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Abstract. We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are
allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the
Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the
long range jumps.

Résumé. Nous retrouvons l’équation de Navier–Stokes comme limite incompressible d’un gas sur réseau où les particules peuvent
sauter sur des distances mésoscopiques. Le résultat est valable en toute dimension supposant l’existence d’une solution lisse de
l’équation de Navier–Stokes en un intervale de temps donné. La démonstration ne dépend pas des méthodes non-gradients ou
l’analyse multi-échelle grâce aux sauts de longue portée.
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1. Introduction

A major open problem in nonequilibrium statistical mechanics is the derivation of the hydrodynamical equations
from microscopic Hamiltonian dynamics. The main difficulty in this project lies in the poor knowledge of the ergodic
properties of such systems. To overcome this obstacle, deterministic Hamiltonian dynamics have been successfully
replaced by interacting particle systems (cf. [3] and references therein).

Following this approach, in the sequel of the development of the nongradient method by Quastel [5] and Varadhan
[6], Esposito, Marra and Yau [1,2] derived the incompressible Navier–Stokes equation for stochastic lattice gases in
dimension d ≥ 3.

The main step of their proof relies on a sharp estimate of the spectral gap of the jump part of the generator of the
process and on the characterization of the germs of the exact and closed forms in a Hilbert space of local functions.
The characterization of the closed forms as the sum of exact forms and currents allows, through a multi-scale analysis,
the decomposition of the current as a sum of a gradient part and a local function in the range of the generator.

In this article, we consider a stochastic lattice gas with long range jumps. The dynamics are built in a way that
the density and the momentum are the only conserved quantities. Choosing appropriately the size and the rates of the
jumps, we are able to show that a small perturbation of a constant density and momentum profile evolves in a diffusive
time scale as the solution of the incompressible Navier–Stokes equation.
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In contrast with [1,2], the mesoscopic range of the jumps permits to consider perturbations around the constant
profile of order N−b , for b small, where N is a scaling parameter proportional to the inverse of the distance between
particles. This choice has two important consequences. On the one hand, in order to close the equation, one does
not need to replace currents by averages of conserved quantities over macroscopic boxes, but only over mesoscopic
cubes, whose size depends on the parameter b. In particular, there is no need to recur to the multi-scale analysis
or to the closed and exact forms, simplifying considerably the proof. On the other hand, choosing b small enough
(b < 1/2), one can avoid in dimensions 1 and 2 the Gaussian fluctuations around the hydrodynamic limit and prove
a law of large numbers for the conserved quantities in this regime. We are thus able to derive the incompressible
Navier–Stokes equation even in low dimension, where the usual approach is intrinsically impossible since it involves
scales in which fluctuations appear.

The main drawback of the approach presented is that it requires a bound on the spectral gap of the full dynamics
restricted to finite cubes. The bound needs only to be a polynomial in the volume of the cube, but the generator
includes the collision part. This problem, already mentioned in [2], is rather difficult in general. We prove such a
bound in Section 6 for a specific choice of velocities.

The model can be informally described as follows. Let V be a finite set of velocities in R
d , invariant under re-

flections and exchange of coordinates. For each v in V , consider a long-range asymmetric exclusion process on Z
d

whose mean drift is vN−(1−b). Superposed to these dynamics, there is a collision process which exchange velocities
of particles in the same site in a way that momentum is conserved.

Under diffusive time scaling, assuming local equilibrium, it is not difficult to show that the evolution of the con-
served quantities is described by the parabolic equations

{
∂tρ + Nb

∑
v∈V v · ∇F0(ρ,p) = �ρ,

∂tpj + Nb
∑

v∈V vjv · ∇Fj (ρ,p) = �pj ,

where ρ stands for the density and p = (p1, . . . , pd) for the momentum. F0, . . . ,Fd are thermodynamical quantities
determined by the ergodic properties of the dynamics.

Consider an initial profile given by (ρ,p) = (α,β)+N−b(ϕ0,ϕ), where (α,β) are appropriate constants. Expand-
ing the solution of the previous equations around (α,β) and assuming that the first component ϕ0 does not depend on
space, we obtain that the momentum should evolve according to the incompressible Navier–Stokes equation

{
divϕ = 0,

∂tϕ� = A0∂�ϕ
2
� + A1ϕ · ∇ϕ� + A2∂�|ϕ|2 + �ϕ�,

for 1 ≤ � ≤ d , where A0, A1, A2 are model-dependent constants. This is the content of the main theorem of the
article. We prove that under an appropriate time scale, the normalized empirical measures associated to the momentum
converge to the solution of the above incompressible Navier–Stokes equation.

The proof relies on the relative entropy method introduced by Yau [7]. We show that the entropy of the state of the
process with respect to a slowly varying parameter Gibbs state is small in a finite time interval provided the solution
of the incompressible Navier–Stokes equation is smooth in this interval.

To obtain such a bound on the entropy, we compute its time derivative which can be expressed in terms of currents.
A one block estimate, which requires a polynomial bound on the spectral gap of the generator of the process, permits
to express the currents in terms of the empirical density and momenta. The linear part of the functions of the density
and momenta cancel; while the second order terms can be estimated by the entropy. We obtain in this way a Gronwall
inequality for the relative entropy, which in turn, gives the required bound.

The article is organized as follows. In Section 2, we establish the notation and state the main results of the article.
In Sections 3 and 4, we examine the incompressible limit of an asymmetric long range exclusion process. We state in
this simpler context some ergodic theorems needed in the proof of the incompressible limit of the stochastic lattice
gas. In Section 5, we prove the main result of the article, while in Section 6, we prove a spectral gap, polynomial in the
volume, for the generator of a stochastic lattice gas restricted to a finite cube and in Section 7, we state an equivalence
of ensembles for the canonical measures of lattice gas models.
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2. Notation and results

Denote by T
d
N = {0, . . . ,N − 1}d the d-dimensional torus with Nd points and let V ⊂ R

d be a finite set of velocities
v = (v1, . . . , vd). Assume that V is invariant under reflexions and permutations of the coordinates:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d and all permutations σ of {1, . . . , d} provided (v1, . . . , vd) belongs to V .
On each site of the discrete d-dimensional torus T

d
N at most one particle for each velocity is allowed. A configura-

tion is denoted by η = {ηx, x ∈ T
d
N } where ηx = {η(x, v), v ∈ V } and η(x, v) ∈ {0,1}, x ∈ T

d
N , v ∈ V , is the number

of particles with velocity v at x. The set of particle configurations is XN = ({0,1}V )T
d
N .

The dynamics consist of two parts: long range asymmetric random walks with exclusion among particles of the
same velocity and binary collisions between particles of different velocities. The first part of the dynamics corresponds
to the evolution of a mesoscopic asymmetric simple exclusion process. The jump law and the waiting times are chosen
so that the rate of jumping from site x to site x + z for a particle with velocity v is pN(z, v), where

pN(z, v) = AM

Md+2

{
2 + 1

Na
qM(z, v)

}
1{z ∈ ΛM}.

In this formula, a > 0 is a fixed parameter, M is a function of N to be chosen later, ΛM is the cube {−M, . . . ,M}d ,
AM is given by

AM

Md+2

∑
z∈ΛM

zizj = δi,j (2.1)

for 1 ≤ i, j ≤ d , and qM(z, v) is any bounded nonnegative rate such that

AM

Md+1

∑
z∈ΛM

qM(z, v)zi = vi

for 1 ≤ i ≤ d and M ≥ 1. A possible choice is qM(z, v) = M−1(z · v), where u · v stands for the inner product in R
d .

Note that particles with velocity v have mean displacement M−1N−av.
The generator Lex

N of the random walk part of the dynamics acts on local functions f of the configuration space
XN as(

Lex
N f

)
(η) =

∑
v∈V

∑
x∈T

d
N

z∈ΛM

η(x, v)
[
1 − η(x + z, v)

]
pN(z, v)

[
f

(
ηx,x+z,v

) − f (η)
]
,

where

ηx,y,v(z,w) =
{

η(y, v) if w = v and z = x,
η(x, v) if w = v and z = y,
η(z,w) otherwise.

The collision part of the dynamics is described as follows. Denote by Q the set of all collisions which preserve
momentum:

Q = {(
v,w,v′,w′) ∈ V 4: v + w = v′ + w′}.

Particles of velocities v and w at the same site collide at rate one and produce two particles of velocities v′ and w′ at
that site. The generator Lc

N is, therefore,

Lc
Nf (η) =

∑
y∈T

d
N

∑
q∈Q

p(y, q, η)
[
f

(
ηy,q

) − f (η)
]
,
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where the rate p(y, q, η), q = (v,w,v′,w′), is given by

p(y, q, η) = η(y, v)η(y,w)
[
1 − η

(
y, v′)][1 − η

(
y,w′)]

and where the configuration ηy,q , q = (v0, v1, v2, v3), after the collision is defined as

ηy,q(z, u) =
{

η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,
η(z,u) otherwise,

where the index of vj+2 should be understood modulo 4.
The generator LN of the stochastic lattice gas we examine in this article is the superposition of the exclusion

dynamics with the collisions just introduced:

LN = N2{Lex
N + Lc

N

}
.

Note that time has been sped up diffusively. Let {η(t): t ≥ 0} be the Markov process with generator LN and denote
by {SN

t : t ≥ 0} the semi-group associated to LN .
For a probability measure μ on XN , denote by Pμ the measure on the path space D(R+,XN) induced by

{η(t): t ≥ 0} and the initial measure μ. Expectation with respect to Pμ is denoted by Eμ.

2.1. The invariant states

For each configuration ξ ∈ {0,1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ), k = 1, . . . , d , the momentum of ξ :

I0(ξ) =
∑
v∈V

ξ(v), Ik(ξ) =
∑
v∈V

vkξ(v).

Set I(ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities V is chosen in such a way that the unique quantities
conserved by the dynamics LN are mass and momentum:

∑
x∈T

d
N

I(ηx).
Two examples of sets of velocities with this property were proposed by Esposito, Marra and Yau [2]. In Model I,

V = {±e1, . . . ,±ed}, where {ej , j = 1, . . . , d} stands for the canonical basis of R
d . In Model II, d = 3, w is a root of

w4 −6w2 −1 and V contains (1,1,w), all reflections of this vector and all permutations of the coordinates, performing
a total of 24 vectors since w �= ±1.

For each chemical potential λ = (λ0, λ1, . . . , λd) in R
d+1, denote by mλ the measure on {0,1}V given by

mλ(ξ) = 1

Z(λ)
exp

{
λ · I(ξ)

}
,

where Z(λ) is a normalizing constant. Notice that mλ is a product measure on {0,1}V , i.e., that the variables
{ξ(v): v ∈ V } are independent under mλ.

Denote by μN
λ the product measure on ({0,1}V )T

d
N with marginals given by

μN
λ

{
η: η(x, ·) = ξ

} = mλ(ξ)

for each ξ in {0,1}V and x in T
d
N . Notice that {η(x, v): x ∈ T

d
N , v ∈ V } are independent variables under μN

λ .
For each λ in R

d+1 a simple computation shows that μN
λ is an invariant state for the Markov process with genera-

tor LN , that the generator Lc
N is symmetric with respect to μN

λ and that Lex
N has an adjoint Lex,∗

N in which pN(z, v) is
replaced by p∗

N(z, v) = pN(−z, v). In particular, if we denote by Lex,s
N , Lex,a

N the symmetric and the antisymmetric
part of Lex

N , we have that

(
Lex,s

N f
)
(η) = 2AM

Md+2

∑
v∈V

∑
x∈T

d
N

z∈ΛM

(Tx,x+z,vf )(η),
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(
Lex,a

N f
)
(η) = AM

Md+2Na

∑
v∈V

∑
x∈T

d
N

z∈ΛM

qM(z, v)(Tx,x+z,vf )(η),

where

(Tx,x+z,vf )(η) = η(x, v)
[
1 − η(x + z, v)

][
f

(
ηx,x+z,v

) − f (η)
]
.

The expectation under the invariant state μN
λ of the mass and momentum are given by

ρ(λ) := Emλ

[
I0(ξ)

] =
∑
v∈V

θv(λ),

pk(λ) := Emλ

[
Ik(ξ)

] =
∑
v∈V

vkθv(λ).

In this formula, θv(λ) denotes the expected value of the density of particles with velocity v under mλ:

θv(λ) := Emλ

[
ξ(v)

] = exp{λ0 + ∑d
k=1 λkvk}

1 + exp{λ0 + ∑d
k=1 λkvk}

· (2.2)

Denote by (ρ,p)(λ) := (ρ(λ),p1(λ), . . . , pd(λ)) the map which associates the chemical potential to the vector of
density and momentum. Note that (ρ,p) is the gradient of the strictly convex function logZ(λ). In particular, (ρ,p)

is one to one. In fact, it is possible to prove that (ρ,p) is a diffeomorphism onto A ⊂ R
d+1, the interior of the convex

envelope of {I(ξ), ξ ∈ {0,1}V }. Denote by Λ = (Λ0, . . . ,Λd) :A → R
d+1 the inverse of (ρ,p). This correspondence

permits to parameterize the invariant states by the density and the momentum: for each (ρ,p) in A, we have a product
measure νN

ρ,p = μN
Λ(ρ,p) on ({0,1}V )T

d
N .

2.2. Spectral gap

For L ≥ 1 and a configuration η, let IL(x) = (IL
0 (x), . . . , IL

d (x)) be the average of the conserved quantities in a cube
of length L centered at x:

IL(x) := IL(x, η) = 1

|ΛL|
∑

z∈x+ΛL

I(ηz). (2.3)

Let VL be the set of all possible values of IL(0) when η runs over ({0,1}V )ΛL . Obviously, VL is a finite subset of the
convex envelope of {I(ξ): ξ ∈ {0,1}V }. The set of configurations ({0,1}V )ΛL splits in invariant subsets: For each i in
VL, let

HL(i) := {
η ∈ ({0,1}V )ΛL : IL(0) = i

}
.

For each i in VL, define the canonical measure νΛL,i as the uniform probability measure on HL(i).
Denote by LΛM

the generator LN restricted to the cube ΛM without acceleration. More precisely, on the state
space ({0,1}V )ΛM consider the generator LΛM

= Lex
ΛM

+ Lc
ΛM

, which acts on local functions f : ({0,1}V )ΛM �→ R as

(
Lex

ΛM
f

)
(η) =

∑
v∈V

∑
x,y∈ΛM

|x−y|<M

η(x, v)
[
1 − η(y, v)

]
pN(y − x, v)

[
f

(
ηx,y,v

) − f (η)
]
,

(
Lc

ΛM
f

)
(η) =

∑
y∈ΛM

∑
q∈Q

p(y, q, η)
[
f

(
ηy,q

) − f (η)
]
.
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Since the only conserved quantities are the total mass and momentum, the process restricted to each component
HM(i) is ergodic. It has therefore a finite spectral gap: For each i in VM , there exists a finite constant C(M, i) such
that

〈f ;f 〉νΛM,i ≤ C(M, i)
〈
f, (−LΛM

f )
〉
νΛM,i

for all functions f in L2(νΛM,i). Here and below 〈f ;f 〉ν stands for the variance of f with respect to a measure ν and
〈·, ·〉ν for the scalar product in L2(ν).

We shall assume that the inverse of the spectral gap increases polynomially in the length of the cube: There exists
C0 > 0 and κ > 0 such that

max
i∈VM

C(M, i) ≤ C0M
κ. (2.4)

We prove this hypothesis in Section 6 for Model I.

2.3. Incompressible limit

For k = 0, . . . , d , denote by πk,N the empirical measure associated to the kth conserved quantity:

πk,N = N−d
∑

x∈T
d
N

Ik(ηx)δx/N ,

where δu stands for the Dirac measure concentrated on u.
Denote by 〈πk,N ,H 〉 the integral of a test function H with respect to an empirical measure πk,N . To compute

LN 〈πk,N ,H 〉, note that Lc
NIk(ηx) vanishes for k = 0, . . . , d because the collision operators preserve local mass

and momentum. In particular, LN 〈πk,N ,H 〉 = N2 Lex
N 〈πk,N ,H 〉. To compute Lex

N 〈πk,N ,H 〉, consider separately the
symmetric and the antisymmetric part of Lex

N . After two summations by parts and a Taylor expansion, we obtain that

N2 Lex,s
N

〈
π0,N ,H

〉 = 〈
π0,N ,�H

〉 + O

(
M

N

)
,

N2 Lex,a
N

〈
π0,N ,H

〉 = N1−a

M

1

Nd

d∑
j=1

∑
x∈T

d
N

(∂uj
H)

(
x

N

)
τxW

M
j + O

(
N−a

)
,

for every smooth function H . In this formula, � stands for the Laplacian. τx stands for the translation by x on the
state space XN so that (τxη)(y, v) = η(x + y, v) for all x, y in Z

d , v in V , and WM
j , j = 1, . . . , d , is the current given

by

WM
j = AM

Md+1

∑
v∈V

∑
z∈ΛM

qM(z, v)zj η(0, v)
{
1 − η(z, v)

}
. (2.5)

In the same way, for 1 ≤ k ≤ d , a long but simple computation shows that

N2 Lex,s
N

〈
πk,N ,H

〉 = 〈
πk,N ,�H

〉 + O

(
M

N

)
,

N2 Lex,a
N

〈
πk,N ,H

〉 = N1−a

M

1

Nd

d∑
j=1

∑
x∈T

d
N

(∂uj
H)

(
x

N

)
τxW

M
k,j + O

(
N−a

)
,

where WM
k,j is the current defined by

WM
k,j = AM

Md+1

∑
v∈V

vk

∑
z∈ΛM

qM(z, v)zj η(0, v)
{
1 − η(z, v)

}
. (2.6)
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The explicit formulas for LN 〈πk,N ,H 〉 permit to predict the hydrodynamic behavior of the system under diffusive
scaling assuming local equilibrium. By (2.1), the expectation of the currents WM

j , WM
k,j under the invariant state μN

λ
are given by

EμN
λ

[
WM

j

] =
∑
v∈V

χ
(
θv(λ)

)
vj , EμN

λ

[
WM

k,j

] =
∑
v∈V

χ
(
θv(λ)

)
vjvk.

In this formula and below, χ(a) = a(1 − a). In view of the previous computation, if the conservation of local equilib-
rium holds, the limiting equation in the diffusive regime is expected to be{

∂tρ + N1−a

M

∑
v∈V v · ∇χ

(
θv

(
Λ(ρ,p)

)) = �ρ,

∂tpj + N1−a

M

∑
v∈V vjv · ∇χ

(
θv

(
Λ(ρ,p)

)) = �pj ,
(2.7)

where ∇F stands for the gradient of F .
We turn now to the incompressible limit. Note that θv(0) = 1/2 for all v and that

ρ(0) = |V |
2

=: a0, pk(0) = 1

2

∑
v∈V

vk = 0,

where the last identity follows from the symmetry assumptions made on V . Therefore, Λ(a0,0) = 0 and by Taylor
expansion,

χ
(
θv

(
Λ(a0 + εϕ0, εϕ)

)) = χ

(
1

2

)
− ε2

{
1

4

d∑
�=0

∂�Λ0(a0,0)ϕ� + 1

4

d∑
k=1

d∑
�=0

vk∂�Λk(a0,0)ϕ�

}2

+ O
(
ε3)

because χ ′(1/2) = 0, ∂0θv(0) = (1/4), ∂kθv(0) = (1/4)vk , 1 ≤ k ≤ d . Here ∂� stands for the partial derivative with
respect to the �th coordinate. It follows from the previous explicit formulas for ∂kθv(0) that

∂�Λ0(a0,0) = 4δ0,�|V |−1, ∂�Λk(a0,0) = 4δk,�

{∑
v∈V

v2
�

}−1

for 1 ≤ k ≤ d , 0 ≤ � ≤ d . In particular, χ(θv(Λ(a0 + εϕ0, εϕ))) is equal to

χ

(
1

2

)
− ε2

{
ϕ0

|V | +
d∑

k=1

vkϕk∑
v∈V v2

k

}2

+ O
(
ε3)

Due to the symmetry properties of V ,

∑
v∈V

vkvj = Bδk,j , (2.8)

where B = ∑
v∈V v2

1 . The denominator in the expression inside braces is thus equal to B .
To investigate the incompressible limit around (a0,0), fix b > 0 and assume that a solution of (2.7) has the form

ρ(t, u) = a0 + N−bϕ0(t, u), pk(t, u) = N−bϕk(t, u). Then to obtain a nontrivial limit, we need to set M = N1−a−b

to obtain that (ϕ0,ϕ)(t, u) is the solution of

{
∂tϕ0 = ∑

v∈V v · ∇{
ϕ0|V | + 1

B

∑d
k=1 vkϕk

}2 + �ϕ0,

∂tϕ� = ∑
v∈V v�v · ∇{

ϕ0|V | + 1
B

∑d
k=1 vkϕk

}2 + �ϕ�,
(2.9)

1 ≤ � ≤ d .
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To recover the Navier–Stokes equation, we need to introduce some notation related to the velocity space V . Let
Rk,�,m,n(v) = vkv�vmvn. By the symmetry properties of V , if k �= �, we have that∑

v∈V
Rk,�,m,n(v) = {δm,kδn,� + δm,�δn,k}C, (2.10)

where C = ∑
v∈V v2

kv
2
� = ∑

v∈V v2
1v2

2 . On the other hand,

∑
v∈V

Rk,k,m,n(v) = δm,kδn,kD + δm,n{1 − δm,k}C, (2.11)

where D = ∑
v∈V v4

k = ∑
v∈V v4

1 .
Assume that ϕ0(0, u) is constant and that divϕ(0, ·) = 0. Since ∂tϕ0 and �ϕ0 vanish and since V is invariant by

reflexion around the origin, replacing v by −v, the first equation in (2.9) can be rewritten as

d∑
k=1

∑
v∈V

vkv · ∇ϕk = 0.

By (2.8), this equation becomes

divϕ = 0.

The same argument permits to rewrite the second equations in (2.9) as

∂tϕ� = B−2
∑
v∈V

v�v · ∇
{

d∑
k=1

vkϕk

}2

+ �ϕ�.

The first term on the right-hand side of this expression is equal to

2B−2
d∑

k,m,n=1

ϕk∂mϕn

∑
v∈V

Rk,�,m,n(v).

It follows from (2.10), (2.11) and elementary algebra that this expression is equal to B−2 times

(D − 3C)∂�ϕ
2
� + 2Cϕ · ∇ϕ� + C∂�|ϕ�|2

because divϕ = 0. We recover in this way the Navier–Stokes equation{
divϕ = 0,

∂tϕ� = A0∂�ϕ
2
� + A1ϕ · ∇ϕ� + A2∂�|ϕ|2 + �ϕ�,

(2.12)

where A0 = (D − 3C)/B2, A1 = 2C/B−2 and A2 = C/B2. For Model I, we get A0 = 1, A1 = A2 = 0, while for
Model II, B = 16+8w2, C = 8+16w2, D = 16+8w4 and A0 vanishes because w is chosen as a root of w4 −6w2 −1.

2.4. Statement of the result

Recall that κ stands for the polynomial growth rate of the spectral gap. Assume that b < a,

a + b > 1 − 2

d + κ
, a +

(
κ − 2

κ

)
b > 1 − 2

κ
, a +

(
1 + 2

d

)
b < 1. (2.13)

The first two displayed conditions are needed in the proof of the one-block estimate, where the size of the cube cannot
be too large. The last condition appears in the replacement of expectations with respect to canonical measures by
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expectations with respect to grand canonical measures, where the volume |ΛM | has to be large. It is easy to produce
constants a, b > 0 meeting the above requirements. It is enough to choose first 0 < a < 1, close enough to 1, and then
to find b small enough.

Let ϕ = (ϕ1, . . . , ϕd) : Td → R
d be a smooth divergence free vector field. Denote by ϕ(t) the solution of (2.12)

with initial condition ϕ, assumed to be smooth in a time interval [0, T ]. Denote by νN
t the product measure on XN

with chemical potential chosen so that

EνN
t

[
I0(ηx)

] = a0 + ϕ0

Nb
, EνN

t

[
Ik(ηx)

] = ϕk(t, x/N)

Nb

for 1 ≤ k ≤ d with ϕ0 being a constant. This is possible for N large enough since ϕ is bounded and Λ(a0,0) = 0.
For two probability measures μ, ν on XN , denote by HN(μ|ν) the entropy of μ with respect to ν:

HN(μ|ν) = sup
f

{∫
f dμ − log

∫
ef dν

}
,

where the supremum is carried over all bounded continuous functions on XN . We are now in a position to state the
main theorem of this article.

Theorem 2.1. Assume conditions (2.4) and (2.13). Let ϕ = (ϕ1, . . . , ϕd) : Td → R
d be a smooth divergence free

vector field. Denote by ϕ(t) the solution of (2.12) with initial condition ϕ and assume ϕ(t, u) to be smooth in [0, T ]×
T

d for some T > 0. Let {μN : N ≥ 1} be a sequence of measures on XN such that HN(μN |νN
0 ) = o(Nd−2b). Then,

HN(μNSN
t |νN

t ) = o(Nd−2b) for 0 ≤ t ≤ T .

Corollary 2.2. Under the assumptions of Theorem 2.1, for every 0 ≤ t ≤ T and every continuous function
F : Td → R,

lim
N→∞

Nb

Nd

∑
x∈T

d
N

F

(
x

N

){
I0

(
ηx(t)

) − a0
} = ϕ0

∫
Td

F (u)du,

lim
N→∞

Nb

Nd

∑
x∈T

d
N

F

(
x

N

)
Ik

(
ηx(t)

) =
∫

Td

F (u)ϕk(t, u)du

in L1(PμN ).

The corollary is an elementary consequence of the theorem and of the entropy inequality.

3. Mesoscopic asymmetric exclusion processes

We start with a model with no velocities. The proof is simpler in this context and the results stated will needed for the
stochastic lattice gas. Denote by η the configurations of the state space XN = {0,1}T

d
N so that η(x) is either 0 or 1 if

site x is vacant or not. We consider a mesoscopic asymmetric exclusion process on XN . This is the Markov process
whose generator is given by

(LNf )(η) =
∑

x∈T
d
N

z∈Zd

η(x)
[
1 − η(x + z)

]
pN(z)

[
f

(
σx,x+zη

) − f (η)
]
,

where,

pN(z) = 1

Md+2

{
2AM + 1

Na
q(z)

}
1{z ∈ ΛM}.
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In this formula a > 0, M , AM are chosen as in the previous section and q(y) = sign(y · v) for a fixed vector v ∈ R
d .

On the other hand, σx,yη is the configuration obtained from η by interchanging the occupation variables η(x), η(y):

(
σx,yη

)
(z) =

{
η(z) if z �= x, y,
η(y) if z = x,
η(x) if z = y.

For a probability measure μ on XN , Pμ stands for the measure on the path space D(R+, XN) induced by the
Markov process with generator LN sped up by N2 and the initial measure μ. Expectation with respect to Pμ is
denoted by Eμ. Denote by {SN

t : t ≥ 0} the semi-group associated to the generator N2LN .
For 0 ≤ α ≤ 1, denote by μN

α the Bernoulli product measure on XN with density α. An elementary computation
shows that μN

α is an invariant state for the Markov process with generator LN . Moreover, the symmetric and the
antisymmetric part of the generator LN , respectively, denoted by Ls

N , La
N , are given by:

(
Ls

Nf
)
(η) = 2AM

Md+2

∑
x∈T

d
N

z∈Zd

η(x)
[
1 − η(x + z)

][
f

(
σx,x+zη

) − f (η)
]
,

(
La

Nf
)
(η) = 1

Md+2Na

∑
x∈T

d
N

z∈Zd

q(z)η(x)
[
1 − η(x + z)

][
f

(
σx,x+zη

) − f (η)
]
.

We investigate in this and in the next section the incompressible limit of this model. Consider first the hydrodynamic
behavior of the process under diffusive scaling. Denote by πN the empirical measure associated to a configuration:

πN = πN(η) = 1

Nd

∑
x∈T

d
N

η(x)δx/N .

Denote by 〈πN,H 〉 the integral of a test function H with respect to an empirical measure πN . To compute
N2LN 〈πN,H 〉, we consider separately the symmetric and the antisymmetric part of the generator. After two summa-
tions by parts and a Taylor expansion, we obtain that

N2Ls
N

〈
πN,H

〉 = 〈
πN,�H

〉 + O

(
M

N

)
.

On the other hand, after a summation by parts, N2La
N 〈πN,H 〉 becomes

N1−a

M

1

Nd

∑
x∈T

d
N

d∑
j=1

(∂uj
H)

(
x

N

)
τxW

M
j + O

(
N−a

)
,

where τx stands for the translation by x on the state space XN so that (τxη)(y) = η(x + y) for all x, y in T
d
N , and

WM = (WM
1 , . . . ,WM

d ) is the current given by

WM
j = 1

Md+1

∑
z∈ΛM

q(z)zj η(0)
{
1 − η(z)

}
. (3.1)

The expectation of the current under the invariant state μN
α is

α(1 − α)
1

Md+1

∑
z∈ΛM

q(z)zj . (3.2)
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Since M = N1−a−b , the limiting equation in the diffusive regime is, therefore, expected to be

∂tρ + Nbγ · ∇ρ(1 − ρ) = �ρ,

where γj = ∫
[−1,1]d uj q(u)du.

To investigate the incompressible limit around density 1/2, suppose that a solution of the previous equation has the
form ρ(t, u) = (1/2) + N−bϕ(t, u). An elementary computation shows that

∂tϕ = γ · ∇ϕ2 + �ϕ.

Assume the following conditions on a and b, which could certainly be relaxed:

d

d + 2
< a + b, a + max

{
2,1 + 2

d

}
b < 1,

2

(
1 + 2

d

)
b < 1. (3.3)

The first assumption, which forbids a large mesoscopic range M , is used in the proof of the one-block estimate. The
second and third assumptions, which require a not too small range M , are used throughout the proof to discard error
terms.

By the same reasons of the previous section, there exist positive constants a, b satisfying these assumptions.
Fix a continuous function ϕ0 : Td → R. Denote by ϕ = ϕ(t, u) the solution of the nonlinear parabolic equation{

∂tϕ = γ · ∇ϕ2 + �ϕ,

ϕ(0, ·) = ϕ0(·). (3.4)

For t ≥ 0, let νN
t be the product measure on XN with marginals given by

EνN
t

[
η(x)

] = 1

2
+ 1

Nb
ϕ

(
t,

x

N

)
.

This is possible for N large enough because ϕ is bounded. Recall that we denote by HN(ν|μ) the relative entropy of
a probability measure ν with respect to μ.

Theorem 3.1. Assume conditions (3.3). Fix a smooth function ϕ0 : Td → R and denote by ϕ = ϕ(t, u) the solution of
(3.4) with initial condition ϕ0. Assume ϕ to be smooth in the layer [0, T ] × T

d . Let {μN : N ≥ 1} be a sequence of
measures on XN, such that HN(μN |νN

0 ) = o(Nd−2b). Then HN(μNSN
t |νN

t ) = o(Nd−2b) for all 0 ≤ t ≤ T .

Fix two bounded functions ϕi : Td → R, i = 1,2, and denote by νN,i the product measures associated to the density
profile (1/2) + N−bϕi . A second order Taylor expansion shows that

HN

(
νN,2

∣∣νN,1) = O
(
Nd−2b

)
.

The assumption on the entropy formulated in the theorem permits, therefore, to distinguish between N−b-perturbations
of a constant density profile.

A law of large numbers for the corrected empirical measure follows from this result. For a configuration η, denote
by ΠN(η) the corrected empirical measure defined by

ΠN = ΠN(η) = Nb

Nd

∑
x∈T

d
N

{
η(x) − 1

2

}
δx/N

considered as an element of M(Td), the space of Radon measures on T
d endowed with the weak topology. For t ≥ 0,

let ΠN
t = ΠN(ηt ).
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Corollary 3.2. Under the assumptions of Theorem 3.1, for every 0 ≤ t ≤ T and every continuous function
F : Td → R,

lim
N→∞

〈
ΠN

t ,F
〉 = ∫

Td

ϕ(t, u)F (u)du

in L1(PμN ).

The corollary is an elementary consequence of Theorem 3.1 and the entropy inequality.

4. Incompressible limit of mesoscopic exclusion processes

We prove in this section Theorem 3.1. Fix a smooth function ϕ0 : Td → R and denote by ϕ = ϕ(t, u) the solution of
(3.4) with initial condition ϕ0, supposed to be smooth in the time interval [0, T ]. Let {μN : N ≥ 1} be a sequence of
measures on XN satisfying the assumptions of Theorem 3.1.

4.1. Entropy, Dirichlet form and Ergodic constants

An elementary computation shows that the entropy HN(μN |μN
1/2) of μN with respect to μN

1/2 is of order Nd−2b .
Indeed, by the explicit formula for the entropy and by the entropy inequality,

HN

(
μN

∣∣μN
1/2

) ≤
(

1 + 1

A

)
HN

(
μN

∣∣νN
0

) + 1

A
log

∫ (
dνN

0

dμN
1/2

)1+A

dμN
1/2

for all A > 0. A Taylor expansion shows that the second term on the right-hand side is of order Nd−2b . In particular,

N2b−dHN

(
μN

∣∣μN
1/2

) ≤ C0 (4.1)

for some finite constant C0 depending only on ϕ0.
Let f N

t be the Radon–Nikodym derivative dμNSN
t /dμN

1/2 so that

∂tf
N
t = N2L∗

Nf N
t ,

where L∗
N stands for the adjoint of LN in L2(μN

1/2). It follows from (4.1) and a well-known estimate on the entropy
production (cf. [3], Section V.2) that

N2b

Nd
HN

(
μNSN

t

∣∣μN
1/2

) + N2b

Nd

∫ t

0
DN

(
μN

1/2, f
N
s

)
ds ≤ C0 (4.2)

for all N ≥ 0 and t ≥ 0. In this formula, DN stands for the Dirichlet form defined as

DN

(
μN

1/2, f
) = N2〈−LN

√
f ,

√
f

〉
μN

1/2
,

where 〈·, ·〉μN
1/2

is the scalar product in L2(μN
1/2). An elementary computation shows that

DN

(
μN

1/2, f
) = AMN2

Md+2

∑
|x−y|≤M

〈{∇x,y
√

f
}2〉

μN
1/2

,

where(∇x,yg
)
(η) = g

(
σx,yη

) − g(η),

and that DN is a convex, lower semicontinuous functional.
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Let LΛM
be the symmetric part of the generator LN restricted to the cube ΛM :

(LΛM
f )(η) = 2AM

Md+2

∑
x,y∈ΛM

|x−y|≤M

η(x)
[
1 − η(y)

][
f

(
σx,yη

) − f (η)
]
, (4.3)

and denote by μΛM,K , 0 ≤ K ≤ |ΛM |, the canonical measure on {0,1}ΛM concentrated on the hyperplane with K

particles. In the case of the exclusion process, μΛM,K is just the uniform measure over all configurations of {0,1}ΛM

with K particles. Denote by DΛM
the Dirichlet form associated to LΛM

:

DΛM
(μ,f ) = AM

Md+2

∑
x,y∈ΛM

|x−y|≤M

〈{∇x,y
√

f
}2〉

μ
,

where μ stands either for the marginal on ΛM of the grand canonical measure μN
1/2 or for a canonical measure μΛM,K .

By comparing the Dirichlet form DΛM
with the Bernoulli–Laplace Dirichlet form, in which all jumps are allowed

with rate |ΛM |−1 and which is known to have a spectral gap of order 1 (cf. [5]), we can prove that the spectral gap of
DΛM

is of order M−2.

4.2. The relative entropy method

The proof of Theorem 3.1 is based on the relative entropy method introduced by Yau [7]. Let ψN
t = dνN

t /dμN
1/2. It

follows from the explicit formulas for the product measure νN
t that

logψN
t =

∑
x∈T

d
N

log
[(1/2) + N−bϕ(t, x/N)]
[(1/2) − N−bϕ(t, x/N)]η(x)

+
∑

x∈T
d
N

log

{
1 − 2N−bϕ

(
t,

x

N

)}
.

Let HN(t) = N2b−dHN(μNSN
t |νN

t ) and recall that we denote the Radon–Nikodym derivative dμNSN
t /dμN

1/2

by f N
t . With the notation just introduced, we have that

HN(t) = N2b−d

∫
f N

t log
f N

t

ψN
t

dμN
1/2.

Theorem 3.1 follows from Gronwall lemma and the following estimate.

Proposition 4.1. Fix a sequence of measures {μN : N ≥ 1} satisfying the assumptions of Theorem 3.1. There exists
γ > 0, such that

HN(t) ≤ γ

∫ t

0
HN(s)ds + oN(1)

for all t ≤ T .

The proof of Proposition 4.1 is divided in several steps. We begin with a well known upper bound for the entropy
production (see e.g. [3], Lemma 6.1.4).

d

dt
HN(t) ≤ N2b−d

∫
f N

t

(N2L∗
N − ∂t )ψ

N
t

ψN
t

dμN
1/2. (4.4)
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A long and tedious computation gives that (ψN
t )−1(N2L∗

N − ∂t )ψ
N
t is equal to

4

Nb

∑
x∈T

d
N

(�ϕ)

(
t,

x

N

){
η(x) − 1

2

}
+ 16

N2b

d∑
i,j=1

∑
x∈T

d
N

(∂ui
ϕ)

(
t,

x

N

)
(∂uj

ϕ)

(
t,

x

N

)
τxV

M
i,j (η)

+ 4(1 + εN)

d∑
j=1

∑
x∈T

d
N

(∂uj
ϕ)

(
t,

x

N

)
τxW

∗,M
j (η)

− 4

Nb

∑
x∈T

d
N

(∂tϕ)

(
t,

x

N

){
η(x) −

(
1

2

)
− N−bϕ

(
t,

x

N

)}
+ o

(
Nd−2b

)
. (4.5)

In this formula, W
∗,M
j and V M

i,j stand for

W
∗,M
j (η) = 1

Md+1

∑
z∈ΛM

q(−z)zj η(0)
{
1 − η(z)

}
,

V M
i,j (η) = AM

Md+2

∑
z∈ΛM

zizj η(0)
{
1 − η(z)

}
.

We used the inequalities a > b, a + 2b < 1, which follow from assumptions (3.3), to estimate several terms in the
above computation by o(Nd−2b). The expression (1 + εN)(∂uj

ϕ) in the third line stands for (∂uj
ϕ){1 − 4N−2bϕ2}−1.

Keep in mind that εN is of order N−2b .
If we replace η(x) − 1/2 in the first term of (4.5) by η(x) − (1/2) − N−bϕ(t, x

N
) and V M

i,j by V M
i,j − (1/4)δi,j , as

N ↑ ∞, the expressions added multiplied by (1/4)N2b−d converge to

∫
Td

(�ϕ)ϕ +
d∑

j=1

∫
Td

(∂uj
ϕ)2 = 0.

Therefore, in view of (4.4) and (4.5), the time derivative of the renormalized entropy HN(t) is bounded above by

EμN

[
4(1 + εN)N2b

Nd

d∑
j=1

∑
x∈T

d
N

(∂uj
ϕ)

(
t,

x

N

)
τxW

∗,M
j (ηt )

]

+ EμN

[
16

Nd

d∑
i,j=1

∑
x∈T

d
N

(∂ui
ϕ)

(
t,

x

N

)
(∂uj

ϕ)

(
t,

x

N

)
τxV̂

M
i,j (ηt )

]

+ EμN

[
4Nb

Nd

∑
x∈Td

(�ϕ − ∂tϕ)

(
t,

x

N

){
ηt (x) −

(
1

2

)
− N−bϕ

(
t,

x

N

)}]
+ oN(1), (4.6)

where V̂ M
i,j (η) = V M

i,j (η) − (1/4)δi,j .

We now use the ergodicity to replace the functions W
∗,M
j and V̂ M

i,j by their projections on the conserved quantity
over mesoscopic cubes.
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4.3. One block estimate

Recall from the end of Section 4.1 that μΛM,K stands for the uniform measure over all configurations of {0,1}ΛM with
K particles. For 1 ≤ j ≤ d , denote by Fj (K/|ΛM |) the expected value of the current W

∗,M
j with respect to μΛM,K .

An elementary computation shows that

Fj (β) = EμΛM,K

[
W

∗,M
j

] = −γ M
j

{
1 + 1

|ΛM | − 1

}
β(1 − β),

provided β = K/|ΛM | and γ M
j = M−(d+1)

∑
z∈ΛM

zjq(z) = γj + O(M−1).

For a positive integer � ≥ 1, let η�(x) be the average number of particles in a cube of size � around x:

η�(x) = 1

|Λ�|
∑

y∈x+Λ�

η(y).

For M ≥ 1, 1 ≤ j ≤ d , let

Vj,M = W
∗,M
j − Fj

(
ηM(0)

)
.

Lemma 4.2. For every t > 0, 1 ≤ j ≤ d and continuous function G : Td → R,

lim
N→∞ EμN

[∣∣∣∣
∫ t

0
ds

N2b

Nd

∑
x∈T

d
N

G

(
x

N

)
τxVj,M(ηs)

∣∣∣∣
]

= 0.

Proof. By the entropy inequality and Jensen inequality, the expectation appearing in the statement of the lemma is
bounded above by

N2b

ANd
HN

(
μN

∣∣μN
1/2

) + N2b

ANd
logEμN

1/2

[
expA

∣∣∣∣
∫ t

0
ds

∑
x∈T

d
N

G

(
x

N

)
τxVj,M(ηs)

∣∣∣∣
]

for every A > 0. In view of (4.1), to prove the lemma, it is enough to show that the second term vanishes, as N ↑ ∞,
for any A > 0. Since e|x| ≤ ex + e−x , it is enough to estimate the previous expectation without the absolute value.

By Feynman–Kac formula and by the variational formula for the largest eigenvalue of an operator, the second term
without the absolute value is bounded above by

tN2b

ANd
sup
f

{ ∑
x∈T

d
N

AG

(
x

N

)∫
τxVj,Mf dμN

1/2 − DN

(
μN

1/2, f
)}

, (4.7)

where the supremum is carried over all density functions f with respect to μN
1/2.

Since the measure μN
1/2 is translation invariant and since Vj,M depends on the configuration only through {η(z): z ∈

ΛM}, ∫
(τxVj,M)f dμN

1/2 =
∫

Vj,M(τ−xf )dμN
1/2 =

∫
Vj,Mfx,M dμN

1/2,

where fx,M = EμN
1/2

[τ−xf |η(z), z ∈ ΛM ].
On the other hand, by convexity of the Dirichlet form and by translation invariance of μN

1/2, for any x, y in ΛM

such that |x − y| ≤ M ,

〈{∇x,y
√

fz,M

}2〉
μN

1/2
≤ 〈{∇x,y

√
τ−zf

}2〉
μN

1/2
= 〈{∇x+z,y+z

√
f

}2〉
μN

1/2
.
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Therefore, summing over x, y in ΛM , |x − y| ≤ M, and in z in T
d
N , we obtain that

∑
z∈T

d
N

∑
x,y∈ΛM

|x−y|≤M

〈{∇x,y
√

fz,M

}2〉
μN

1/2
≤ C0M

d
∑

|x−y|≤M

〈{∇x,y
√

f
}2〉

μN
1/2

for some universal constant C0.
Recall the definition of the Dirichlet forms DN and DM,ΛM

introduced above. It follows from the previous esti-
mates that the expression (4.7) is bounded above by

tN2b

ANd

∑
x∈T

d
N

sup
f

{
AG

(
x

N

)∫
Vj,Mf dμN

1/2 − C0N
2

Md
DM,ΛM

(
μN

1/2, f
)}

, (4.8)

where the supremum is carried over all densities f with respect to the marginal of μN
1/2 on the cube ΛM .

In particular, by projecting the density over each hyperplane with a fixed total number of particles and recalling the
perturbation theorem on the largest eigenvalue of a symmetric operator (Theorem 1.1 of Appendix 3 in [3]), in view
of (4.8), we obtain that (4.7) is less than or equal to

C(γ )At‖G‖2∞
N2bMd

N2

〈
(−LM,ΛM

)−1Vj,M,Vj,M

〉
μN

1/2

for some finite constant C(γ ) depending only on γ . Here we need the assumption that Md+2 � N2 to be allowed to
apply the Rayleigh expansion.

Since the generator LM,ΛM
has a spectral gap of order M−2, 〈(−LM,ΛM

)−1Vj,M , Vj,M 〉μN
1/2

is bounded by

C0M
2〈Vj,M ;Vj,M 〉μN

1/2
, which is less than or equal to C0 M2−d . Thus, (4.7) is bounded by C0At‖G‖2∞N−2a be-

cause M = N1−a−b . This concludes the proof of the lemma. �

For 1 ≤ i, j ≤ d , let

Fi,j (β) = EμΛM,K

[
V̂ M

i,j

] = β(1 − β)

{
1 + 1

|ΛM | − 1

}
δi,j −

(
1

4

)
δi,j ,

with the same convention that β = K/|ΛM |. Let wM
i,j (η) = V̂ M

i,j − Fi,j (η
M(0)). The arguments of the proof of

Lemma 4.2 shows that for every t > 0, 1 ≤ i, j ≤ d and continuous function G : Td → R,

lim
N→∞ EμN

[∣∣∣∣
∫ t

0
ds

1

Nd

∑
x∈T

d
N

G

(
x

N

)
τxw

M
i,j (ηs)

∣∣∣∣
]

= 0. (4.9)

The arguments are even simpler due to the absence of the factor N2b multiplying the sum.
By Lemma 4.2 and (4.9), integrating in time (4.6), we obtain that the entropy HN(t) is less than or equal to

4(1 + εN)N2b

Nd

∫ t

0
ds EμN

[
d∑

j=1

∑
x∈T

d
N

(∂uj
ϕ)

(
s,

x

N

)
Fj

(
ηM

s (x)
)]

+ 16

Nd

∫ t

0
ds EμN

[
d∑

i,j=1

∑
x∈T

d
N

(∂ui
ϕ)

(
s,

x

N

)
(∂uj

ϕ)

(
s,

x

N

)
Fi,j

(
ηM

s (x)
)]

+ 4Nb

Nd

∫ t

0
ds EμN

[ ∑
x∈Td

(�ϕ − ∂sϕ)

(
s,

x

N

){
ηs(x) −

(
1

2

)
− N−bϕ

(
s,

x

N

)}]
(4.10)
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plus an error term of order oN(1) for every t ≤ T .
Recall that χ(a) = a(1 − a). Since N2b � Md , we may replace in the previous formula Fj (η

M
s (x)) by

−γ M
j χ(ηM

s (x)) and Fi,j (η
M
s (x)) by {χ(ηM

s (x)) − χ(1/2)}δi,j . Moreover, since N−d
∑

x∈T
d
N
(∂uj

ϕ)(t, x/N) is of

order N−1 and since b < 1/2, we may further replace χ(ηM
t (x)) by χ(ηM

t (x)) − χ(1/2) in the first term. Finally,
since for a smooth function G, M−d

∑
y: |y−x|≤M [G(y/N) − G(x/N)] is of order (M/N)2 and since M2Nb−2

vanishes as N ↑ ∞, we may replace ηs(x) by ηM
s (x) in the third term. After all these replacements and since

χ(b) − χ(1/2) = −[b − (1/2)]2, (4.10) becomes

4(1 + εN)N2b

Nd

∫ t

0
ds EμN

[
d∑

j=1

∑
x∈T

d
N

γ M
j (∂uj

ϕ)

(
s,

x

N

){
ηM

s (x) − 1

2

}2
]

− 16

Nd

∫ t

0
ds EμN

[
d∑

j=1

∑
x∈T

d
N

(∂ui
ϕ)2

(
s,

x

N

){
ηM

s (x) − 1

2

}2
]

+ 4Nb

Nd

∫ t

0
ds EμN

[ ∑
x∈Td

(�ϕ − ∂sϕ)

(
s,

x

N

){
ηM

s (x) −
(

1

2

)
− N−bϕ

(
s,

x

N

)}]
. (4.11)

The second line of the previous formula is easy to estimate. One can argue that it is negative or one can add
N−bϕ(s, x/N) inside the braces and apply Lemma 4.3 below. The first term in (4.11) without the factor (1 + εN) can
be written as

4N2b

Nd

∫ t

0
ds EμN

[
d∑

j=1

∑
x∈T

d
N

γ M
j (∂uj

ϕ)

(
s,

x

N

){
ηM

s (x) − 1

2
− N−bϕ

(
s,

x

N

)}2
]

+ 4Nb

Nd

∫ t

0
ds EμN

[
d∑

j=1

∑
x∈T

d
N

γ M
j

(
∂uj

ϕ2)(s,
x

N

){
ηM

s (x) − 1

2
− N−bϕ

(
s,

x

N

)}]

+ 4

Nd

∫ t

0
ds

d∑
j=1

∑
x∈T

d
N

γ M
j (∂uj

ϕ)

(
s,

x

N

)
ϕ2

(
s,

x

N

)
.

As N ↑ ∞, for each fixed j , s, the last term of this expression converges to 4
∫

Td duγj (∂uj
ϕ)(s, u)ϕ2(s, u) = 0. By

Lemma 4.3 below, the first term is bounded by γ0
∫ t

0 ds HN(s) + oN(1) for some finite constant γ0. In the second
term, since εNNb vanishes as N ↑ ∞ and since, by (3.3), Nb � M , we may replace (1 + εN)γ M

j by γj . The resulting
expression cancels with the third term of (4.11) because ϕ is the solution of (3.4). This proves Proposition 4.1, and,
therefore, Theorem 3.1.

We conclude this section with an estimate on the variance of the density in terms of the relative entropy.

Lemma 4.3. There exists γ0 > 0 such that

EμN

[
N2b

Nd

∑
x∈T

d
N

{
ηM

t (x) −
(

1

2

)
− N−bϕ

(
t,

x

N

)}2]
≤ γ0HN(t) + oN(1)

for 0 ≤ t ≤ T .

Proof. By the entropy inequality, the expectation appearing in the statement of the lemma is bounded above by

1

γ
HN(t) + N2b

γNd
logEνN

t

[
exp

{
γ

∑
x∈T

d
N

(
ηM

t (x) −
(

1

2

)
− N−bϕ

(
t,

x

N

))2}]
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for every γ > 0. By Hölder inequality, the second term is less than or equal to

N2b

γNdMd

∑
x∈T

d
N

logEνN
t

[
exp

{
γ |ΛM |

(
ηM

t (x) −
(

1

2

)
− N−bϕ

(
t,

x

N

))2}]
.

The above expectation is bounded uniformly in N provided γ is small enough. The expression is thus bounded by
γ −1N2bM−d , which concludes the proof of the lemma. �

5. Proof of the Incompressible limit

Fix the reference measure νN∗ = νN
(a0,0)

. Consider a sequence of probability measures {μN : N ≥ 1} satisfying the
assumptions of Theorem 2.1. A straightforward argument, similar to the one which led to (4.1), shows that

N2b−dHN

(
μN

∣∣νN∗
) ≤ C0

for some finite constant depending only on a0, ϕ0,ϕ.
Denote by f N

t the Radon–Nikodym derivative dμNSN
t /dνN∗ and recall that f N

t solves the equation

∂tf
N
t = L∗

Nf N
t ,

where L∗
N stands for the adjoint of LN in L2(νN∗ ). By the previous estimate on the relative entropy of μN with respect

to νN∗ , we get that

HN

(
μNSN

t

∣∣νN∗
) +

∫ t

0
ds DN

(
f N

s

) ≤ C0N
d−2b, (5.1)

where DN stands for the Dirichlet form: DN(f ) = 〈f 1/2, (−LN)f 1/2〉νN∗ .

Let ψN
t = dνN

t /dνN∗ . It follows from the explicit formulas for the product measures νN
t that

logψN
t =

∑
x∈T

d
N

λ(t, x) · I(ηx) −
∑

x∈T
d
N

log
Z(λ(t, x))

Z(0))
,

where λ(t, x) := Λ(a0 + N−bϕ0,N
−bϕ(t, x/N)) and

Z(λ) =
∑

ξ∈{0,1}V

exp
{
λ · I(ξ)

}
.

Let HN(t) = N2b−dHN(μNSN
t |νN

t ). With the notation just introduced, we have that

HN(t) = N2b−d

∫
f N

t log
f N

t

ψN
t

dνN∗ .

Theorem 2.1 follows from Gronwall lemma and the following estimate.

Proposition 5.1. Fix a sequence of measures {μN : N ≥ 1} satisfying the assumptions of Theorem 2.1. There exists
γ > 0 such that

HN(t) ≤ γ

∫ t

0
HN(s)ds + oN(1)

for all 0 ≤ t ≤ T .
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The proof of Proposition 5.1 is divided in several steps. We begin with a well-known upper bound for the entropy
production.

d

dt
HN(t) ≤ N2b−d

∫
f N

t

(L∗
N − ∂t )ψ

N
t

ψN
t

dνN∗ . (5.2)

Next result is needed in to discard irrelevant terms on the right-hand side of the previous expression.

Lemma 5.2. Let G : Td → R a continuous function and {μN : N ≥ 1} a sequence of measures satisfying the assump-
tions of Theorem 2.1. Then

EμN

[
N−d

∑
x∈T

d
N

G

(
x

N

)
Ik

(
ηx(t)

)] ≤ HN(t) + O
(
N−b

)

for 0 ≤ t ≤ T , 1 ≤ k ≤ d . The lemma remains in force for k = 0, if we replace Ik(ηx(t)) by I0(ηx(t)) − a0.

Proof. Fix 1 ≤ k ≤ d . We may replace Ik(ηx(t)) by Ik(ηx(t)) − N−bϕk(t, x/N) paying a price of order N−b . It
remains to apply the entropy inequality with respect to measure νt , which is product, and perform a second order
Taylor expansion. �

A long and tedious computation gives that (ψN
t )−1(L∗

N − ∂t )ψ
N
t is equal to

4

BNb

d∑
k=1

∑
x∈T

d
N

(�ϕk)

(
t,

x

N

)
Ik(ηx) + 4

B

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

)
τxW

∗,M
k,j

+ 16

B2N2b

d∑
i,j=1

d∑
k,�=1

∑
x∈T

d
N

(∂ui
ϕk)

(
t,

x

N

)
(∂uj

ϕ�)

(
t,

x

N

)
τxV

k,�,M
i,j

− 4

BNb

d∑
k=1

(∂tϕk)

(
t,

x

N

){
Ik(ηx) − ϕk(t, x/N)

Nb

}
+ RN(t) + o

(
Nd−2b

)
. (5.3)

In this formula, W
∗,M
k,j and V

k,�,M
i,j stand for

W
∗,M
k,j = AM

Md+1

∑
v∈V

vk

∑
z∈ΛM

qM(−z, v)zj η(0, v)
{
1 − η(z, v)

}
,

V
k,�,M
i,j = AM

Md+2

∑
v∈V

vkv�

∑
z∈ΛM

zizj η(0, v)
{
1 − η(z, v)

}
.

Since the density ψN
t is a function of the conserved quantities I, the collision part of the generator is irrelevant in the

previous computation. We used repeatedly Lemma 5.2 and the fact that b < a, which follows from (2.13), to discard
superfluous terms. The remainder o(Nd−2b) should be understood as an expression whose expectation with respect to
μNSN

t integrated in time is of order o(Nd−2b), while RN(t) is an expression which multiplied by N2b−d is bounded
by HN(t) + O(N−b) in virtue of Lemma 5.2.

If we replace Ik(ηx) in the first term of (5.3) by Ik(ηx) − ϕk(t, x/N)N−b and V
k,�,M
i,j by V

k,�,M
i,j − (B/4)δi,j δk,�,

as N ↑ ∞, the expressions added when multiplied by (B/4)N2b−d converge to

d∑
k=1

∫
Td

(�ϕk)ϕk +
d∑

j,k=1

∫
Td

(∂uj
ϕk)

2 = 0.
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Therefore, in view of (5.2), (5.3) and Lemma 5.2, the time derivative of the renormalized entropy HN(t) is bounded
above by

HN(t) + EμN

[
4N2b

BNd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

)
τxW

∗,M
k,j (t)

]

+ EμN

[
16

B2Nd

d∑
i,j=1

d∑
k,�=1

∑
x∈T

d
N

(∂ui
ϕk)

(
t,

x

N

)
(∂uj

ϕ�)

(
t,

x

N

)
τxV̂

k,�,M
i,j (t)

]

+ EμN

[
4Nb

BNd

d∑
k=1

∑
x∈Td

(�ϕk − ∂tϕk)

(
t,

x

N

){
Ik(ηx(t)) − ϕk(t, x/N)

Nb

}]
+ oN(1), (5.4)

where V̂
k,�,M
i,j = V

k,�,M
i,j − (B/4)δi,j δk,�.

We now use the ergodicity to replace the functions W
∗,M
k,j and V̂

k,�,M
i,j by their projections on the conserved quan-

tities. For s ≥ 0 and x in Z
d , denote by IM(s, x) the average at time s of the conserved quantities over a cube ΛM

centered at x:

IM(s, x) = 1

|ΛM |
∑

y∈x+ΛM

I
(
ηy(s)

)
.

To keep notation simple, let IM
s := IM(s,0).

Recall the definition of the canonical measures νΛM,i presented in Section 2.2. Since we assumed in (2.4) the global
dynamics restricted to a cube of length M to have a spectral gap of order Mκ and since a + b > 1 − [2/(d + κ)],
a + (κ − 2/κ)b > 1 − (2/κ), repeating the arguments presented in the proof of Lemma 4.2 and taking advantage of
the estimate (5.1) we derive the so-called one block estimate. In this lemma, the collision part of the dynamics, also
sped up by N2, plays an important role.

Lemma 5.3. For every t ≥ 0, every 1 ≤ j, k ≤ d and every continuous function G : [0, T ] × T
d → R,

lim sup
N→∞

EμN

[∣∣∣∣
∫ t

0
ds

N2b

Nd

∑
x∈T

d
N

G

(
s,

x

N

)
τx

{
W

∗,M
k,j (s) − Eν

ΛM,IMs

[
W

∗,M
k,j

]}∣∣∣∣
]

= 0.

Since νΛM,i is the counting measure,

EνΛM,i

[
W

∗,M
k,j

] = −
∑
v∈V

vkvjEνΛM,i

[
η(0, v)

[
1 − η(e1, v)

]]

because AMM−(d+1)
∑

z∈ΛM
qM(z, v)zj = vj . In the previous formula, site e1 can be replaced by any site of ΛM

different from the origin. Since N2b � Md , by the equivalence of ensembles, stated in Proposition 7.1 below, we can
replace the expectation with respect to the canonical measure by the expectation with respect to the grand canonical
measure paying a price of order oN(1).

For 1 ≤ j, k ≤ d , let

Rj,k(ρ,p) := EμN
Λ(ρ,p)

[
W

∗,M
k,j

] = −
∑
v∈V

vkvjχ
(
θv

(
Λ(ρ,p)

))
,

where θv(·) is defined in (2.2). Up to this point, we replaced the first expectation in (5.4) by

EμN

[
4N2b

BNd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

)
Rj,k

(
IM(t, x)

)] + oN(1).
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Since Λ(a0,0) = 0 and θv(0) = 1/2, Rj,k(a0,0) = −(B/4)δj,k . On the other hand, since ϕ is divergence free,

4N2b

BNd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

)
Rj,k(a0,0) = −N2b

Nd

d∑
j=1

∑
x∈T

d
N

(∂uj
ϕj )

(
t,

x

N

)

vanishes for each fixed N . We may, therefore, add this expression to the previous expectation to obtain that the first
term in (5.4) is equal to

EμN

[
4N2b

BNd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

){
Rj,k

(
IM(t, x)

) − Rj,k(a0,0)
}] + oN(1). (5.5)

The same arguments show that we can replace V̂
k,�,M
i,j in the second term of (5.4) by its expectation with respect

to the grand canonical measure. The proof is even simpler due to the absence of the factor N2b in front of the sum.
Since Rj,k(a0,0) = −(1/4)δj,kB ,

EμN
Λ(ρ,p)

[
V̂

k,�,M
i,j

] = −δi,j

[
Rk,�(ρ,p) − Rk,�(a0,0)

]
.

The one-block estimate permits therefore to replace the second expectation in (5.4) by

−EμN

[
16

B2Nd

d∑
i,k,�=1

∑
x∈T

d
N

(∂ui
ϕk,�)

(
t,

x

N

){
Rk,�

(
IM(t, x)

) − Rk,�(a0,0)
}]

, (5.6)

where (∂ui
ϕk,�)(t, x/N) = (∂ui

ϕk)(t, x/N)(∂ui
ϕ�)(t, x/N).

It is now clear that (5.6) is a term of lower order than (5.5). We, therefore, only need to estimate the latter. Fix an
arbitrary ε > 0. Since Rj,k is a bounded function, the integral in (5.5) when restricted to |IM(t, x) − (a0,0)| > ε is
bounded above by

EμN

[
C0N

2b

ε3Nd

∑
x∈T

d
N

∣∣IM(t, x) − (a0,0)
∣∣3

]
, (5.7)

where C0 is a constant depending on V and ϕ. In the expression above, we may replace (a0,0) by (a0 +
N−bϕ0,N

−bϕ(t, x/N)) paying a price of order N−b . Since IM(t, x) belongs to a compact set the expression ob-
tained after replacing is bounded above by

EμN

[
C(V )C0N

2b

ε3Nd

∑
x∈T

d
N

∣∣∣∣IM(t, x) −
(

a0 + ϕ0

Nb
,
ϕ(t, x/N)

Nb

)∣∣∣∣
2]

.

By Lemma 5.4 below, this expression is bounded by γ0HN(t) + oN(1) for some γ0 > 0.
In order to deal with the integral (5.5) on |IM(t, x)− (a0,0)| ≤ ε, we perform a Taylor expansion of Rj,k . The first

term in the expansion vanishes because the gradient of Rj,k vanishes at (a0,0). The contribution of the second order
terms is

4N2b

BNd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

) ∑
v∈V

vkvj

{
IL

0 − a0

|V | + 1

B

d∑
�=1

v�I
L
�

}2

.
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Expanding the square, the term in IL
0 vanishes because ϕ is divergence free and the cross product vanishes because V

is symmetric. This sum is, therefore, equal to

4N2b

B3Nd

d∑
j,k,�,m=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

) ∑
v∈V

vkvj v�vmIL
� IL

m.

Replacing IL
� by IL

� − ϕ�(t, x/N)N−b , we may rewrite the previous expression as the sum of three kind of terms.
The first one, the 0 order term in I , consists simply in replacing IL

� by ϕ�N
−b . As N tends to infinity, this term

converges to

4(D − 3C)

B3

d∑
j=1

∫
Td

(∂uj
ϕj )ϕ

2
j + 4C

B3

d∑
j,k=1

∫
Td

(
∂uj

ϕ2
k

)
ϕj .

An integration by parts shows that this expression vanishes because ϕ is divergence free. The linear term in I cancels
with the last term of (5.4) because ϕ is the solution of the Navier–Stokes equation (2.12). Remains the quadratic term
in I , equal to

4(D − 3C)N2b

B3Nd

d∑
j=1

∑
x∈T

d
N

(∂uj
ϕj )

(
t,

x

N

){
IL
j (t, x) − ϕj (t, x/N)

Nb

}2

+ 8CN2b

B3Nd

d∑
j,k=1

∑
x∈T

d
N

(∂uj
ϕk)

(
t,

x

N

){
IL
j (t, x) − ϕj (t, x/N)

Nb

}{
IL
k (t, x) − ϕk(t, x/N)

Nb

}

because ϕ is divergence free. By Lemma 5.4 below, this expression is bounded by γ0HN(t)+ oN(1) for some γ0 > 0.
Finally, we consider the remainder in the Taylor expansion. Since Rj,k is smooth, we can choose ε small enough

for the third derivative of Rj,k to be bounded in an ε-neighborhood of (a0,0) by a finite constant C0 depending on V
and ϕ. In particular, the remainder is bounded above by

C0N
2b

Nd

∑
x∈T

d
N

∣∣IM(t, x) − (a0,0)
∣∣3

.

The same arguments used to estimate (5.7) prove that this expression is bounded by γ0HN(t)+oN(1) for some γ0 > 0.
This concludes the proof of Proposition 5.1.

We conclude the section with an estimate repeatedly used in the proof of Proposition 5.1. We need here again the
assumption that N2b � Md .

Lemma 5.4. There exists γ0 > 0, such that

EμN

[
N2b

Nd

∑
x∈T

d
N

{
IM
j (t, x) − ϕj (t, x/N)

Nb

}2]
≤ γ0HN(t) + oN(1)

for 1 ≤ j ≤ d , 0 ≤ t ≤ T . The statement remains in force for j = 0 if ϕj (t, x/N)N−b is replaced by a0 + ϕ0N
−b .

Proof. By the entropy inequality the expectation appearing in the statement of the lemma is bounded above by

1

γ
HN(t) + N2b

γNd
logEνN

t

[
exp

{
γ

∑
x∈T

d
N

(
IM
j (t, x) − ϕj (t, x/N)

Nb

)2}]



908 J. Beltrán and C. Landim

for every γ > 0. By Hölder inequality, the second term is less than or equal to

N2b

γNdMd

∑
x∈T

d
N

logEνN
t

[
exp

{
γ |ΛM |

{
IM
j (t, x) − ϕj (t, x/N)

Nb

}2}]
.

The above expectation is bounded uniformly in N provided γ is small enough. The expression is thus bounded by
γ −1N2bM−d , which concludes the proof of the lemma. �

6. Spectral gap for stochastic lattice gases

We prove in this section a spectral gap of polynomial order for the generator of the stochastic lattice gas. We consider a
slightly different process, in which the exclusion dynamics allows particles to jump to any site of ΛM at rate M−(d+2).
We do not require, therefore, the jump to be of size smaller than M . Of course, the Dirichlet forms of both dynamics
are equivalent and the result stated in Proposition 6.1 extends to the original dynamics.

Fix M ≥ 1 and consider the process restricted to the cube ΛM without the factor N2. The generator of the process,
denoted by LM , can be written as Lex

M + Lc
M , where

(
Lex

Mf
)
(η) = 1

Md+2

∑
v∈V

∑
x,z∈ΛM

η(x, v)
[
1 − η(z, v)

][
f

(
ηx,z,v

) − f (η)
]
,

Lc
Mf (η) =

∑
y∈ΛM

∑
q∈Q

p(y, q, η)
[
f

(
ηy,q

) − f (η)
]

and p(y, q, η) is defined at the beginning of Section 2.
For each fixed i in VM , recall that we denote by νΛM,i the invariant measure concentrated on configurations η of

({0,1}V )ΛM such that IM(η) = i. An elementary computation shows that

〈
f,−Lex

Mf
〉
νΛM,i

= 1

4Md+2

∑
v∈V

∑
x,y∈ΛM

EνΛM,i

[{
f

(
ξx,y,v

) − f (ξ)
}2]

,

(6.1)〈
f,−Lc

Mf
〉
νΛM,i

= 1

2

∑
q∈Q

∑
x∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2]

.

Denote by Eν[f ;f ] the variance of f with respect to a measure ν and by 〈·, ·〉ν the inner product in L2(ν).

Proposition 6.1. There exists a finite constant C2, depending only on V , Q, such that

EνΛM,i[f ;f ] ≤ C2M
2+3d+2d2〈f,−LMf 〉νΛM,i

for all f in L2(νΛM,i), all i in VM and all M ≥ 1.

The proof of this proposition relies on estimates on the Dirichlet forms associated to Lex
M and Lc

M . Denote by L̃c
M

the generator of a dynamics in which collisions between particles at different sites are allowed:

(
L̃c

Mf
)
(η) = 1

|ΛM |3
∑

x1,...,x4∈ΛM

∑
q∈Q

p(x, q, η)
{
f

(
ηx,q

) − f (η)
}
,

where, for q = (u, v,u′, v′), x = (x1, . . . , x4),

p(x, q, η) = ηx1(u)ηx2(v)
[
1 − ηx3

(
u′)][1 − ηx4

(
v′)]

and where ηx,q is the configuration η in which the occupation variables ηx1(u), ηx2(v), ηx3(u
′), ηx4(v

′) are flipped.
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The first lemma of this section states that the Dirichlet forms associated to Lc
M and to L̃c

M are comparable and that
the Dirichlet form of the conditional expectation of a function with respect to the total number of particles with fixed
velocity can be estimated by the Dirichlet form of the original function. For each v in V , let Kv be the total number
of particles with velocity v in ΛM :

Kv = Kv(η) =
∑

x∈ΛM

η(x, v).

Lemma 6.2. There exists a finite constant C2, depending only on V , such that〈−L̃c
Mf,f

〉
νΛM,i

≤ C2M
2〈−Lex

Mf,f
〉
νΛM,i

+ C2
〈−Lc

Mf,f
〉
νΛM,i

for every f in L2(νΛM,i). Moreover, let

F = EνΛM,i

[
f |{Kv,v ∈ V }].

Then, 〈−Lc
MF,F

〉
νΛM,i

≤ 〈−L̃c
Mf,f

〉
νΛM,i

for every f in L2(νΛM,i).

Proof. An elementary computation shows that

〈−L̃c
Mf,f

〉
νΛM,i

= 1

2|ΛM |3
∑
q∈Q

∑
x1,...,x4∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2]

for f in L2(νΛM,i). Fix q and x. We construct a path from ξ to ξx,q with jumps and collisions of particles in the same
site in the following way. Assume that the set V has been ordered: V = {v1, . . . , vn} and, without loss of generality that
q = (v1, . . . , v4). We first exchange the occupation variable ξx2(v2), ξx1(v2); then ξx3(v3), ξx1(v3) and finally ξx4(v4),
ξx1(v4). At this point, we may perform the collision at site x1 and move back the particles and holes to their final
positions in the reversed order.

The total length of the path is at most 7. Denote by ζ0 = ξ, . . . , ζ� = ξx,q the successive configurations. Writing
{f (ξx,q ) − f (ξ)} as

∑
j {f (ζj+1) − f (ζj )}, applying Schwarz inequality, reversing the order of the summations

and estimating the total number of configurations whose path jumps from ζj to ζj+1, we obtain that for each q =
(v1, . . . , v4),∑

x1,...,x4∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2]

≤ C0|ΛM |2
4∑

i=1

∑
x,y∈ΛM

EνΛM,i

[{
f

(
ξx,y,vi

) − f (ξ)
}2]

+ C0|ΛM |3
∑

x∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2]

for some finite constant C0. In particular, summing over q in Q and dividing by 2|ΛM |3, we obtain that

〈−L̃c
Mf,f

〉
νΛM,i

≤ C2

|ΛM |
∑
v∈V

∑
x,y∈ΛM

EνΛM,i

[{
f

(
ξx,y,v

) − f (ξ)
}2]

+ C2

∑
q∈Q

∑
x∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2]
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for some finite constant C2 depending on V . This expression is bounded by

C2
{〈−Lc

Mf,f
〉
νΛM,i

+ M2〈−Lex
Mf,f

〉
νΛM,i

}
in view of (6.1). This concludes the proof of the first statement of the lemma. We turn now to the second.

Fix x in ΛM and q = (u, v,u′, v′) in Q. An elementary computation shows that

F
(
ηx,q

) − F(η) = 1

Zq(η)

∑
x1,...,x4∈ΛM

E
[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}∣∣{Kv(η): v ∈ V

}]
,

where

Zq(η) = Ku(η)Kv(η)
(|ΛM | − Ku′

)(|ΛM | − Kv′
)
.

In particular, by Schwarz inequality,

EνΛM,i

[
p(x, q, η)

{
F

(
ηx,q

) − F(η)
}2]

≤
∑

x1,...,x4∈ΛM

EνΛM,i

[
p(x, q, η)

Zq(η)
E

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2∣∣{Kv(η): v ∈ V

}]]
.

Taking conditional expectation with respect to {Kv(η): v ∈ V }, summing over x q and dividing by 2, the previous
expression becomes

1

2|ΛM |3
∑
q∈Q

∑
x1,...,x4∈ΛM

EνΛM,i

[
p(x, q, ξ)

{
f

(
ξx,q

) − f (ξ)
}2] = 〈−L̃c

Mf,f
〉
νΛM,i

.

This concludes the proof of the lemma. �

Proof of Proposition 6.1. Fix M ≥ 1, i in VM and a function f in L2(νΛM,i). Denote the conditional expectation of
f with respect to K = {Kv,v ∈ V } by F(K):

F(K) = EνΛM,i

[
f |{Kv,v ∈ V }].

By orthogonality,

EνΛM,i[f ;f ] = EνΛM,i

[{
f − F(K)

}2] + EνΛM,i [F ;F ]. (6.2)

Using only the exclusion part of the dynamics, since particles jump uniformly over the cube ΛM with rate M−(d+2),
by [5],

EνΛM,i

[{
f − F(K)

}2] ≤ C0M
2〈f,−Lex

Mf
〉
νΛM,i

for some finite universal constant C0.
To estimate the second piece on the right-hand side of (6.2), note that the exclusion part is irrelevant, while the

Dirichlet form associated to the collision part can be written as

〈
F,−Lc

MF
〉
νΛM,i

= |ΛM |−3
∑
q∈Q

〈
KvKw

(|ΛM | − Kv′
)(|ΛM | − Kv′

){
F

(
Kq

) − F(K)
}2〉

νΛM,i
.

Denote by ΩM,i the state space of velocities on ΛM ,

ΩM,i =
{

K = (K1, . . . ,Kv):
∑

v

K = |ΛM |i
}
,
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and by ν̄ΛM,i the invariant state νΛM,i projected on ΩM,i. An elementary computation shows that

ν̄ΛM,i(K) = 1

ZM,i

∏
v∈V

( |ΛM |
Kv

)

for some renormalizing constant ZM,i.
Consider from now on Model I. Set |ΛM |i := (I0, . . . , Id). Suppose without loss of generality that K−ej

≤ Kej
for

1 ≤ j ≤ d and let Kj = K−ej
. Since Ij = Kej

− K−ej
, K can be recovered from i, Kj . We may, therefore, ignore

(Ke1 , . . . ,Ked
) and assume that (K1, . . . ,Kd) is evolving on the hyperplane

H = HM,i =
{
(K1, . . . ,Kd): Kj ≥ 0,2

∑
j

Kj = I0 −
∑
j

Ij

}
.

On the set H the measure ν̄ΛM,i becomes

ν̄ΛM,i(K1, . . . ,Kd) = 1

ZM,i

d∏
j=1

( |ΛM |
Kj

)( |ΛM |
Kj + Ij

)
.

For 0 ≤ n ≤ |ΛM | let

hn(a) =
( |ΛM | − a

1 + a

)( |ΛM | − (a + n)

1 + (a + n)

)
. (6.3)

hn is a strictly convex, strictly decreasing function in the interval [0, |ΛM | − n]. Moreover, for n < m, hn(a) < hm(a)

on the interval [0, |ΛM | − m].
Denote by dj the configuration of N

d with a unique particle at coordinate j . An elementary computation shows
that

ν̄(K + dj )

ν̄(K + dk)
≤ 1 if and only if hIj

(Kj ) ≤ hIk
(Kk), (6.4)

where summation is understood componentwise.
Denote by K̃ an ordered solution of (6.7) below and fix a function F in L2(ν̄ΛM,i). We have that

Eν̄ΛM,i[F ;F ] ≤ Eν̄ΛM,i

[{
F(K) − F(K̃)

}2]
. (6.5)

For each K in the hyperplane H, consider the following infinite path. Let K0 = K and assume that K0, . . . ,K�

have been defined. Let j0, k0 such that

hIk0

(
K�

k0
− 1

) = min
k

hIk

(
K�

k − 1
)
, hIj0

(
K�

j0

) = max
j

hIj

(
K�

j

)
. (6.6)

If K� is a solution of (6.7) (hIk0
(K�

k0
− 1) ≥ hIj0

(K�
j0

)), let K�+1 = K�; otherwise, let K�+1 = K� − dk0 + dj0 . In this

latter case, by (6.8), ν̄ΛM,i(K�) < ν̄ΛM,i(K�+1). Since H is finite and since ν̄ΛM,i(K�) decreases whenever K� is not a
solution of (6.7), the path reaches eventually a solution. The path can, therefore, be written as (K0, . . . ,K�0,K�0, . . .),
where K�0 solves (6.7) and ν̄ΛM,i(Km) < ν̄ΛM,i(Kn) for 0 ≤ m < n ≤ �0.

By the end of the proof of Lemma 6.3 below, there is a path from K�0 to K̃ of length less than or equal to d/2,
passing only by solutions of (6.7), and such that all configurations visited have the same probability. Juxtaposing the
two previous paths, we obtain the path Γ (K, K̃) = (K = K0, . . . ,K�0, . . . ,K�K = K̃), where � = �K stands for the
total length of the path. By construction, the probability of the configurations visited is nondecreasing.

We are now ready to estimate the right-hand side of (6.5). By Schwarz inequality,

Eν̄ΛM,i

[{
F(K) − F(K̃)

}2] ≤
∑

K

ν̄ΛM,i(K)�K

�K−1∑
j=0

{
F(Kj+1) − F(Kj )

}2
.
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Since we just need a polynomial bound on the spectral gap and since this method can not provide a sharp estimate, we
bound the length of a path �K by the total number of configurations |H| ≤ |ΛM |d . On the other hand, since ν̄ΛM,i(K) ≤
ν̄ΛM,i(Kj ), we may replace the former by the latter. Finally, inverting the order of summations and estimating the
total number of configurations which contains in its path to K̃ a fixed couple Kj , Kj+1 by the total number of
configurations, we get that the previous expression is less than or equal to

C0M
2d2 ∑

K

∑
L∼K

ν̄ΛM,i(K)
{
F(L) − F(K)

}2

for some universal constant C0. In this formula, the second sum is carried over all configurations L which can be
obtained from K by letting a particle jump from a site to another: L = K − dj + dk for some j �= k. By the explicit
formula for the Dirichlet form of F derived above, this expression is less than or equal to

C0M
3d+2d2 〈

F,−Lc
MF

〉
ν̄ΛM ,i

.

It remains to apply Lemma 6.2 to conclude the proof of the spectral gap. �

We conclude this section with a result used in the proof of Proposition 6.1.

Lemma 6.3. Fix i in VM such that I1 ≤ · · · ≤ Id , |ΛM |i := (I0, . . . , Id). The system of equations⎧⎨
⎩

hIk
(Kk − 1) ≥ hIj

(Kj ) for all 1 ≤ k, j ≤ d ,
2
∑

j Kj = I0 − ∑
j Ij ,

0 ≤ Kj ≤ |ΛM |, 1 ≤ j ≤ d ,
(6.7)

has a solution such that Kd ≤ · · · ≤ K1. Moreover, if K, L are two solutions of (6.7), then |Kj − Lj | ≤ 1 for all
1 ≤ j ≤ d and ν̄ΛM,i(K) = ν̄ΛM,i(L).

Proof. To prove the existence of a solution, recall from (6.4) that

ν̄(K + dj − dk)

ν̄(K)
≤ 1 if and only if hIj

(Kj ) ≤ hIk
(Kk − 1). (6.8)

Consider a configuration K∗ which maximizes the probability ν̄ΛM,i. The inequality on the left-hand side of the
previous displayed formula is satisfied for all j , k. In particular, K∗ solves (6.7).

Fix a solution of (6.7). We claim that Kj ≤ Ki if Ii < Ij . Assume by contradiction that Ki < Kj . In this case

hIi
(Ki) ≤ hIj

(Kj − 1) < hIi
(Kj − 1) ≤ hIi

(Ki), (6.9)

which is a contradiction. Here, the first inequality follows from the first property in (6.7) of K, the second from the
fact that hIj

< hIi
and the last from the relation Ki ≤ Kj − 1.

Suppose that Ii = Ij for some i < j and that Ki < Kj for a solution K of (6.7). Let K̃ be such that K̃k = Kk for
k �= i, j ; K̃i = Kj , K̃j = Ki . It is easy to check that K̃ is also a solution of (6.7). This observation together with the
estimate derived in the previous paragraph show that there exists a solution K of (6.7) with Kd ≤ · · · ≤ K1.

Finally, let K, L be two solutions of (6.7). Suppose by contradiction that Lj ≤ Kj − 2 for some j . Since
∑

j Kj =∑
j Lj , there exists i such that Ki < Li . In particular,

hIi
(Li − 1) ≤ hIi

(Ki) ≤ hIj
(Kj − 1) < hIj

(Lj ) ≤ hIi
(Li − 1). (6.10)

The first and third inequalities follow from the fact that hIi
, hIj

are strictly decreasing functions and the relations
Ki < Li , Lj < Kj − 1; while the second and fourth inequalities follow from the property of K, L. This proves the
first property of K, L.
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To prove the second property of K, L, consider a path from K to L: K = M0, . . . ,M� = L, for each 0 ≤ i < �,
M i+1 = M i +dj −dk for some j = j (i), k = k(i). It is not difficult to show that there exists such a path with � ≤ d/2,
M i solving (6.7) for all i.

Fix i and let M i = M , M i+1 = M + dj − dk , M i , M i+1 solving (6.7). Since M solves (6.7), hIj
(Mj ) ≤

hIk
(Mk −1). Using now that M +dj −dk solves (6.7), we obtain the reverse inequality so that hIj

(Mj ) = hIk
(Mk −1).

In particular, in view of (6.8), ν̄ΛM,i(M
i ) = ν̄ΛM,i(M

i+1). This concludes the proof of the lemma. �

7. Equivalence of ensembles

We prove in this section the equivalence of ensembles for the stochastic lattice gas introduced in Section 2. Recall the
definition of the set VL and of the canonical measures νΛL,i. Notice that for every λ in R

d+1

νΛL,i(·) = μ
ΛL

λ

(·|IL = i
)
.

For (ρ,p) in A the expectation of the one site random variable I(ηx) under the product measure μ
ΛL

Λ(ρ,p) is equal

to (ρ,p). It defines a map from A to the set of probability measures on ({0,1}V )ΛL . Since this map is uniformly
continuous, it may be extended continuously to the closure of A. For each i ∈ VL denote by μL

Λ(i) the corresponding
product measure by this map. Hence, we have a one-to-one correspondence between the canonical measures {νΛL,i: i ∈
VL} and the so-called grand canonical measures {μN

Λ(i): i ∈ VL}.
Let 〈g;f 〉μ stand for the covariance of g, f with respect to μ: 〈g;f 〉μ = Eμ[fg] − Eμ[f ]Eμ[g] and 〈f,g〉μ for

the inner product in L2(μ).

Proposition 7.1. Fix a cube Λ� ⊂ ΛL. For each i ∈ VL denote by ν� the projection of the canonical measure νΛL,i on
Λ� and by μ� the projection of the grand canonical measure μL

Λ(i) on Λ�. Then there exists a finite constant C(�, V ),
depending only on � and V , such that

∣∣Eμ�[f ] − Eν�[f ]∣∣ ≤ C(�, V )

|ΛL| 〈f ;f 〉1/2
μ�

for every f : ({0,1}V )Λ� �→ R.

Proof. Since ν� is absolutely continuous with respect to μ�, by Schwarz inequality,

∣∣Eν� [f ] − Eμ�[f ]∣∣ =
∣∣∣∣Eμ�

[(
dν�

dμ�

)(
f − Eμ�[f ])]∣∣∣∣

≤
〈

dν�

dμ�
; dν�

dμ�

〉1/2

μ�

〈f ;f 〉1/2
μ� .

Since μL
Λ(i) is a product measure, for any ξ in ({0,1}V )Λ� ,

dν�

dμ�
(ξ) = μL

Λ(i)[
∑

x∈ΛL\Λ�
I(ηx) = |ΛL|i − |Λ�|I�(ξ)]

μL
Λ(i)[

∑
x∈ΛL

I(ηx) = |ΛL|i] ,

where I�(ξ) = |Λ�|−1 ∑
x∈Λ�

I(ξx). Under μL
Λ(i), I(ηx) are i.i.d. random variables taking a finite number of values.

By Theorem VII.12 in [4], there exists a finite constant C0(�, V ), depending only on � and V , such that,∣∣∣∣ dν�

dμ�
(ξ) − 1

∣∣∣∣ ≤ C0(�, V )
1

|ΛL|
uniformly in ξ . This concludes the proof of the lemma. �
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