decreasing in β , the proof of Proposi-

tion 2.4 will be completed if we can show that K
β
c < ∞ for all β > 0. Therefore, we let β > 0 and for any h ≥ 0, we let

Υ (β,h) = lim
N→∞

1

N
logE

[
exp

(
−2h

N∑
i=1

Δi + β

N∑
i=1

1{Si=0}

)]
. (3.1)

It is proven in [17] that Υ (β,h) > 0 when h < κc(β) and Υ (β,h) = 0 when h ≥ κc(β). The critical value is also
computed in [17], i.e.,

κc(β) = −
(

1

4

)
log

(
1 − 4

(
1 − exp(−β)

)2)
. (3.2)

We recall the particular discrete case introduced in Section 1.3, namely K = 0 and γ 0
1 = 1. We assume also that w1

is a Bernoulli trial taking the values 1 and −1 with probability 1/2. We let β > 0, h > 0 and we can apply the second
inequality of Theorem 2.3 to this particular discrete model with the parameters ρ = 1/2, μ2 = β , β1 = β2 = 2β and
h′ = h/2. Since Σ1 = 1 and Σ2 = 0 in this case we obtain for a small enough

Ψ̃ (β,1, h) ≤ 1 + 1/2

a2
Ψ

(
2aβ,a, a

h

2

)
. (3.3)

Moreover, Eq. (2.10) gives Ψ (2aβ,a, ah/2) ≤ Υ (2aβ,−ζ(−2a)/2 + a2h/2). Eq. (3.2) gives κc(2aβ) = 4a2β2 +
o(a2) whereas −ζ(−2a)/2 + a2h/2 = a2(h − 2)/2 + o(a2). Therefore, by choosing h large enough and a small
enough we have that the r.h.s. of (3.3) is equal to 0. This shows that K

β
c < ∞ for all β > 0 and the proof of Proposi-

tion 2.4 is completed.
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3.2. Proof of Theorem 1.4

Part 1: proof of the convergence (1.10)
In this section, we prove that the convergence (1.10) is a consequence of Theorem 2.3. This proof is divided into
3 steps. In the first step, we show that (1.10) is satisfied when λ > 0, h > 0, β �= 0 and every pinning reward γ

j

1 has

a non zero average. In the second step, we prove that the result can be extended to the case in which some γ
j

1 have a
zero average and consequently to the case β = 0. Finally, in the last step, we will consider the case h = 0. We recall
that proving (1.10) with Φ and Φ̃ or Ψ and Ψ̃ is completely equivalent.

Step 1. First, we consider the case λ > 0, h > 0, β �= 0 and E(γ
j

1 ) �= 0 for every j ∈ {−K, . . . ,K}. We can apply
the first inequality of Theorem 2.3 with the parameters ρ = 1/n, h′ = h/(1 + 1/n)2, β1 = β2 = β and μ1(v) =
βΣ1 + βΣ2 + 1/v (n and v ∈ N − {0}). It gives, for every integer n and v strictly positive, that

lim sup
a→0

1

a2
Ψ (aβ,aλ, ah) ≤

(
1 + 1

n

)
Ψ̃

(
μ1(v), λ,

h

(1 + 1/n)2

)
. (3.4)

At this stage, we let successively n and v tend to ∞, and, by continuity of Ψ̃ in h and β we obtain lim supa→0 1/a2 ×
Ψ (aβ,aλ, ah) ≤ Ψ̃ (βΣ,λ,h). The lower bound is proven with the second inequality of Theorem 2.3. Indeed, if we
choose μ2(v) = βΣ1 + βΣ2 − 1/v and keep the other notations, we obtain

Ψ̃

(
μ2(v), λ,h

(
1 + 1

n

)2)
≤

(
1 + 1

n

)
lim inf
a→0

1

a2
Ψ (aβ,aλ, ah). (3.5)

We let n ↑ ∞, and after, we let v ↑ ∞. In that way, we can conclude that lima→0 1/a2Ψ (aβ,aλ, ah) = Ψ̃ (βΣ,λ,h)

which implies (1.10).
Step 2. We prove the convergence (1.10) when λ > 0, h > 0, β �= 0 and there exists j ∈ {−K, . . . ,K} such that

E(γ
j

1 ) = 0. For that, we choose μ > 0 and small enough, such that, E(γ
j
i + μ) �= 0 for every j ∈ {−K, . . . ,K}. With

these new variables we can use the result of Step 1 with Σμ = Σ + (2K + 1)μ. Since the free energy Ψμ associated

with the variables γ
j
i + μ is larger than Ψ , we obtain

lim sup
a→0

1

a2
Ψ (aβ,aλ, ah) ≤ lim

a→0

1

a2
Ψμ(aβ,aλ, ah) = Ψ̃

(
β
(
Σ + (2K + 1)μ

)
, λ,h

)
.

As Ψ̃ is continuous in β , we let μ ↓ 0 and write lim supa→0 1/a2Ψ (aβ,aλ, ah) ≤ Ψ̃ (βΣ,λ,h). Thus, it suffices to
do the same computation with −μ < 0, and we obtain the other inequality, i.e.,

lim inf
a→0

1

a2
Ψ (aβ,aλ, ah) ≥ lim

μ→0
Ψ̃

(
β
(
Σ − (2K + 1)μ

)
, λ,h

) = Ψ̃ (βΣ,λ,h).

Therefore, we can say that lima→0
1
a2 Ψ (aβ,aλ, ah) = Ψ̃ (βΣ,λ,h).

As a consequence, (1.10) is satisfied when the variables γ
j
i are all equal to 0. Therefore, it is also satisfied when

β = 0.
Step 3. It remains to prove (1.10) when h = 0. Since Ψ and Ψ̃ are non-increasing in h, (1.10) with λ > 0, h > 0

and β ∈ R (proven in Step 2) implies

lim inf
a→0

1

a2
Ψ (aβ,aλ,0) ≥ lim inf

a→0

1

a2
Ψ (aβ,aλ, ah) = Ψ̃ (βΣ,λ,h).

We let h ↓ 0 and by continuity of Ψ̃ in h we obtain

lim inf
a→0

1

a2
Φ(aβ,aλ,0) = lim inf

a→0

1

a2
Ψ (aβ,aλ,0) ≥ Ψ̃ (βΣ,λ,0) = Φ̃(βΣ,λ,0).
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To prove the opposite inequality, we just notice that Φ is non-decreasing in h. Effectively

∂ΦN

∂h

∣∣∣∣
(β,λ,0)

= E

[
E

w,γ

N,β,λ,h

(
λ

N

N∑
i=1

Λi

)]
, (3.6)

and by symmetry of the laws of the random walk and of the variables {wi}i=1,2,..., we can transform wi in −wi , and
(Λ1, . . . ,ΛN) in (−Λ1, . . . ,−ΛN), without changing (3.6). It gives

∂ΦN

∂h

∣∣∣∣
(β,λ,0)

= −∂ΦN

∂h

∣∣∣∣
(β,λ,0)

.

Therefore, this derivative is equal to 0 and since ΦN is convex in h, ΦN is non-decreasing in h. Then, the
convergence of ΦN to Φ implies that Φ is also non-decreasing in h. The Step 2 gives, for h > 0, that
lim supa→0

1
a2 Φ(aβ,aλ, ah) ≤ Φ̃(βΣ,λ,h). Since Φ is non-decreasing in h, the former inequality implies,

lim supa→0
1
a2 Φ(aβ,aλ,0) ≤ Φ̃(βΣ,λ,h). Then we let h ↓ 0 and the proof of the convergence (1.10) is completed.

Part 2: proof of the convergence (1.11)
In this section, we assume that Theorem 2.3 is satisfied. We consider β �= 0. We prove the convergence (1.11) by
applying Theorem 2.3 with particular parameters. However we have to take into account the fact that there may exist
j ∈ {−K, . . . ,K} such that E(γ

j

1 ) = 0. Therefore, as we did in Step 2 of the proof of (1.10) we consider μ > 0

small enough, such that, E(γ
j
i + μ) �= 0 and E(γ

j
i − μ) �= 0 for every j ∈ {−K, . . . ,K}. Then, we use the result of

Theorem 2.3 with the variables γ
j
i + μ for i ≥ 1 and j ∈ {−K, . . . ,K}. We denote by Ψμ the associated excess free

energy and we let Σμ = Σ + (2K + 1)μ. Then we denote ρ = 1/n, μ1 = βΣμ + 1/n, h = (1 + 2/n)K
μ1
c , h′ = K

μ1
c ,

β1 = β2 = β , and λ = 1. For a small enough, the first inequality of Theorem 2.3 gives

1

a2
Ψμ

(
aβ,a, a

(
1 + 2

n

)
K

βΣμ+1/n
c

)
≤

(
1 + 1

n

)
Ψ̃

(
βΣμ + 1

n
,1,K

βΣμ+1/n
c

)
. (3.7)

By definition of K
(·)
c , the right-hand side of (3.7) is equal to zero. Moreover Ψ ≤ Ψμ for μ > 0. Therefore, we have

the inequality lim supa→∞ h
aβ
c (a)/a ≤ (1 + 2/n)K

βΣμ+1/n
c . Then, we let n ↑ ∞ and μ ↓ 0 and since x → Kx

c is

continuous in βΣ , the former inequality becomes lim supa→∞ h
aβ
c (a)/a ≤ K

βΣ
c . It remains to prove the opposite

inequality. To that aim, we apply the second inequality of Theorem 2.3 with the variables γ
j
i − μ for i ≥ 1 and

j ∈ {−K, . . . ,K} and with the parameters ρ = 1/n, μ2 = βΣ−μ −1/n, h = K
μ2
c −1/n, h′ = (K

μ2
c −2/n)/(1+1/n),

β1 = β2 = β , and λ = 1. For a small enough we obtain

Ψ̃

(
βΣ−μ − 1

n
,1,K

βΣ−μ−1/n
c − 1

n

)
≤ 1 + 1/n

a2
Ψ−μ

(
aβ,a,

a

1 + 1/n

(
K

βΣ−μ−1/n
c − 2

n

))
. (3.8)

Therefore, since the l.h.s. of (3.8) is strictly positive and since ψ ≥ ψ−μ for all μ > 0, we can write the inequality

lim infa→∞ h
aβ
c (a)/a ≥ (K

βΣ−μ−1/n
c − 2/n)/(1 + 1/n). Finally, by continuity of x 
→ Kx

c around βΣ , we let n ↑ ∞
and μ ↓ 0 and it completes the proof of (1.11).

As in the Step 2 of the proof of (1.10), the case γ
j
i = 0 for all i ≥ 1 and all j ∈ {−K, . . . ,K} gives us directly

(1.11) in the case β = 0.

3.3. Proof of Theorem 2.3

Remark 3.1. We will only consider in this proof the case β1 > 0 and β2 > 0. Indeed, if for instance β1 < 0, we
transform all the variables (γ

j
i ){i≥1,j∈I1} into (−γ

j
i ){i≥1,j∈I1} and we take −β1 instead of β1.

First, we define a relation (previously introduced in [6]), which is very useful to carry out the proof.
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Definition 3.2. Let ft,ε,δ(a,h,β1, β2) and gt,ε,δ(a,h,β1, β2) be real-valued functions. The relation f � g occurs if
for every β3 > β1, β2 > β4, ρ > 0, and h > h′ ≥ 0 satisfying (1 + ρ)h′ < h, there exists δ0 such that for 0 < δ < δ0
there exists ε0(δ) such that for 0 < ε < ε0 there exists a0(ε, δ) satisfying

lim sup
t→∞

ft,ε,δ(a,h,β1, β2) − (1 + ρ)gt(1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
a(1 + ρ),h′, β3, β4

) ≤ 0 for 0 < a < a0. (3.9)

In this proof we consider some functions of the form

Ft,ε,δ(a,h,β1, β2) = E

[
1

t
logE

(
exp

(
aHt,ε,δ(a,h,β1, β2)

))]
,

and we denote

• F 1
t,ε,δ(a,h,β1, β2) = 1

a2 Ψ�t/a2�(aβ1, aβ2, a, ah)

• F 7
t,ε,δ(a,h,β1, β2) = Ψ̃t (β1Σ1 + β2Σ2,1, h).

The proof of (2.9) will consist in showing that F 1 � F 7 and F 7 � F 1 (denoted by F 1 ∼ F 7). To that aim, we will
create the intermediate functions F2, . . . ,F6 associated with slight modifications of the Hamiltonian to transform, step
by step, the discrete Hamiltonian into the continuous one. As the relation ∼ is transitive, we will prove at every step
that F i ∼ F i+1, to conclude finally that F 1 ∼ F 7.

3.4. Scheme of the proof

To show that F i � F i+1 we let Hi = HI + H II and, by the Hölder inequality, we can bound F i from above as
follows

F i
t,ε,δ(a,h,β) ≤ 1

t (1 + ρ)
E

[
logE

(
exp

(
a(1 + ρ)HI

))] + 1

t (1 + ρ−1)
E

[
logE

(
exp

(
a
(
1 + ρ−1)H II))].

Thus, if we choose HI = Hi+1
t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2(a(1 + ρ),h′, β3, β4), we obtain

F i
t,ε,δ(a,h,β1, β2) − (1 + ρ)F i+1

t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
a(1 + ρ),h′, β3, β4

)
≤ 1

t (1 + ρ−1)
E

[
logE

(
exp

(
a
(
1 + ρ−1)H II))].

Then, it suffices to prove that lim supt→∞ 1/t logEE(exp(a(1 + ρ−1)H II))) ≤ 0 for a, ε and δ small enough.
We can assume without problem that ε/a2, δ/ε and t/δ are all integers. In this way we avoid the brackets in the

formulas.

3.5. Step 1

The first Hamiltonian that we consider in this proof is given by

H
(1)
t,ε,δ(a,h,β1, β2) = −2

t/a2∑
i=1

Δi(wi + ah) + β1

∑
j∈I1

t/a2∑
i=1

γ
j
i 1{Si=j} + β2

∑
j∈I2

t/a2∑
i=1

γ
j
i 1{Si=j},

with Δi = 1 if Λi = −1 and Δi = 0 if Λi = 1.
We define some notation to build the intermediate Hamiltonians (see Fig. 3).

• σ0 = 0, iv0 = 0 and ivk+1 = inf{n > σkε/a
2 + δ/a2: Sn = 0},

• m = inf{k ≥ 1: ivk > t/a2},
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Fig. 3. Example of construction of (σk)k∈{1,...,m} and (ik)k∈{1,...,m} for one particular trajectory of the polymer.

• ik = ivk for k < m and im = t/a2,
• σk+1 = inf{n ≥ 0: ik+1 ∈](n − 1)ε/a2, nε/a2]},
• I k =](σk−1)ε/a

2, σkε/a
2]∩ ]0, t/a2], sk+1 = signΔik+1−1.

We define the first transformation of the Hamiltonian

H
(2)
t,ε,δ(a,h,β1, β2) = −2

m∑
k=1

sk

[∑
i∈I k

wi + ah|I k|
]

+
t/a2∑
i=1

β1

∑
j∈I1

γ
j
i 1{Si=j} + β2

∑
j∈I2

γ
j
i 1{Si=j}

and we want to show that F1 � F2. To that aim, we denote

H II = −2
t/a2∑
i=1

Δi(wi + ah) + 2
m∑

k=1

sk

(∑
i∈I k

wi + a(1 + ρ)h′|I k|
)

+ (β1 − β3)
∑
j∈I1

t/a2∑
i=1

γ
j
i 1{Si=j} + (β2 − β4)

∑
j∈I2

t/a2∑
i=1

γ
j
i 1{Si=j}, (3.10)

and it remains to prove that lim supt→∞ 1
t

logEE(exp(a(1 + ρ−1)H II)) ≤ 0. We integrate over the disorder γ and the
third and forth terms of the right-hand side of (3.10) give some contributions of the form

exp

(∑
j∈Ip

t/a2∑
i=1

log E
[
exp

(
(βp − β2+p)a

(
1 + ρ−1)γ j

i

)]
1{Si=j}

)
for p = 1 and p = 2.

Since E(exp(λ|γ j

1 |)) < ∞ for every j ∈ {−K, . . . ,K} and λ > 0, we can write a first-order Taylor expansion of

logE(exp(Aaγ
j

1 )) when a ↓ 0. It gives

logE
(
exp

(
Aaγ

j

1

)) = AaE
(
γ

j
i

) + o(a). (3.11)

We assume in this proof that E(γ
j

1 ) �= 0 for every j ∈ {−K, . . . ,K} (see the assumptions of Theorem 2.3) and there-

fore {−K, . . . ,K} = I1 ∪ I2. For every i ∈ I1, E(γ
j

1 ) > 0, and β1 − β3 < 0. Thus, by (3.11), we obtain, for a small
enough, that

∑
j∈I1

t/a2∑
i=1

logE
(
(β1 − β3)a

(
1 + ρ−1)γ j

i

)
1{Si=j} ≤ 0. (3.12)
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The sum over I2 satisfies the same inequality for a small enough because β2 − β4 > 0 and E(γ
j
i ) < 0 when j ∈ I2.

Therefore, we can remove the third and fourth terms of H II in (3.10) and by rewriting
∑t/a2

i=1 as
∑m

t/a2

k=1

∑
i∈I k

, we

can rewrite H II as

H II = −2

m
t/a2∑

k=1

∑
i∈I k

wi(Δi − sk) − 2a(1 + ρ)h′
m

t/a2∑
k=1

∑
i∈I k

(Δi − sk) − 2a
(
h − (1 + ρ)h′)m

t/a2∑
k=1

∑
i∈I k

Δi.

Thus, we integrate over the disorder w which is independent of the random walk. But, since E(wi) = 0 and
E(exp(λ|w1|)) < ∞ for every λ > 0, a second-order expansion gives that for every c ∈ R there exists A > 0 such
that for a small enough

log E
(
exp

(
cawi(Δi − sk)

)) ≤ Aa2|Δi − sk|. (3.13)

Finally, we have to prove, for A > 0 and B > 0 and for δ, ε, a small in the sense of Definition 3.2, that

lim sup
t→∞

1

t
logE

[
exp

(
Aa2

m
t/a2∑

k=1

∑
i∈I k

|sk − Δi | − Ba2
t/a2∑
i=1

Δi

)]
≤ 0. (3.14)

This is explicitly proven in [6] (p. 1355), and completes the Step 1 because the proof of F2 � F1 is very similar and
consists essentially in showing (3.14).

3.6. Step 2

In this step we aim at transforming the disorder w into a sequence (ŵi)i≥1 of independent random variables of
law N0,1. To that aim, we use a coupling method developed in [21] to define on the same probability space and for
every j ∈ N \ {0} the variables (wi)i∈{(j−1)ε/a2+1,...,jε/a2} and some independent variables of law N0,1, denoted by
(ŵi)i∈{(j−1)ε/a2+1,...,jε/a2}, such that for every p > 2 and x > 0

P

(∣∣∣∣∣
jε/a2∑

i=(j−1)ε/a2+1

wi − ŵi

∣∣∣∣∣ ≥ x

)
≤ (Ap)pε

xpa2
E

(
w

p

1

)
. (3.15)

These constructions are made independently on all blocs {(j − 1)ε/a2 + 1, . . . , jε/a2}. Thus, we can form the third
Hamiltonian as follows

H
(3)
t,ε,δ(a,h,β1, β2) = −2

m∑
k=1

sk

[∑
i∈I k

ŵi + ah|I k|
]

+
t/a2∑
i=1

β1

∑
j∈I1

γ
j
i 1{Si=j} + β2

∑
j∈I2

γ
j
i 1{Si=j}.

To prove that F 2 � F 3, we need the Hamiltonian H II . It takes the value

H II = H
(2)
t,ε,δ(a,h,β1, β2) − H

(3)

t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
a(1 + ρ),h′, β3, β4

)
. (3.16)

As in Step 1 (see (3.12)) we delete the two pinning terms in H II and it is sufficient to consider

H II = −2
m∑

k=1

sk
∑
i∈I k

(wi − ŵi) + 2a

m∑
k=1

sk
(
h − (1 + ρ)h′)|I k|

≤ 2
m∑

k=1

sk

(
σk∑

j=σk−1+1

∣∣∣∣∣
(j+1)ε/a2∑
i=jε/a2+1

wi − ŵi

∣∣∣∣∣ − (
h − (1 + ρ)h′) ε

a

)
.
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We want to prove that lim supt→∞ 1/t logEE(exp(a(1 + ρ−1)H II)) ≤ 0. By independence of (w, ŵ) on each blocs
{(j − 1)ε/a2 + 1, . . . , jε/a2}, it suffices to show that for every C > 0 and B > 0

E

[
exp

(
Ca

∣∣∣∣∣
ε/a2∑
i=1

wi − ŵi

∣∣∣∣∣ − Bε

)]
≤ 1 for ε and a small enough. (3.17)

We prove this point as follows,

E

[
exp

(
Ca

∣∣∣∣∣
ε/a2∑
i=1

wi − ŵi

∣∣∣∣∣
)]

≤
+∞∑
k=N

eCa(k+1)ε/
√

a
P

(∣∣∣∣∣
ε/a2∑
i=1

wi − ŵi

∣∣∣∣∣ ≥ k
ε√
a

)
+ eCN

√
aε. (3.18)

By using (3.15) and the fact that E(wk
1) ≤ Rk , we obtain that for every j and k ≥ 1

P

(∣∣∣∣∣
jε/a2∑

i=(j−1)ε/a2+1

wi − ŵi

∣∣∣∣∣≥ kε√
a

)
≤ (AR

√
a)k

εk−1a2
. (3.19)

We consider (3.18) with N = 5, and we use (3.19) to obtain

E

[
exp

(
Ca

∣∣∣∣∣
ε/a2∑
i=1

wi − ŵi

∣∣∣∣∣
)]

≤ e5C
√

aε + ε
eC

√
aε

a2

+∞∑
k=5

(
eC

√
aε AR

√
a

ε

)k

.

Therefore, for ε > 0 fixed, there exists K(ε, a) > 0 which tends to zero when a tends to zero, and satisfies

E

[
exp

(
Ca

∣∣∣∣∣
ε/a2∑
i=1

wi − ŵi

∣∣∣∣∣
)]

≤ (
1 + K(ε, a)

)
e5Cε

√
a.

This implies (3.17), and completes the Step 2 because the proof of F 3 � F 2 is exactly the same.

3.7. Step 3

In this step, we make a link between the discrete and the continuous models. For that, we take into account the number
of returns to the origin of the random walk, and the local time of the Brownian motion. We define, independently of
the random walk, an i.i.d. sequence (lk1)k≥0 of local times spent in 0 by a Brownian motion between 0 and 1. The law
of this sequence is denoted by χ . Then, we build the new Hamiltonian

H
(4)
t,ε,δ(a,h,β1, β2) = −2

m∑
k=1

sk

(∑
i∈I k

ŵi + ah|I k|
)

+ (β1Σ1 + β2Σ2)
√

δ

a

m∑
k=1

lk1 . (3.20)

As usual, to prove that F3 � F4, we consider H II , in which we can already remove the term −2a(h − (1 +
ρ)h′)

∑m
k=1 sk | I k | because it is negative. Therefore we can bound H II from above as follows

H II ≤ β1

m∑
k=1

∑
j∈I1

ik∑
i=ik−1+1

γ
j
i 1{Si=j} − β3Σ1

√
δ

a

m∑
k=1

lk1 + β2

m∑
k=1

∑
j∈I2

ik∑
i=ik−1+1

γ
j
i 1{Si=j} − β4Σ2

√
δ

a

m∑
k=1

lk1 .

To prove that lim supt→∞ 1
t

logEP⊗χE(exp(a(1 + ρ−1)H II)) ≤ 0, we first apply the Hölder inequality (with the
coefficients p = q = 2), and then we integrate over the disorder γ . Therefore, it remains to prove for x = 1 and 2
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that

lim sup
t→∞

1

t
logEP⊗χ

[
exp

(
m∑

k=1

∑
j∈Ix

ik∑
i=ik−1+1

logE
(
exp

(
2aβx

(
1 + ρ−1)γ j

i

))
1{Si=j}

− 2βx+2
√

δΣx

(
1 + ρ−1)lk1

)]
≤ 0. (3.21)

For simplicity, in what follows we will use E instead of EP⊗χ . We begin with the proof of (3.21) in the case x = 1.
To that aim, we recall (3.11), that gives

log E
(
exp

(
2aβ1

(
1 + ρ−1)γ j

i

)) = 2E
(
γ

j

1

)
aβ1

(
1 + ρ−1) + o(a). (3.22)

Therefore, we can choose β ′′ such that β1 < β ′′ < β3 and a small enough to obtain for every j ∈ I1 the in-
equality logE(exp(2aβ1(1 + ρ−1)γ

j
i )) ≤ 2aβ ′′(1 + ρ−1)E(γ

j

1 ). Finally, since E(γ
j

1 ) > 0 for every j , we can re-
place (ik)k∈{1,...,m} by (ivk )k∈{1,...,m} (see the notation at the beginning of Step 1), and it remains to prove that for
B > A > 0

lim sup
t→∞

1

t
logE

[
exp

(
m∑

k=1

(
Aa

∑
j∈I1

E
(
γ

j

1

) ivk∑
i=ivk−1+1

1{Si=j} − B
√

δΣ1l
k
1

))]
≤ 0. (3.23)

For simplicity, we will use the notation E(γ
j

1 ) = f (j), and consequently Σ1 = ∑
j∈I1

f (j). For every N ,

we build a new filtration, i.e., FN = σ(AivN
∪ σ(l1

0 , . . . , lN1 )) with Ak = σ(X1, . . . ,Xk) and the random vari-
able

MN = exp(
∑N

k=1 Aa
∑

j∈I1
f (j)�{v ∈ {ivk−1 + 1, ivk }: Sv = j} − B

√
δΣ1

∑N
k=1 lk1)

μNE(exp(Aa
∑

j∈I1
f (j)�{i ∈ {0, (δ + ε)/a2}: Si = j} − B

√
δΣ1l

1
1))N

,

where μ is a constant > 1. We will precise the value of μ later, to make sure that MN is a positive super-martingale
with respect to (FN)N≥0. To that aim, for every j ∈ {−K, . . . ,K} we introduce P

j
N = �{u ∈ {ivN−1 + 1, ivN }:

Su = j}, and we define the new filtration (GN)N≥1 by GN−1 = σ(FN−1 ∪ σ(XivN−1+1, . . . ,XivN−1+(δ+ε)/a2, lN1 )).
Then, we consider the quantity E(MN |FN−1) and by independence of the random walk excursions out of the origin
we obtain

E(MN |FN−1) = MN−1
μ−1E(exp(Aa

∑
j∈I1

f (j)P
j
N − B

√
δΣ1l

N
1 )|FN−1)

E(exp(Aa
∑

j∈I1
f (j) �{i ∈ {0, (δ + ε)/a2}: Si = j} − B

√
δΣ1l

1
1))

. (3.24)

We define tN = inf{i > ivN−1 + (δ + ε)/a2: Si = 0} and notice that tN ≥ ivN (see Fig. 4 for an example in which
tN > ivN ).

Therefore, we can write P
j
N ≤ B

j

1,N + B
j

2,N with

B
j

1,N =
{
v ∈

{
ivN−1 + 1, . . . , ivN−1 + δ + ε

a2

}
: Sv = j

}
and

B
j

2,N =
{
v ∈

{
ivN−1 + δ + ε

a2
+ 1, . . . , tN

}
: Sv = j

}
. (3.25)

We denote by C the quantity E[exp(Aa
∑

j∈I1
f (j)P

j
N − B

√
δΣ1l

N
1 )|FN−1]. Thus, since B

j

1,N is measurable with
respect to GN−1 and since FN−1 ⊂ GN−1 we can write

C ≤ E

[
exp

(
Aa

∑
j∈I1

f (j)B
j

1,N − B
√

δΣ1l
N
1

)
E

[
exp

(
Aa

∑
j∈I1

f (j)B
j

2,N

)∣∣∣GN−1

]∣∣∣FN−1

]
.
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Fig. 4. Example of tN > ivn .

We recall that Ak = σ(X1, . . . ,Xk) and we let Υ = E(exp(Aa
∑

j∈I1
f (j)B

j

2,N )|GN−1). The fact that the local times

(l1
1 , . . . , lN1 ) are independent of the random walk allows us to write the equality Υ = E(exp(Aa

∑
j∈I1

f (j)B
j

2,N )|
AivN−1+(δ+ε)/a2). The strong Markov property can be applied here. In fact, if (Vn)n≥0 is a simple random walk with
V0 = SivN−1+(δ+ε)/a2 , and if s = inf{n > 1: Vn = 0}, we can write

Υ = EV

[
exp

(
Aa

∑
j∈I1

f (j)�
{
i ∈ {1, . . . , s}: Vi = j

})]
.

Thus, if we denote f = maxj∈I1{fj }, we can bound Υ from above as

Υ ≤ EV

[
exp

(
Aaf �

{
i ∈ {1, . . . , s}: Vi ∈ {−K, . . . ,K}})]. (3.26)

We want to find an upper bound of Υ independent of the starting point SiN−1+(δ+ε)/a2 . The r.h.s. of (3.26) is even with
respect to the starting point, therefore we can consider that V is a reflected random walk. That is why it suffices to
bound from above the quantities W(x,a) = Ex(exp(Aaf �{i ∈ {1, . . . , s}: |Vi | ∈ {0, . . . ,K}})) with x ∈ N. Moreover,
the Markov property implies that W(x,a) = W(K,a) for every x ≥ K , and W(x,a) < W(K,a) if x < K because
the random walk starting in K touches necessarily in x before reaching 0. Therefore, we can write an upper bound of
C, i.e.,

C ≤ E

[
exp

(
Aa

∑
j∈I1

f (j)B
j

1,N − B
√

δΣ1l
N
1

)∣∣∣FN−1

]
W(K,a),

and since the excursion of a random walk is independent we can assert that B
j

1,N is independent of FN−1. Hence,

E

[
exp

(
Aa

∑
j∈I1

f (j)B
j

1,N − B
√

δΣ1l
N
1

)∣∣∣FN−1

]

= E

[
exp

(
Aa

∑
j∈I1

f (j)�

{
i ∈

{
0,

δ + ε

a2

}
: Si = j

}
− B

√
δΣ1 lN1

)]
,

and (3.24) becomes E(MN |FN−1) ≤ MN−1W(K,a)/μ. But W(K,a) tends to 1 as a ↓ 0 and becomes smaller than
μ for a small enough. That is why for a small enough (MN)N≥0 is a super-martingale. Since the stopping time mt/a2

is bounded from above by t/a2, we can apply a stopping time theorem and say that E(Mm) ≤ E(M1) ≤ 1. Then, to
complete the proof of (3.23), it suffices to show that, for δ, ε, a small enough the quantity Vδ,ε,a , defined in (3.27), is
smaller than 1.

Vδ,ε,a = μE

[
exp

(
Aa

∑
j∈I1

f (j)�

{
i ∈

{
0,

δ + ε

a2

}
: Si = j

}
− B

√
δΣ1 l1

1

)]
. (3.27)
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We recall that the random walk and the local time l1
1 are independent. Therefore,

Vδ,ε,a = μE

[
exp

(
Aa

∑
j∈I1

f (j)�

{
i ∈

{
0,

δ + ε

a2

}
: Si = j

})]
E

[
exp

(−B
√

δΣ1l
1
1

)]
.

By Lemma 2.1, we know that

lim
a→0

Vδ,ε,a = μE
[
exp

(
A

√
δ + εΣ1l

1
1

)]
E

[
exp

(−B
√

δΣ1l
1
1

)]
.

Since Σ1 is fixed, it enters in the constants A and B without changing the fact that B > A. For every x in R we denote
f (x) = E(exp(xl1

1)). The law of l1
1 is known (see [20]), and the derivative of f in 0 satisfies f ′(0) = E(l1

1) > 0.
Therefore, a first-order development of f gives f (A

√
δ + ε) = 1 + f ′(0)A

√
δ + ε + o(

√
δ + ε) and f (−B

√
δ) =

1 − f ′(0)B
√

δ + o(
√

δ). If we take ε ≤ δ2, we obtain

f
(
A

√
δ + ε

)
f

(−B
√

δ
) ≤ 1 + f ′(0)

√
δ
(
A

√
1 + δ − B

) + o
(√

δ
)
. (3.28)

Since B > A, the right-hand side of (3.28) is strictly smaller than 1 for δ small enough. For such a δ, for ε ≤ δ2 and
for μ > 1 but small enough we obtain lima→0 Vδ,ε,a < 1. As a consequence, for a small enough, Vδ,ε,a < 1. This
completes the proof of (3.23), and therefore, the proof of (3.21) for x = 1.

The proof of (3.21) for x = 2, is easier than the former one. Indeed, E(γ
j
i ) < 0 for every j ∈ I2, and therefore, if

we choose β ′′ such that β2 > β ′′ > β4, the first-order development of (3.11) gives, for a small enough,

log E
[
exp

(
2aβ2

(
1 + ρ−1)γ j

i

)] ≤ 2aβ ′′(1 + ρ−1)
E

(
γ

j

1

)
.

By following the scheme of the former proof (for x = 1), we notice that it suffices to replace {u ∈ {ivk−1 + 1, ivk }:
Su = j} by {u ∈ {ivk−1 + 1, ivk−1 + (δ + ε)/a2}: Su = j} in the definition of MN . Moreover, there is no need to
introduce μ > 1 in the definition of MN , which is in this case a positive martingale. The rest of the proof is similar to
the case x = 1.

The proof of F4 � F3 is almost the same, we just exchange the role of β1, β2 and β3, β4 in the definition of H II .
Consequently, the role of A and −B in (3.23) are also exchanged, and, as in the former proof, Lemma 2.1 implies the
result.

3.8. Step 4

We notice that the quantities m,σ1, σ2, . . . , σm, s1, s2, . . . , sm can also be defined for a Brownian motion on the interval
[0, t]. In fact, we denote σ0 = 0, z0 = 0, and recursively zk+1 = inf{s > σkε + δ: Bs = 0} while σk+1 is the unique
integer satisfying zk+1 ∈ ((σk+1 − 1)ε, σk+1ε] and sk+1 = 1 if the excursion ending in zk+1 is in the lower half-plan,
sk+1 = 0 otherwise. Finally, we let mt = inf{k ≥ 1: zk > t} and zm = t . At this stage, we want to transform the random
walk that gives the possible trajectories of the polymer into a Brownian motion. For that (as in [6]), we denote by Q the
measure of (mt/a2 , σ1, σ2, . . . , σm, s1, s2, . . . , sm) associated with the random walk on [0, t/a2] and by Q̃ the measure
of (mt , σ1, σ2, . . . , σm, s1, s2, . . . , sm) associated with the Brownian motion on [0, t].

As proven in [6] (p. 1362) Q and Q̃ are absolutely continuous and their Radon–Nikodým derivative satisfies that
there exists a constant K ′

a,ε,δ > 0 such that for every δ > 0

lim
ε→0

lim sup
a→0

K ′
a,ε,δ = 0 and

(
1 − K ′)m ≤ dQ̃

dQ
≤ (

1 + K ′)m
. (3.29)

We recall that χ is the law of the local times (l1
1 , l2

1 , . . . , lm1 ), which are independent of the random walk and con-

sequently of Q. Moreover, |I k| = (σk − σk−1)ε/a
2. Hence, Eq. (3.20) gives that a · H(4)

t,ε,δ(a,h,β) depends only on

(mt/a2 , σ1, σ2, . . . , σm, s1, s2, . . . , sm) and (l1
1 , l2

1 , . . . , lm1 ). That is why we can write

F 4
t,ε,δ(a,h,β1, β2) = E

[
1

t
logEχ⊗Q

[
exp

(
aH

(4)
t,ε,δ(a,h,β)

)]]
.
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At this stage, we define F5 by replacing the random walk by a Brownian motion, namely by integrating over χ ⊗ Q̃

instead of χ ⊗ Q. We define

H
(5)
t,ε,δ(a,h,β1, β2) = H

(4)
t,ε,δ(a,h,β1, β2) + 1

a
log

(
dQ̃

dQ

)
,

and therefore,

F 5
t,ε,δ(a,h,β1, β2) = E

[
1

t
logEχ⊗Q̃

[
eaH

(4)
t,ε,δ(a,h,β1,β2)

]] = E

[
1

t
logEχ⊗Q

[
eaH

(5)
t,ε,δ(a,h,β1,β2)

]]
.

Now, we aim at proving that F 4 � F 5. To that aim, we calculate H II , i.e.,

H II = H
(4)
t,ε,δ(a,h,β1, β2) − H

(5)

t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
a(1 + ρ),h′, β3, β4

)
= −2

a

(
h − (1 + ρ)h′) m∑

k=1

sk(σk − σk−1)ε

+ (
(β1 − β3)Σ1 + (β2 − β4)Σ2

)√
δ

a

m∑
k=1

lk1 − 1

a(1 + ρ)
log

dQ̃

dQ

≤ −2

a

(
h − (1 + ρ)h′) m∑

k=1

sk(σk − σk−1)ε − 1

a(1 + ρ)
log

dQ̃

dQ
.

We do not give the details of the end of this step because it is done in [6] (pp. 1361–1362). To prove that F5 � F4, we
consider the density dQ/dQ̃ in H II , and (3.29) can also be applied. It completes the Step 4.

3.9. Step 5

From now on, we integrate over χ ⊗ Q̃ in F 5 and consequently the term log(dQ̃/dQ) does not appear in H(5)

any more. In this step, transform the local times (l1
1 , . . . , lk1 , . . .) into the local times of the Brownian motion that

determines Q̃. We recall that Lt is the local time spent at 0 by (Bs)s≥0 between the times 0 and t .
But before, we define (Rs)s≥0 a Brownian motion, independent of B , and we emphasize the fact that, for every

k ∈ {1, . . . ,m},

a
∑
i∈I k

ŵi
D= Rσkε − Rσk−1ε and a2|I k| = (σk − σk−1)ε. (3.30)

Then, we can rewrite the fifth Hamiltonian as

H
(5)
t,ε,δ(a,h,β1, β2) = −2

a

mt∑
k=1

[
sk

(
Rσkε − Rσk−1ε + h(σk − σk−1)ε

) − β1Σ1 + β2Σ2

2

√
δlk1

]
. (3.31)

We define the sixth Hamiltonian as,

H
(6)
t,ε,δ(a,h,β1, β2) = −2

a

mt∑
k=1

[
sk

(
Rσkε − Rσk−1ε + h(σk − σk−1)ε

)] + β1Σ1 + β2Σ2

a
Lt .

At this stage, we notice that F 5 and F 6 do not depend on a anymore. Hence, to simplify the following steps, we
transform a bit the general scheme of the proof. In fact, from now on, we will denote, for i = 5, 6 or 7,

F i
t,ε,δ(h,β1, β2) = Ẽ

[
1

t
logEQ̃

[
exp

(
H

i

t,ε,δ(h,β1, β2)
)]]

(3.32)
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with H
i

t,ε,δ(h,β1, β2) = aHi
t,ε,δ(h,β1, β2). Therefore, to prove that F i � Fj we use

H II = H
i

t,ε,δ(h,β1, β2) − 1

1 + ρ
H

j

t(1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
h′, β3, β4

)
, (3.33)

and we show that lim supt→∞ 1/t log ẼE(exp((1 + ρ−1)H II)) ≤ 0.
We want to prove that F 5 � F 6 but, by the scaling property of Brownian motion, it is not difficult to show that for

i = 5 or 6

H
i

t(1+ρ)2,ε(1+ρ)2,δ(1+ρ)2(h,β1, β2) = (1 + ρ)H
i

t,ε,δ

(
(1 + ρ)h,β1, β2

)
. (3.34)

Therefore, by (3.33), we can write H II = H
5
t,ε,δ(h,β1, β2) − H

6
t,ε,δ((1 + ρ)h′, β3, β4). Thus, since (1 + ρ)h′ < h and

−∑m
k=1 sk(σk − σk−1)ε < 0, we obtain

H II ≤ β1Σ1
√

δ

m∑
k=1

lk1 − β3Σ1

m∑
k=1

Lzv
k
− Lzv

k−1
+ β3Σ1(Lt+δ − Lt)

+ β2Σ2
√

δ

m∑
k=1

lk1 − β4Σ2

m∑
k=1

Lzk
− Lzk−1

with zv
j = zj for every j < m and zv

m = inf{t > σm−1ε + δ: Bt = 0}. Finally, by the Hölder inequality, it suffices to
prove, for B > A, that

lim sup
t→∞

1

t
logE

[
exp

(
A

m∑
k=1

√
δlk1 − B

m∑
k=1

Lzv
k
− Lzv

k−1

)]
≤ 0, (3.35)

lim sup
t→∞

1

t
logE

[
exp

(
A

m∑
k=1

Lzv
k
− Lzv

k−1
− B

m∑
k=1

√
δlk1

)]
≤ 0 (3.36)

and

lim sup
t→∞

1

t
logE

[
exp

(
B(Lt+δ − Lt)

)] = 0. (3.37)

We denote by Ct the first time of return to the origin after time t . Proving (3.37) is immediate because Ct is a stopping
time with respect to the natural filtration of B , we can therefore apply the strong Markov property to obtain, for every
u ∈ [t, t + δ], the equality E(exp(B(Lt+δ − Lu))|Ct = u) = E[exp(BLt+δ−u)]. Thus, we can write

E
[
exp

(
B(Lt+δ − Lt)

)] =
∫ t+δ

t

E
[
exp(BLt+δ−u)

]
dCt(u) ≤ E

[
exp(BLδ)

]
. (3.38)

This implies (3.37), and it remains to prove (3.35) and (3.36). We define a new filtration, FN = σ(σ ((Bs)s≤zv
N
) ∪

σ(l1
1 , . . . , lN1 )). We notice that (zv

N)N≥0 is a sequence of increasing stopping times, and consequently, FN is an in-
creasing filtration. We denote by MN the quantity

MN = exp(A
∑N

k=1

√
δlk1 − B

∑N
k=1 Lzv

k
− Lzv

k−1
)

E[exp(−BLδ + A
√

δl1
1)]N , (3.39)

which is a super-martingale with respect to FN . Effectively, L and (lk1)k≥1 are independent, (Ls − Lzv
N
)s≥zv

N
is in-

dependent of FN (because Bzv
N

= 0) and Lzv
N+1

− Lzv
N

≥ Lzv
N+δ − Lzv

N
. Thus, since E(exp(−B(Lzv

N+δ − Lzv
N
))) =

E(exp(−B(Lδ))), we obtain E(MN+1|FN) ≤ MN . Moreover, mt is a stopping time with respect to FN and is bounded
from above by t/δ. Therefore, to prove (3.35), it suffices to show (as in Step 3) that for B > A and δ small enough,
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V = E[exp(A
√

δl1
1 − BLδ)] ≤ 1. Moreover, Lδ and

√
δl1

1 have the same law and are independent. That is why we
can write V = E[exp(A

√
δl1

1)]E[exp(−B
√

δl1
1)], which is strictly smaller than 1 for δ small enough (as proven in

Step 3).
We prove (3.36) in a very similar way. Effectively, since Lzv

N+1
− Lzv

N
≤ Lzv

N+δ+ε − Lzv
N

, we prove that the in-

equality (3.35) is still satisfied when A and −B are exchanged. Therefore, the proof of F 5 � F 6 is completed. To end
this step, we notice that (3.36) and (3.35) imply directly that F 6 � F 5. Thus, the proof of Step 5 is completed.

3.10. Step 6

Let μ1 = β1Σ1 + β2Σ2 and μ3 = β3Σ1 + β4Σ2. This step is the last one, therefore, the following Hamiltonian is the
one of the continuous model, i.e.,

H
(7)

t,ε,δ(h,β1, β2) = −2
∫ t

0
1{Bs<0}(dRs + hds) + μ1Lt .

For simplicity, we define (φs)s∈[0,t] by φs = sk for every s ∈ (σk−1ε,σkε]. In that way,
∑m

k=1 sk(Rσkε
− Rσ(k−1)ε

+
h(σk − σk−1)ε) = ∫ t

0 φs(dRs + hds). Moreover, the scaling property of Brownian motion gives, for i = 6 or 7,

H
(i)

t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2(h,β1, β2)
D= (1 + ρ)H

(i)

t,ε,δ

(
(1 + ρ)h,β1, β2

)
.

Hence, to show that F 6 � F 7, we consider (as in Step 5) the difference

H II = H
(6)

t,ε,δ(h,β1, β2) − 1

1 + ρ
H

(7)

t (1+ρ)2,ε(1+ρ)2,δ(1+ρ)2

(
h′, β3, β4

)
,

which is equal to H
(6)

t,ε,δ(h,β1, β2) − H
(7)

t,ε,δ((1 + ρ)h′, β3, β4). Thus, we can bound H II from above as follows

H II = −2
∫ t

0
(φs − 1{Bs<0})dRs − 2

∫ t

0

(
hφs − (1 + ρ)h′1{Bs<0}

)
ds + (μ1 − μ3)Lt ,

H II ≤ −2
∫ t

0
(φs − 1{Bs<0})dRs − 2h

∫ t

0
(φs − 1{Bs<0})ds + (μ1 − μ3)Lt .

We want to prove that lim supt→∞ 1
t

log ẼE(exp((1 + ρ−1)H II)) ≤ 0 and after the integration over Ẽ, it remains to
prove that for A > 0 and B > 0 and for δ, ε small

lim sup
t→∞

1

t
logE

[
exp

(
A

∫ t

0
|φs − 1{Bs<0}|ds − BLt

)]
≤ 0. (3.40)

As in Step 3 (see Fig. 4), we notice that between zk−1 and zk , if we find an excursion of length larger than δ+ε, it is
necessarily the one which ends at zk and gives the value of sk . It means that, apart eventually from the very beginning
of such an excursion (between zk−1 and σk−1ε), sk and φs have the same value along the excursion. Finally, we obtain∫ t

0
|1{Bs<0} − φs |ds ≤ P0,t,δ,ε + mε, (3.41)

where Pu,v,δ,ε is the sum between u and v of the excursion lengths which are smaller than δ + ε. The term mε allows
us to take into account the formerly mentioned situation between zk−1 and σk−1ε.

Thus, with (3.41) and the Hölder inequality, we can show that the inequality (3.40) occurs if, for δ, ε small, we
have

lim sup
t→∞

1

t
logE

[
exp(Aεm − BLt)

] ≤ 0 and lim sup
t→∞

1

t
logE

[
exp(AP0,t,δ,ε − BLt)

] ≤ 0. (3.42)
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We begin with the proof of the first inequality of (3.42). To that aim, we recall that, for every k < m, we have
zk > zk−1 + δ. Therefore, we can write

Aεm − BLt ≤ Aεm − B

m∑
k=1

Lzk−1+δ − Lzk−1 + B(Lt+δ − Lt).

From Eq. (3.37) and the Hölder inequality we deduce that the term B(Lt+δ − Lt) does not change the result. For
this reason we just have to consider the quantity 1/t logE[exp(

∑m
k=1 Aε − B(Lzk−1+δ − Lzk−1))] when t ↑ ∞. As in

(3.39), we define the martingale

MN = 1

(Vε,δ)N
exp

(
N∑

k=1

Aε − B(Lzk−1+δ − Lzk−1)

)
with Vε,δ = E

[
exp(Aε − BLδ)

]
. (3.43)

Since m is a stopping time bounded from above by t/δ, it is sufficient to show that Vε,δ < 1 for δ, ε small enough. It is
the case because E[exp(−BLδ)] < 1 for every B > 0. Therefore, we take ε small enough and it completes the proof.

It remains to prove the second part of (3.42). Notice that P0,t,δ,ε = ∑m
k=1 Pzk−1,zk,δ,ε and that for every k ≤ m

Pzk−1,zk,δ,ε ≤ 2(δ + ε) (still because there can not be more than one excursion larger than δ + ε between zk−1 and zk).
Therefore, we obtain the following upper bound

AP0,t,δ,ε − BLt ≤ 2A(δ + ε)m − B

m∑
k=1

Lzk−1+δ − Lzk−1 + B(Lt+δ − Lt).

As in (3.37) the term B(Lt+δ − Lt) is removed, and it remains to consider 1/t logE[∑m
k=1 A(ε + δ) − B(Lzk−1+δ −

Lzk−1)] when t ↑ ∞. To that aim, we build again the martingale

MN = 1

(Dε,δ)N
exp

(
N∑

k=1

A(ε + δ) − B(Lzk−1+δ − Lzk−1)

)
(3.44)

with Dε,δ = E[exp(A(δ + ε) − BLδ)]. The term m is a bounded stopping time, therefore, it suffices to show, for δ, ε

small enough, that Dε,δ < 1. To that aim, we choose ε ≤ δ, and it remains to consider the quantity E[exp(2Aδ−BLδ)].
Moreover, Lδ =D

√
δL1, and if we denote f (x) = E[exp(xL1)], we can use a first order development of f in 0. It

gives f (−B
√

δ) = 1 − f ′(0)B
√

δ + ξ1(δ)
√

δ with f ′(0) > 0 and limx→0 ξ1(x) = 0. We also know that, exp(2Aδ) =
1 + 2Aδ + ξ2(δ)δ with limx→0 ξ2(x) = 0. Hence, for ε ≤ δ and δ small enough, we obtain E(exp(2Aδ − BLδ)) =
exp(2Aδ)f (−B

√
δ) < 1. The proof of F6 � F5 is exactly the same and the Step 6 is completed.

Appendix

A.1. Proof of Proposition 1.5

The computation of Φ̃ is based on the fact that Φ̃(β,h) is equal to the quantity h+ limt→∞ 1/t logE(exp(−2hΓ −(t)+
βL0

t )), where Γ −(t) = ∫ t

0 1{Bs<0} ds. When β ≤ 0 we can conclude immediately that Φ̃(β,h) = h. Therefore, in what
follows we consider β > 0. Moreover, the joint law of (Γ −(t),Lt ) is available in [16] and takes the value

dP(Γ −(t),L0
t )

(τ, b) = 1{0<τ<t}1{b>0}
bt exp(−tb2/(8τ(t − τ)))

4πτ 3/2(t − τ)3/2
db dτ. (A.1)

From now on, we will denote Rt = E(exp(−2hΓ −(t) + βL0
t )), and with (A.1) and the new variables s = τ/t and

v = b/
√

t , we obtain

Rt =
∫ ∞

0

v exp(βv
√

t)

4π

∫ 1

0
exp(−2hst)

exp(−v2/(8s(1 − s)))

s3/2(1 − s)3/2
ds dv. (A.2)
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In this computation we delete the constant terms because they do not change the limit. We can write
∫ 1

0 of (A.2) as

the sum of A1(t) = ∫ 1/2
0 and A2(t) = ∫ 1

1/2. Then, we introduce the new variable u = s(1 − s) in A1(t) and A2(t), and
we obtain

A1(t) =
∫ 1/4

0

exp(h(
√

1 − 4u − 1)t − v2/(8u))

u3/2
√

1 − 4u
du and

A2(t) =
∫ 1/4

0

exp(−h(
√

1 − 4u + 1)t − v2/(8u))

u3/2
√

1 − 4u
du. (A.3)

It gives immediately the inequalities A1(t) ≤ A1(t) + A2(t) ≤ 2A1(t). Therefore, instead of studying the conver-
gence of 1/t logR(t), it suffices to consider 1/t logS(t) with S(t) = ∫ ∞

0 v exp(βv
√

t)A1(t)dv. We apply the Fubini
Tonnelli theorem which gives

S(t) =
∫ 1/4

0

exp(ht
√

1 − 4u)

u3/2
√

1 − 4u

∫ ∞

0
v exp

(
βv

√
t − v2

8u

)
dv du exp(−ht). (A.4)

Thus, for every u ∈ [0,1/4], we change the variables of the second integral of (A.4). To that aim, we denote r = v2/u.
After that, we transform the variable u into x = 4u, and we obtain

S(t) = 1

4

∫ 1

0

exp(ht
√

1 − x)√
1 − x

∫ ∞
0 exp(β

√
rxt/2 − r/8)dr√

x
dx exp(−ht). (A.5)

The constant factor 1/4 can be deleted and thus, by considering (A.5), for every ε > 0, we can write the following
lower bound,

lim inf
t→∞

1

t
logS(t) + h ≥ lim inf

t→∞
1

t

[
log

∫ ε

0

exp(ht
√

1 − u)√
1 − u

√
u

du + log
∫ ∞

0
e−r/8 dr

]
≥ h

√
1 − ε.

Thus, we let ε tend to 0 and we obtain

lim inf
t→∞

1

t
logS(t) + h ≥ h. (A.6)

But we can also bound lim inft→∞ 1
t

logS(t) + h as follows. The Laplace method allows us to find the asymp-
totic behavior of Y(x) = ∫ ∞

0 exp(β
√

rxt/2 − r/8)dr when x tends to ∞. Since β > 0, it gives Y(x) ∼x→∞
c
√

xt exp(β2xt/2) with c > 0 that depends on β and we obtain

lim inf
t→∞

1

t
logS(t) + h ≥ lim inf

t→∞
1

t
log

∫ 1

ε

exp(ht
√

1 − x + tβ2x/2)√
1 − x

dx. (A.7)

With the formerly mentioned Laplace method, we can find the asymptotic behavior of the integral of the r.h.s. of (A.7).

As t tends to ∞, it behaves as d exp(t ( h2

2β2 + β2

2 ))/
√

t with d > 0. Therefore, we obtain

lim inf
t→∞

1

t
logS(t) + h ≥ h2

2β2
+ β2

2
. (A.8)

Finally, (A.6) and (A.8) give

lim inf
t→∞

1

t
logS(t) + h ≥ max

{
h2

2β2
+ β2

2
, h

}
. (A.9)
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Now, we want to show that the r.h.s. of (A.9) is also an upper bound of the quantity lim supt→∞ 1/t logS(t) + h.
To that aim, we use the fact that lim supt→∞ 1/t logS(t) + h is equal to the maximum of lim supt→∞ 1/t log

∫ ε

0 and

lim supt→∞ 1/t log
∫ 1
ε

. The same kind of estimate allows us to perform the computation. Hence, we have

lim
t→∞

1

t
logS(t) + h = max

(
h2

2β2
+ β2

2
, h

)
.

Finally, Φ̃(β,h) = h + limt→∞ 1/t logS(t), and therefore,

Φ̃(h,β) = h if h > β2 and Φ̃(h,β) = h2

2β2
+ β2

2
if h ≤ β2.
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