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Abstract. Let P be a Markov kernel on a measurable space E with countably generated σ -algebra, let w :E → [1,+∞[ such that
Pw ≤ Cw with C ≥ 0, and let Bw be the space of measurable functions on E satisfying ‖f ‖w = sup{w(x)−1|f (x)|, x ∈ E} <

+∞. We prove that P is quasi-compact on (Bw,‖ · ‖w) if and only if, for all f ∈ Bw , ( 1
n

∑n
k=1 Pkf )n contains a subsequence

converging in Bw to Πf = ∑d
i=1 μi(f )vi , where the vi ’s are non-negative bounded measurable functions on E and the μi ’s

are probability distributions on E. In particular, when the space of P -invariant functions in Bw is finite-dimensional, uniform
ergodicity is equivalent to mean ergodicity.

Résumé. Soit P un noyau markovien sur un espace mesurable E muni d’une tribu à base dénombrable, soit w :E → [1,+∞[ tel
que Pw ≤ Cw, avec C ≥ 0, et soit Bw l’espace des fonctions f mesurables de E dans C telles que ‖f ‖w = sup{w(x)−1|f (x)|, x ∈
E} < +∞. Nous démontrons que P est quasi-compact sur (Bw,‖ · ‖w) si et seulement si, pour tout f ∈ Bw , ( 1

n

∑n
k=1 Pkf )n

contient une sous-suite convergeant dans Bw vers Πf = ∑d
i=1 μi(f )vi , où vi est une fonction mesurable positive bornée sur E et

μi une probabilité sur E. En particulier, quand le sous-espace de Bw constitué des fonctions P -invariantes est de dimension finie,
la convergence uniforme des moyennes est équivalente à la convergence ponctuelle.

MSC: 37A30; 60J10

Keywords: Markov kernel; Quasi-compactness; Mean ergodicity; Geometrical ergodicity

1. Introduction

Let (E, E ) be a measurable space with countably generated σ -algebra, let (B̃,‖ · ‖) denote the space of complex-
valued bounded measurable functions on E, equipped with the supremum norm, and let P be a Markov kernel on
(E, E ). Under some irreducibility conditions, P is quasi-compact on B̃ if and only if P is mean ergodic with one-
dimensional limit projection defined by the unique P -invariant distribution. This result was proved in [1] under the
Harris condition (see also [11]), and in [8] under the ergodicity condition.1 See also [6].

Now let w :E → [1,+∞[, and let (Bw,‖ · ‖w) denote the Banach space of complex-valued measurable functions
on E satisfying ‖f ‖w := sup{w(x)−1|f (x)|, x ∈ E} < +∞. Assuming Pw ≤ Cw, with C ∈ R

∗+, P acts continuously
on Bw . This work extends to Bw the equivalence between mean ergodicity with finite rank limit projection and quasi-
compactness.

1The equivalence between mean ergodicity and quasi-compactness is not mentioned in [1], but it is an easy consequence of Theorem II.2 in [1]. In
[8] E is not supposed to be countably generated.
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Theorem 1. P is quasi-compact on Bw if and only if there exist d ∈ N∗, linearly independent non-negative functions
v1, . . . , vd in B̃, and P -invariant distributions μ1, . . . ,μd on E satisfying μi(w) < +∞ such that, for all f ∈ Bw , the
sequence ( 1

n

∑n
k=1 P kf )n contains a subsequence converging in Bw to

∑d
i=1 μi(f )vi .

Observe that the naive idea which consists in applying the similarity transformation P̃ :f 	→ w−1P(wf ) in order
to deduce the theorem from [1,8] does not work because P̃ is not Markovian when ‖Pw‖w > 1 (i.e. when w is not
sub-invariant). The proof of Theorem 1 is actually based on a recent work of Hennion [3], which gives criteria for
quasi-compactness of kernels acting on Bw , on spectral theory [2], and on positive operator theory [12,13]. As in
[3], the above theorem does not require any irreducibility or aperiodicity conditions; in this sense, when applied with
w = 1E , it improves [1,8]. This theorem shows too that a quasi-compact Markov kernel on Bw is necessarily power-
bounded. This fact was already proved in [4] (Section IV.3), together with the equivalence between quasi-compactness
and uniform ergodicity, which also follows from [9].

The above theorem does not hold when Bw is replaced with continuous function spaces. For instance, if E is a
compact metric space and P is uniquely ergodic on the space C(E) of all complex-valued continuous functions on E,
then P is mean ergodic [7], but in general P is not quasi-compact on C(E) (consider irrational rotations of the circle).2

We shall present in Section 3 (Corollary 1) a direct application to w-geometrically ergodic Markov chains [10]
whose transition probability is, by definition, quasi-compact on Bw , with λ = 1 as a simple eigenvalue and the unique
peripheral eigenvalue. Many examples of such Markov chains, with unbounded functions w, are presented in [10].

A simple example is provided by the linear model Xn = αXn−1 + εn, with α ∈] − 1,1[, where (εn)n≥1 is an i.i.d.
sequence of real-valued random variables, independent of X0, such that m = E[|ε1|] < +∞. In this case the state
space is E = R with its Lebesgue sets, and P(x,A) = E[1A(αx + ε1)], which yields Pf (x) = E[f (αx + ε1)]. Let
w(y) = 1 +|y| (y ∈ R). Then, for any x ∈ R, we have Pw(x) = E[w(αx + ε1)] ≤ 1 +|α||x|+m, so Pw ≤ |α|w +L,
with L = 1 − |α| + m. From this inequality, called drift condition, one can deduce that, if ε1 has an everywhere
positive density, then (Xn)n is w-geometrically ergodic [10] (Section 15.5.2). Observe that w is not sub-invariant.
Indeed, Pw(0) = 1 +m > w(0), so ‖Pw‖w > 1. Obviously, this conclusion extends to any function w(y) = a +b|y|,
with constants a, b > 0. Actually, in most of the examples of w-geometrically ergodic Markov chains, w is not sub-
invariant when it is unbounded.

Finally we shall see in Corollary 2 that, in the special case of denumerable Markov chains, the above theorem en-
ables us to obtain an elementary proof of the above mentioned well-known fact that geometric ergodicity is equivalent
to some drift condition.

2. Proof of Theorem 1

Proof of ⇒. Suppose P is quasi-compact on Bw . It is proved in [4] (Section IV.3) that ( 1
n

∑n
k=1 P k)n converges in

the operator norm topology to a finite dimensional projection Π of the form: Πf = ∑d
i=1 φi(f )fi , where the fi ’s are

linearly independent functions in B̃ and the φi ’s are bounded complex measures on E such that |φi |(w) < +∞, with
|φi | the total variation of φi . It remains to prove that one can choose fi and φi such that fi ≥ 0 and φi is a probability
measure on E. Notice that Π(Bw) ⊂ B̃, Π ≥ 0 and Π1E = 1E .

Let BR be the subspace of Bw composed of real-valued functions. Then Π(BR) is a Banach lattice which is
isomorphic to R

d with the preservation of the order relation [13]. Consequently there exist non-negative functions
g1, . . . , gd in Π(Bw) and positive linear form e∗

1, . . . , e∗
d on Π(Bw) such that g = ∑d

i=1 e∗
i (g)gi for all g ∈ Π(Bw).

Let ψj = e∗
j ◦ Π . The ψj ’s are positive continuous linear forms on Bw , and ψj = ∑d

i=1 e∗
j (fi)φi . Thus the ψj ’s

are positive bounded measures on E such that ψj(w) < +∞. Set μj = 1
ψj (E)

ψj and vj = ψj (E)gj . Then Πf =
∑d

i=1 ψi(f )gi = ∑d
i=1 μi(f )vi , and the μi ’s are P -invariant (use ΠP = Π ). �

2Also consider E = [0,1] and Pf (x) = 1
2 [f ( x

2 ) + f ( x+1
2 )]. P is quasi-compact on the space of Lipschitz functions on [0,1], so P is mean

ergodic on the space of continuous functions on [0,1], but is not quasi-compact on this space: indeed, for |z| < 1, fz = ∑
n≥1 zn−1 cos(2nπ·) is a

continuous function satisfying Pfz = zfz .
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Proof of ⇐. We shall denote by (ME) the mean ergodicity (subsequential) condition of Theorem 1. We set Πf =∑d
i=1 μi(f )vi . If T is a continuous linear operator on Bw , we denote by ‖T ‖w its operator norm, and by r(T ) its

spectral radius. We denote by I the identity operator on Bw . Given a ∈ C and ρ > 0, we set D(a,ρ) = {z: z ∈ C,
|z − a| ≤ ρ}.

Since P 1E = 1E , we have r(P ) ≥ 1. Besides, there exists nk ↗ +∞ such that supk ‖n−1
k

∑nk

j=1 P jw‖w < +∞,

thus supk n−1
k ‖P nkw‖w < +∞. Since ‖P n‖w = ‖P nw‖w , one gets r(P ) = limn ‖P n‖1/n

w = 1. In particular this yields∑
n≥0 2−(n+1)‖P n‖w < +∞, so we can define the following bounded operator on Bw , which is obviously Markovian:

Q =
∑

n≥0

2−(n+1)P n = (2I − P)−1.

Proposition 1. Q is quasi-compact on Bw .

Proof. Let ν = 1
d

∑d
i=1 μi . Since the σ -algebra E is countably generated, there exist a non-negative measurable

function α on (E × E, E ⊗ E ) and a positive kernel S on E such that we have Q(x,dy) = α(x, y)dν(y) + S(x,dy),
with S(x, ·) ⊥ ν, for each x ∈ E [11]. For p ∈ N∗, set αp = min{α,p}, and

Tp(x,dy) = αp(x, y)dν(y), Sp(x,dy) = Q(x,dy) − Tp(x,dy).

If f ∈ Bw , then |Tpf | ≤ ‖f ‖wTpw ≤ pν(w)‖f ‖w , so Tp(Bw) ⊂ B̃. Besides Tp acts continuously on Bw , and so is

Sp . In order to apply [3], observe that, for each p ∈ N
∗, the functions α

(w)
p (x, ·) = w(x)−1αp(x, ·)w(·), x ∈ E, are

uniformly ν-integrable (use α
(w)
p (x, y) ≤ pw(y), ν(w) < +∞ and Lebesgue’s theorem).

Finally, since Q = φ(P ) with φ(z) = ∑
n≥0 2−(n+1)zn and φ is analytic on D(0, 3

2 ), the spectral mapping theorem
[2] yields r(Q) = φ(r(P )) = φ(1) = 1. Proposition 1 then follows from [3] and [4] (Section IV) via the following
lemma. �

Lemma 1. There exists p ≥ 1 such that r(Sp) < 1.

Proof. Suppose that r(Sp) = 1 for all p ≥ 1. Since Sp ≥ 0, there exists a positive continuous linear form, ηp , on Bw

such that ηp = ηp ◦ Sp and ηp(w) = 1, see [12], p. 267. Let P̃ , Q̃, T̃p , S̃p , η̃p be the restriction to B̃ of P , Q, Tp , Sp ,
ηp . Since ηp = ηp ◦ Sp ≤ ηp ◦ Q and (ηp ◦ Q − ηp)(1E) = 0, we have η̃p = η̃p ◦ Q̃, thus η̃p ◦ P̃ = η̃p . Moreover we
have:

(a) η̃p �= 0. Indeed, if η̃p = 0, then, from ηp ◦ Q = ηp ◦ Tp + ηp ◦ Sp and Tp(Bw) ⊂ B̃, one would get ηp ◦ Q =
ηp ◦ Sp = ηp , thus ηp ◦ P = ηp . Then, by (ME), ηp = ∑d

i=1 ηp(vi)μi would be a positive measure on E such that
ηp(B̃) = {0}, so ηp = 0, which is impossible.

(b) ∀f ∈ B̃, ηp(f ) = ∑d
i=1 ηp(vi)μi(f ). This follows from η̃p ◦ P̃ = η̃p and (ME).

Now, from (a) and (b), there exist j ∈ {1, . . . , d} and pk ↗ +∞ such that we have ηpk
(vj ) �= 0. Besides

ηpk
(vj )μj (Tpk

1E) ≤ ηpk
(Tpk

1E) = ηpk
(Q1E − Spk

1E) = 0, thus μj (Tpk
1E) = 0. When k → +∞, this gives∫∫

α(x, y)dν(y)dμj (x) = 0, hence
∫

α(x0, y)dν(y) = 0 for a x0 ∈ E. So Q(x0, ·) = S(x0, ·) ⊥ ν: there exists A ∈ E
such that Q(x0,A) = 0 and ν(A) = 1.

But: Q(x0,A) = 0 ⇒ ∀n ≥ 1,P n1A(x0) = 0 ⇒ ∑d
i=1 μi(A)vi(x0) = 0 (by condition (ME)). While: ν(A) =

1
d

∑d
i=1 μi(A) = 1 ⇒ μi(A) = 1, i = 1, . . . , d .

Thus
∑d

i=1 vi(x0) = 0: this is impossible because (ME) gives 1E = ∑d
i=1 vi . �

We shall denote by σ(Q) and σ(P ) the spectrum of Q and P when acting on Bw .

Lemma 2. We have σ(Q) \ {1} ⊂ D( 2
3 , 1

3 ) ∩ D(0,1 − ε) for a certain ε ∈]0,1[.
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Proof. We have Q = φ(P ) with φ(z) = 1
2−z

, thus σ(Q) = φ(σ(P )) [2]. Since r(P ) = 1, we get σ(Q) ⊂
φ(D(0,1)) = D( 2

3 , 1
3 ). So λ = 1 is the unique peripheral spectral value of Q, and Lemma 2 then follows from Propo-

sition 1. �

Lemma 3. λ = 1 is a first order pole for P , with a corresponding finite-rank residue.

Proof. Set ψ(z) = 2− 1
z
, z ∈ C

∗. Lemma 2 yields 0 /∈ σ(Q), so Q is invertible on Bw , ψ is analytic on a neighborhood

of σ(Q), and P = 2I − Q−1 = ψ(Q). Thus σ(P ) = ψ(σ(Q)), and σ(P ) \ {1} = ψ(σ(Q) \ {1}) ⊂ ψ(D( 2
3 , 1

3 )) ∩
ψ(D(0,1 − ε)) = D(0,1) ∩ D(2, 1

1−ε
)c . Thus λ = 1 is an isolated point in σ(P ). Let AP and AQ be the residue

of the resolvent functions of P and Q at λ = 1. Let χ be an analytic function on a neighborhood of σ(P ) such
that χ(V0) = {0} and χ(V1) = {1}, where V0 and V1 are disjoint neighborhoods of the sets σ(P ) \ {1} and {1},
respectively. We know that AP = χ(P ) [2], thus AP = χ(ψ(Q)). Besides W0 = ψ−1(V0) and W1 = ψ−1(V1) are
disjoint neighborhoods of respectively σ(Q) \ {1} and {1}, and χ ◦ ψ is an analytic function on W0 ∪ W1 such that
χ ◦ ψ(W0) = {0}, χ ◦ ψ(W1) = {1}. Thus AQ = χ ◦ ψ(Q), so AP = AQ. Since the Markov kernel Q is quasi-
compact on Bw (Proposition 1) and Q is power-bounded [4] (Theorem IV.3(i)), λ = 1 is a first order pole for Q,
and AQ(Bw) = Ker(Q − I ) is finite-dimensional by [2] (Theorem VIII.8.3 and Corollary VIII.8.4). By the definition
of Q as a series, Pf = f implies Qf = f (f ∈ Bw), and the converse holds by using P = 2I − Q−1. Finally
AP (Bw) = AQ(Bw) = Ker(Q − I ) = Ker(P − I ) is finite-dimensional, so λ = 1 is a first order pole for P (use the
arguments of [2], Theorem VII.4.5). �

Lemma 4. {λ ∈ σ(P ), |λ| = 1} is composed of a finite number of first order poles.

Proof. From Lemma 3 and a classical result concerning the peripheral spectrum of positive operators on Banach
lattice [13] (Theorem 5.5, p. 331), the set of peripheral spectral values of P is composed of a finite number of poles
for P . Using the Laurent expansions, Lemma 3 implies that they are first order poles. �

Lemma 5. For any peripheral pole λ of P , we have dim Ker(P − λI) ≤ dim Ker(P − I ) < +∞.

Proof. We have dim Ker(P − I ) < +∞ by (ME). Let λ1 = 1, λ2, . . . , λm be the peripheral poles of P . The previous
results show that Bw = Ker(P − I )⊕F ⊕H , where F = ⊕m

i=2 Ker(P −λiI ), and H is a P -invariant closed subspace
of Bw such that r(P|H ) < 1, with P|H the restriction of P to H . Thus ( 1

n

∑n
k=1 P k)n converges in the operator norm

topology to the projection onto Ker(P − I ). Then Lemma 5 follows from [9] (Theorem 2). �

The quasi-compactness of P on Bw follows from Lemmas 4 and 5. �

3. Applications to geometrically ergodic Markov chains

Let (Xn)n≥0 be a Markov chain with state space E and transition probability P . Recall that (Xn)n≥0 is said to be
w-geometrically ergodic if there exist an invariant distribution ν on E such that ν(w) < +∞, and some constants
r < 1 and D ∈ R+ such that for every f ∈ Bw we have

∥∥P nf − ν(f )1E

∥∥
w

≤ Drn‖f ‖w.

Corollary 1. Assume that (Xn)n≥0 is an aperiodic positive Harris Markov chain with stationary distribution ν. Then
(Xn)n≥0 is w-geometrically ergodic if and only if one of the two next conditions holds:

(a) ∀f ∈ Bw , P nf → ν(f )1E in Bw when n → +∞.
(b) For all f ∈ Bw , ( 1

n

∑n
k=1 P kf )n contains a subsequence converging in Bw to ν(f )1E .

Corollary 1 is an easy consequence of Theorem 1. (When (b) is assumed, the aperiodicity condition ensures that
λ = 1 is the unique peripheral eigenvalue of P .)
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The reader will find in [10] many examples of geometrically ergodic Markov chains. Geometric ergodicity with a
bounded function w corresponds to an aperiodic Markov chain satisfying Doeblin’s condition.

When w is unbounded and (Xn)n≥0 is aperiodic and ψ -irreducible w.r.t. to some σ -finite positive measure ψ on E,
w-geometric ergodicity is equivalent to the following drift condition [10] (Chapter 16): there exist ρ < 1, L > 0, and
a petite set A in E such that Pw0 ≤ ρw0 + L1A, where w0 is a function on E such that d−1w ≤ w0 ≤ dw for some
constant d > 0. Corollary 1 sheds new light on this fact, at least for countable Markov chains, and as an illustration,
let us present a simple proof of the well-known next statement proved in [5].

Corollary 2. Let (Xn)n≥0 be an aperiodic and irreducible Markov chain with state space E = N, and suppose
limk w(k) = +∞. Then (Xn)n≥0 is w-geometrically ergodic if and only if there exist ρ < 1 and C > 0 such that
P nw ≤ Cρnw + C for all n ≥ 1.

By using the basic arguments of [10] (Section 16.1.1), one can easily see that the condition in Corollary 2 is
equivalent to: ∃ρ < 1,∃L > 0,Pw0 ≤ ρw0 + L, with w0 equivalent to w.

Proof of Corollary 2. If (Xn)n≥0 is w-geometrically ergodic, then P nw ≤ Drnw + ν(w). Conversely, suppose
P nw ≤ Cρnw + C with ρ < 1, C > 0, independent of n. Then we have supn≥1 ‖P n‖w ≤ 2C, and there exists an in-
variant distribution ν such that ν(w) < +∞.3 Set Πn = 1

n

∑n
k=1 P k , and let 1(ν) be the space of C-valued sequences

(x(n))n∈N such that
∑

n ν(n)|x(n)| < +∞. P is a contraction of 1(ν), so for any f ∈ 1(ν), (Πnf )n converges
in 1(ν), use e.g. [2] (Section VIII.5). The limit α = limn Πnf is P -invariant, and by irreducibility, it is constant:
∀i ∈ N, α(i) = ν(f ). Thus limn Πnf (i) = ν(f ) for all i ∈ N.

Now let f ∈ Bw , and for convenience assume ‖f ‖w = 1 (i.e. |f | ≤ w). We have

∀i ∈ N,
∣∣P kf (i) − ν(f )

∣∣ ≤ P kw(i) + ν
(|f |) ≤ Cρkw(i) + C + ν(w).

Let ε > 0. Then there exist i0 ≥ 1, N0 ≥ 1 such that w(i)−1|P kf (i) − ν(f )| ≤ ε for all i > i0 and k > N0. By using
the fact that supk≥1 ‖P kw‖w < +∞ and

Πnf (i) − ν(f ) = 1

n

N0∑

k=0

(
P kf (i) − ν(f )

) + 1

n

n∑

k=N0+1

(
P kf (i) − ν(f )

)
,

we easily deduce that there exists N1 ≥ N0 such that w(i)−1|Πnf (i) − ν(f )| ≤ 2ε for all i > i0 and n > N1. Finally
let N2 ≥ N1 be such that w(i)−1|Πnf (i) − ν(f )| ≤ 2ε for all i = 0, . . . , i0 and n > N2. Then ‖Πnf − ν(f )‖w ≤ 2ε

for all n > N2, and Corollary 1 then applies. �
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