
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2008, Vol. 44, No. 3, 490–518
DOI: 10.1214/07-AIHP155
© Association des Publications de l’Institut Henri Poincaré, 2008

Quenched law of large numbers for branching Brownian motion
in a random medium

János Engländer

Department of Statistics and Applied Probability, University of California, Santa Barbara CA 93106-3110, USA.
E-mail: englander@pstat.ucsb.edu

Received 8 October 2006; revised 14 February 2007; accepted 13 March 2007

Abstract. We study a spatial branching model, where the underlying motion is d-dimensional (d ≥ 1) Brownian motion and the
branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this
paper is the quenched law of large numbers for the population for all d ≥ 1. We also show that the branching Brownian motion
with mild obstacles spreads less quickly than ordinary branching Brownian motion by giving an upper estimate on its speed. When
the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent
of the Poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well
as mild obstacle models for superprocesses are also discussed.

Résumé. Nous étudions un modèle de branchement spatial où le mouvement de base est Brownien d-dimensionnel (d ≥ 1) et le
taux de branchement est modifié par une collection aléatoire d’ensembles sur lesquels la reproduction n’a pas lieu (obstacles moux).
Le résultat principal de cet article est l’asymptotique (en probabilité) des taux de croissance globaux “quenchés” pour tout d ≥ 1,
et nous identifions les termes de correction sous-exponentielle. Nous montrons aussi que le branchement Brownien avec obstacles
moux diffuse moins vite que le branchement Brownien classique en donnant une borne supérieure de sa vitesse. Dans le cas où le
mouvement de base est un processus de diffusion arbitraire nous obtenons une dichotomie pour la croissance locale “quenchée”
qui est indépendante de l’intensité Poissonnienne. Le cas de distributions plus générales du nombre de descendants (autre que le
cas dyadique considéré dans les théorème principaux), ainsi que des modèles d’obstacles moux pour des superprocessus, sont aussi
discutés.

MSC: Primary 60J65; secondary 60J80; 60F10; 82B44
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1. Introduction

1.1. Model

The purpose of this article is to study a spatial branching model with the property that the branching rate is decreased
in a certain random region. More specifically we will use a natural model for the random environment: mild Poissonian
obstacles.

Let ω be a Poisson point process (PPP) on Rd with intensity ν > 0 and let P denote the corresponding law.
Furthermore, let a > 0 and 0 < β1 < β2 be fixed. We define the branching Brownian motion (BBM) with a mild
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Poissonian obstacle, or the ‘(ν,β1, β2, a)-BBM’ as follows. Let B(z, r) denote the open ball centered at z ∈ Rd with
radius r and let K denote the random set given by the a-neighborhood of ω:

K = Kω :=
⋃

xi∈supp(ω)

B(xi, a).

Then K is a mild obstacle configuration attached to ω. This means that given ω, we define P ω as the law of the strictly
dyadic (i.e. precisely two offspring) BBM on Rd, d ≥ 1, with spatially dependent branching rate

β(x,ω) := β11Kω(x) + β21Kc
ω
(x).

An equivalent (informal) definition is that as long as a particle is in Kc , it obeys the branching rule with rate β2, while
in K its reproduction is suppressed and it branches with the smaller rate β1. (We assume that the process starts with
a single particle at the origin.) The process under P ω is called a BBM with mild Poissonian obstacles and denoted
by Z. The total mass process will be denoted by |Z|. Further, W will denote d-dimensional Brownian motion with
probabilities {Px, x ∈ Rd}.

As usual, for 0 < γ ≤ 1 and for non-empty compact sets K ⊂ Rd define the set (Hölder-space) Cγ (K), as
the set of continuous bounded functions on K for which ‖f ‖Cγ := ‖f ‖∞ + |f |Cγ is finite, where |f |Cγ :=
supx∈K,h�=0

|f (x+h)−f (x)|
|h|γ . Then Cγ = Cγ (Rd) will denote the space of functions on Rd which, restricted on K,

are in Cγ (K) for all non-empty compact set K ⊂ Rd .
Finally, 	z
 will denote the integer part of z ∈ R: 	z
 := max{n ∈ Z | n ≤ z}.
The following obvious comparison between an ordinary ‘free’ BBM and the one with mild obstacles may be useful

to have in mind.

Remark 1 (Comparison). Let P̂ correspond to the ‘free’ BBM with branching rate β2 everywhere. Then for all t ≥ 0,
all B ⊆ Rd Borel, and all k ∈ N,

P ω
(
Zt(B) < k

)≥ P̂
(
Zt(B) < k

)
P-a.s.,

that is, the ‘free’ BBM is ‘everywhere stochastically larger’ than the BBM with mild obstacles, P-a.s.

1.2. Motivation

In this section we list some problems motivating the study of our particular setting.
(1) Poissonian obstacles. Topics concerning the survival asymptotics for a single Brownian particle among Pois-

sonian obstacles became a classic subject in the last twenty years, initiated by Sznitman, Bolthausen and others. It was
originally motivated by the celebrated ‘Wiener-sausage asymptotics’ of Donsker and Varadhan in 1975 and by math-
ematical physics, and the available literature today is huge – see the fundamental monograph [35] and the references
therein; see also e.g. [3,30,34] for more recent results.

(2) Spatial branching processes in a random environment. In [11] a model of a spatial branching process in a
random environment has been introduced. There, instead of mild obstacles, we introduced hard obstacles and instan-
taneous killing of the branching process once any particle hits the trap configuration K .

In [12] the model was further studied, and resulted in some unexpected results, and a similar model with ‘individual
killing rule’ was also suggested. Individual killing rule means that only the individual particle hitting K is eliminated
and so the process dies when the last particle has been absorbed. The difference between that model and the model
we consider in the present article is that now the killing mechanism is even ‘milder’ as it only suppresses temporarily
the reproduction of the individual particle but does not eliminate the particle.

(3) Law of large numbers. It is a notoriously hard problem to prove the law of large numbers (that is, that the
process behaves asymptotically as its expectation) for spatial branching systems – see e.g. [18] for a special case. In
our situation the scaling is not purely exponential. In general, the not precisely exponential case is difficult1 and it is
interesting that in our setup randomization will help in proving a kind of LLN – see more in Section 3.1.

1See for example the recent preprints [21] and [23].
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(4) Wavefronts in random medium. The spatial spread of our process is related to a work of Lee–Torcaso [31] on
wave-front propagation for a random KPP equation and to earlier work of Freidlin [24] on the KPP equation with
random coefficients – see Section 3.2 of this paper, and also [36] for a survey.

(5) Catalytic spatial branching. An alternative view on our setting is as follows. Arguably, the model can be viewed
as a catalytic BBM as well – the catalytic set is then Kc (in the sense that branching is ‘intensified’ there). Catalytic
spatial branching (mostly for superprocesses though) has been the subject of vigorous research in the last twenty
years initiated by Dawson, Fleischmann and others – see the survey papers [28] and [8] and references therein. In
those models the individual branching rates of particles moving in space depend on the amount of contact between
the particle (‘reactant’) and a certain random medium called the catalyst. The random medium is usually assumed
to be a ‘thin’ random set (that could even be just one point) or another superprocess. Sometimes ‘mutually’ or even
‘cyclically’ catalytic branching is considered [8].

Our model is simpler than most catalytic models as our catalytic/blocking areas are fixed, whereas in several
catalytic models they are moving. On the other hand, while for catalytic settings studied so far results were mostly
only qualitative we are aiming to get a quite sharp quantitative result.

For the discrete setting there are much fewer results available. One example2 is [26], where the branching particle
system on Zd is so that its branching is catalyzed by another autonomous particle system on Zd . There are two types of
particles, the A-particles (‘catalyst’) and the B-particles (‘reactant’). They move, branch and interact in the following
way. Let NA(x, s) and NB(x, s) denote the number of A- [resp. B-]particles at x ∈ Zd and at time s ∈ [0,∞). (All
NA(x,0) and NB(x,0), x ∈ Zd are independent Poisson variables with mean μA (μB ).)

Every A-particle (B-particle) performs independently a continuous-time random walk with jump rate DA (DB ).
In addition a B-particle dies at rate δ, and, when present at x at time s, it splits into two in the next ds time with
probability βNA(x, s)ds + o(ds). Conditionally on the system of the A-particles, the jumps, deaths and splitting of
the B-particles are independent. For large β the existence of a critical δ is shown separating local extinction regime
from local survival regime.

Remark 2 (Self-duality). The discrete setting has the advantage that when Rd is replaced by Zd , the difference
between the sets K and Kc is no longer relevant. Indeed, the equivalent of a Poisson trap configuration is an i.i.d.
trap configuration on the lattice, and then its complement is also i.i.d. (with a different parameter). So, in the discrete
case ‘Poissonian mild obstacles’ give the same type of model as ‘Poissonian catalysts’ would. This nice duality is lost
in the continuous setting as the ‘Swiss cheese’ Kc is not the same type of geometric object as K .

(6) Population models. It appears that our proposed model of a BBM with ‘mild’ obstacles has biological merit to
it (see Appendix B for more elaboration).

Returning to our mathematical model, consider the following natural questions (both in the annealed and the
quenched sense):

(1) What can we say about the growth of the total population size?
(2) What are the large deviations? (e.g., what is the probability of producing an atypically small population?)
(3) What can we say about the local population growth?

As far as (1) is concerned, recall that the total population of an ordinary (free) BBM grows a.s. and in expectation
as eβ2t . (Indeed, for ordinary BBM, the spatial component plays no role, and hence the total mass is just a β2-rate pure
birth process X. As is well known, the limit N := limt→∞ e−β2tXt exists a.s. and in mean, and P(0 < N < ∞) = 1.)
In our model of BBM with the reproduction blocking mechanism, how much will the suppressed branching in K

slow the global reproduction down? Will it actually change the exponent β2? (We will see that although the global
reproduction does slow down, the slowdown is captured by a sub-exponential factor, being different for the quenched
and the annealed case.)

Consider now (2). Here is an argument to give a further motivation. Let us assume for simplicity that β1 = 0 and
ask the simplest question: what is the probability that there is no branching at all up to time t > 0? In order to avoid
branching the first particle has to ‘resist’ the branching rate β2 inside Kc . Therefore this question is quite similar to the
survival asymptotics for a single Brownian motion among ‘soft obstacles’ – but of course in order to prevent branching

2A further example of the discrete setting is [2].



Branching Brownian motion in a random medium 493

the particle seeks for large islands covered by K rather than the usual ‘clearings.’ In other words, the particle now
prefers to avoid Kc instead of K . Hence, (2) above is a possible generalization of this (modified) soft obstacle problem
for a single particle, and the presence of branching creates new types of challenges.

As far as (3) is concerned, it will be shown to be related to the recent paper [15] which treats branching diffusions
on Euclidean domains.

An additional problem, regarding the spatial spread of the process, will be investigated using the result obtained
on the (quenched) growth of the total population size.

1.3. Outline

The rest of this article is organized as follows. The next section gives an overview on some facts that are easy to
derive from results in the literature. Section 3 presents the results, Theorems 1 and 2. Section 4 presents some further
problems, while Section 5 contains some preparations and also gives the short proofs of the preliminary claims. In
Section 6 the first main theorem is proven. Section 7 presents some additional problems – these problems are presented
separately because they refer to certain parts of the proof. In Section 8 we prove Theorem 2. In the first appendix we
explain how our mathematical setting relates to models in biology. Finally the second appendix presents a proof of a
statement which is needed in the proofs – we think the statement is of independent interest.

2. Some preliminary claims

In this section we state some results that are straightforward to derive from other results in the literature. The proofs
are provided in Section 5.

2.1. Expected global growth and dichotomy for local growth

Concerning the expected global growth rate we have the following result.

Claim 3 (Expected global growth rate). On a set of full P-measure,

Eω|Zt | = exp

[
β2t − c(d, ν)

t

(log t)2/d

(
1 + o(1)

)]
as t → ∞ (1)

(quenched asymptotics) and(
E ⊗ Eω

)|Zt | = exp
[
β2t − c̃(d, ν)td/(d+2)

(
1 + o(1)

)]
as t → ∞ (2)

(annealed asymptotics), where

c(d, ν) := λd

(
d

νωd

)−2/d

,

c̃(d, ν) := (νωd)2/(d+2)

(
d + 2

2

)(
2λd

d

)d/(d+2)

,

and ωd is the volume of the d-dimensional unit ball, while λd is the principal Dirichlet eigenvalue of − 1
2Δ on it.

Notice that:

(1) β1 does not appear in the formulas,
(2) the higher the dimension, the smaller the expected population size.

Remark 4 (The difference between the quenched and the annealed asymptotics; dimension). Let us pretend for a
moment that we are talking about an ordinary BBM. Then at time t one has eβ2t particles with probability tending
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to one as t → ∞ (the population size divided by eβ2t has a limit, to be precise). For t fixed take a ball B = B(0,R)

(here R = R(t)) and let K be so that B ⊂ Kc (such a ball left empty by K is called a clearing). Consider the expected
number of particles that are confined to B up to time t . These particles do not feel the blocking effect of K , while the
other particles may have not been born due to it.

Optimize R(t) with respect to the cost of having such a clearing and the probability of confining a single Brownian
motion to it. This is precisely the same optimization as for the classical Wiener-sausage. Hence one gets the expectation
in the theorem as a lower estimate.

One suspects that the main contribution in the expectation in (2) is coming from the expectation on the event of
having a clearing with optimal radius R(t). In other words, denoting by pt the probability that a single Brownian
particle stays in the R(t)-ball up to time t , one argues heuristically that pteβ2t particles will stay inside the clearing
up to time t ‘for free’ (i.e. with probability tending to one as t → ∞).

The intuitive reasoning is as follows. If we had independent particles instead of BBM, then, by a ‘Law of Large
Numbers type argument’ (using Chebyshev inequality and the fact that limt→∞ pteβ2 = ∞), roughly pteβ2t particles
out of the total eβ2t would stay in the R(t)-ball up to time t with probability tending to 1 as t ↑ ∞. One suspects
then that the lower estimate remains valid for the branching system too, because the particles are ‘not too much
correlated.’ This kind of argument (in the quenched case though) will be made precise in the proof of our main
theorem by estimating certain covariances.

To understand the difference between the annealed and the quenched case note that in the latter case large clearings
(far away) are automatically (that is, P-a.s.) present. Hence, similarly to the single Brownian particle problem, the
difference between the two asymptotics is due to the fact that even though there is an appropriate clearing far away
P-a.s., there is one around the origin with a small (but not too small) probability. Still, the two cases will have a similar
element when, in Theorem 1 we drop the expectations and investigate the process itself, and show that inside such a
clearing a large population is going to flourish (see the proof of Theorem 1 for more on this). This also leads to the
intuitive explanation for the decrease of the population size as the dimension increases. The radial drift in dimension
d is (d −1)/2. The more transient the motion (i.e., the larger d), the harder it is for particles to stay in the appropriate
clearings.

Concerning local population size we present the following (quenched) claim.

Claim 5 (Quenched exponential growth). The following holds on a set of full P-measure: For any ε > 0 and any
bounded open set ∅ �= B ⊂ Rd ,

P ω
μ

(
lim sup

t↑∞
e−(β2−ε)tZt (B) = ∞

)
> 0 and P ω

μ

(
lim sup

t↑∞
e−β2tZt (B) < ∞

)
= 1.

Problem 6. What can one say about the distribution of the global and the local population size? The quenched
asymptotics of the expected logarithmic global growth rate suggests that perhaps the rate itself is around β2 −
c(d, ν)(log t)−2/d at time t in some sense. This problem will be addressed in Section 3.1. We will prove an appropriate
formulation of the statement when the limit is meant in probability.

We now show how Claim 5 can be generalized for the case when the underlying motion is a diffusion. Let P be as
before but replace the Brownian motion by an L-diffusion X on Rd , where L is a second-order elliptic operator of the
form

L =
n∑

i,j=1

ai,j (x)
∂2

∂xi ∂xj

+
n∑

i=1

bi(x)
∂

∂xi

with ai,j , bi ∈ Cγ , γ ∈ [0,1), and the symmetric matrix ai,j (x) is positive definite for all x ∈ Rd . The branching
L-diffusion with the Poissonian obstacles can be defined analogously to the case of BM. To present the result, we
need an additional concept. Let

λc(L) = λc

(
L,Rd

) := inf
{
λ ∈ R: ∃u > 0 satisfying (L − λ)u = 0 in Rd

}
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denote the generalized principal eigenvalue for L on Rd . In fact λc ≤ 0, because L1 = 0 – see Section 4.4 in [32].
The following claim shows that the local behavior of the process exhibits a dichotomy. The crossover is given in

terms of the local branching rate β2 and the term λc(L): local extinction occurs when the branching rate inside the
‘free region’ Kc is not sufficiently large to compensate the transience of the underlying L-diffusion; if it is strong
enough, then local mass grows exponentially. Note an interesting feature of the result: neither β1 nor the intensity ν

of the obstacles play a role.

Claim 7 (Quenched exponential growth/local extinction). Given the environment ω, denote by P ω the law of the
branching L-diffusion.

(i) Let β2 > −λc(L) and let ν > 0 and β1 ∈ (0, β2) be arbitrary. Then the following holds on a set of full P-measure:
For any ε > 0 and any bounded open set ∅ �= B ⊂ Rd ,

P ω
(

lim sup
t↑∞

e(−β2−λc(L)+ε)tZt (B) = ∞
)

> 0

and

P ω
(

lim sup
t↑∞

e(−β2−λc(L))tZt (B) < ∞
)

= 1.

(ii) Let β2 ≤ −λc(L) and let ν > 0 and β1 ∈ (0, β2) be arbitrary. Then the following holds on a set of full P-measure:
For any bounded open set B ⊂ Rd there exists a P ω-a.s. finite random time t0 = t0(B) such that Xt(B) = 0 for
all t ≥ t0 (local extinction).

3. Results

3.1. Quenched asymptotics of global growth; LLN

In this section we investigate the behavior of the (quenched) global growth rate.
As already mentioned in the Introduction of this paper, it is a notoriously hard problem to prove the law of large

numbers for spatial branching systems, and, in general, the not purely exponential case is very challenging.
To elucidate this point, let us consider a branching diffusion with motion component corresponding to a second

order elliptic operator L on some Euclidean domain D ⊂ Rd and with spatially dependent (not identically zero)
branching rate β ≥ 0. Let 0 �≡ f be a nonnegative compactly supported bounded measurable function on D. If λc, the
generalized principal eigenvalue of L + β on D is positive and S = {St }t≥0 denotes the semigroup corresponding to
L + β on D, then (Stf )(·) grows (pointwise) as eλct on an exponential scale. However, in general, the scaling is not
precisely exponential due to the presence of a subexponential term.

Instead of discussing here the appropriate spectral conditions for having precisely exponential scaling we refer the
reader to Appendix A of [19] and note that in the present case it turns out that the resulting operator 1

2Δ + β does not
scale precisely exponentially P-a.s. Replacing f by the function g ≡ 1, it is still true that the growth is not precisely
exponential – this is readily seen in Claim 3 and its proof.

Since the process in expectation is related to the semigroup S, therefore purely exponential scaling indicates the
same type of scaling for the expectation of the process (locally or globally). It turns out that if one is interested in the
scaling of the process itself (not just the expectation), the case when there is an additional subexponential factor is
much harder (see e.g. [19] and references therein).

In the proof of Theorem 1 below it is the randomization of the branching rate β that helps, as β has some ‘nice’
properties for almost every environment ω, i.e. the ‘irregular’ branching rates ‘sit in the P-zero set.’

Define the average growth rate by

rt = rt (ω) := log |Zt(ω)|
t

.
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Replace now |Zt(ω)| by its expectation Zt := Eω|Zt(ω)| and define

r̂t = r̂t (ω) := logZt

t
.

Recall from Claim 1, that on a set of full P-measure,

lim
t→∞(log t)2/d (̂rt − β2) = −c(d, ν). (3)

We are going to show that an analogous statement holds for rt itself.

Theorem 1 (LLN). On a set of full P-measure,

lim
t→∞(log t)2/d(rt − β2) = −c(d, ν) in P ω-probability. (4)

One interprets Theorem 1 as a kind of quenched law of large numbers. Loosely speaking,

rt ≈ β2 − c(d, ν)(log t)−2/d ≈ r̂t , t → ∞,

on a set of full P-measure.

3.2. The spatial spread of the process

3.2.1. Introduction
L. Mytnik asked how much the speed (spatial spread) of free BBM reduces due to the presence of the mild obstacle
configuration. Note that we are not talking about the bulk of the population (or the ‘shape’) but rather about individual
particles traveling to very large distances from the origin (cf. Section 7).

As is well known, ordinary ‘free’ branching Brownian motion with constant branching rate β2 > 0 has radial speed√
2β2 (see the recent paper [29] for a review and a strong version of this statement). Let Nt denote the population

size at t ≥ 0 and let ξk (1 ≤ k ≤ Nt ) denote the position of the kth particle (with arbitrary labeling) in the population.
Furthermore, let m(t) denote a number for which u(t,m(t)) = 1

2 , where

u(t, x) := P
[

max
1≤k≤Nt

∥∥ξk(t)
∥∥≤ x

]
.

In his classic paper, Bramson [5] considered the one-dimensional case and proved that as t → ∞,

m(t) = t
√

2β2 − 3

2
√

2β2
log t +O(1). (5)

Since the one-dimensional projection of a d-dimensional branching Brownian motion is a one-dimensional branching
Brownian motion, we can utilize Bramson’s result for the higher dimensional cases too. Namely, it is clear, that in
high dimension the spread is at least as quick as in (5). In [5] the asymptotics (5) is derived for the case β2 = 1; the
general result can be obtained similarly. See also p. 438 in [24]. (It is also interesting to take a look at [4].) Studying
the function u has significance in analysis too as u solves

∂u

∂t
= 1

2
uxx + β2

(
u2 − u

)
, (6)

with initial condition

u(0, ·) = 1[0,∞)(·). (7)

In this section we show that the branching Brownian motion with mild obstacles spreads less quickly than ordinary
branching Brownian motion by giving an upper estimate on its speed.
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A related result was obtained earlier by Lee and Torcaso [31], but, unlike in (5), only up to the linear term and
moreover, for random walks instead of Brownian motions. The approach in [31] is to consider the problem as the
description of wavefront propagation for a random KPP equation. They extended a result of Freidlin and Gärtner for
KPP wave fronts to the case d ≥ 2 for i.i.d. random media. In [31] the wavefront propagation speed is attained for the
discrete-space (lattice) KPP using a large deviation approach. Note that the ‘speed’ is only defined in a logarithmic
sense. More precisely, let u denote the solution of the discrete-space KPP equation with an initial condition that
vanishes everywhere except the origin. The authors define a bivariate function F on R × Rd \ {0} and show that it
satisfies

lim
t→∞

1

t
logu(t, tve) = −[F(v, e) ∨ 0

]
,

for all v > 0 and e ∈ Rd \ {0}. It turns out that there is a unique solution v = ve to F(v, e) = 0, and ve defines the
‘wave speed.’ In particular, the speed is non-random.

Unfortunately, it does not seem to be easy to evaluate the variational formula for ve given in [31], even in very
simple cases.

It should be pointed out that the problem is greatly simplified for d = 1 and it had already been investigated by
Freidlin in his classic text [24] (the KPP equation with random coefficients is treated in Section VII.7.7.). Again,
it does not seem clear whether one can easily extract an explicit result for the speed of a branching RW with i.i.d.
branching coefficients which can only take two values, 0 < β1 < β2 (bistable nonlinear term).

The description of wavefronts in random medium for d > 1 is still an open and very interesting problem. The above
work of Torcaso and Lee concerning processes on Zd is the only relevant article we are aware of. To the best of our
knowledge, the problem is open; it is of special interest for a bistable nonlinear term.

Before turning to the upper estimate, we discuss the lower estimate.

3.2.2. On the lower estimate on the radial speed
We are going to show that, if in our model Brownian motion is replaced by Brownian motion with constant drift γ in
a given direction, then any fixed non-empty ball is recharged infinitely often with positive probability, as long as the
drift satisfies |γ | < √

2β2.
For simplicity, assume that d = 1 (the general case is similar). Fix the environment ω. Recall Doob’s h-transform

of second-order elliptic operators:

Lh(·) := 1

h
L(h ·).

Applying an h-transform with h(x) := exp(−γ x), a straightforward computation shows that the operator

L := 1

2

d2

dx2
+ γ

d

dx
+ β2

transforms into

Lh = 1

2

d2

dx2
− γ 2

2
+ β2.

Then, similarly to the proof of Claim 7, one can show that the generalized principal eigenvalue for this latter operator

is − γ 2

2 +β2 for almost every environment. Since the generalized principal eigenvalue is invariant under h-transforms,

it follows that − γ 2

2 + β2 > 0 is the generalized principal eigenvalue of L. Hence, by Lemma 10, any fixed non-empty
interval is recharged infinitely often with positive probability.

Turning back to our original setting, the application of the ‘spine’-technology seems also promising.
Roughly speaking, the spine method uses a Girsanov-type change of measure on the branching diffusion. On

one hand, the Girsanov density is a known (mean-one) martingale, for which the question of uniform integrability
can be checked. On the other hand, under the new measure, the process can be represented ‘directly’ by a ‘spine’
or ‘backbone’ type construction. The ‘spine’ represents a special ‘deviant’ particle performing a motion which has
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important properties from the point of view of the problem regarding the original branching process. The question
regarding ‘going back to the original measure’ is then related to the UI property of the martingale. (See [25,29] and
references therein.)

In our case it is probably not very difficult to show the existence of a ‘spine’ particle (under a martingale-change
of measure) that has drift γ as long as |γ | < √

2β2.

3.2.3. An upper estimate on the radial speed
Our main result in this section is an upper estimate on the speed of the process. We give an upper estimate in which the
order of the correction term is larger than the O(log t) term appearing in Bramson’s result, namely it is O

(
t

(log t)2/d

)
.

(All orders are meant for t → ∞.) We show that, loosely speaking, at time t the spread of the process is not more than

t
√

2β2 − c(d, ν)

√
β2

2
· t

(log t)2/d
.

(Again, β1 plays no role as long as β1 ∈ (0, β2).) The precise statement is as follows.

Theorem 2. Define the functions

f (t) := c(d, ν)
t

(log t)2/d
and n(t) := t

√
2β2 ·

√
1 − f (t)

β2t
,

where we recall that c(d, ν) := λd(
νωd

d
)2/d and ωd is the volume of the d-dimensional unit ball, while λd is the

principal Dirichlet eigenvalue of − 1
2Δ on it. Then

n(t) = t
√

2β2 − c(d, ν)

√
β2

2
· t

(log t)2/d
+O
(

t

(log t)4/d

)
. (8)

Furthermore, if

At := {no particle has left the n(t) – ball up to t}

=
{ ⋃

0≤s≤t

supp(Zs) ⊆ B
(
0, n(t)

)}
,

then on a set of full P-measure,

lim inf
t→∞ P ω(At ) > 0. (9)

4. Further problems

In this section we suggest some further problems and directions for research.

4.1. More general branching

It should also be investigated, what happens when the dyadic branching law is replaced by a general one (but the
random branching rate is as before). In a more sophisticated population model, particles can also die – then the
obstacles do not necessarily reduce the population size as they sometimes prevent death.

4.1.1. Supercritical branching
When the offspring distribution is supercritical, the method of our paper seems to work, although when the offspring
number can also be zero, one has to condition on survival for getting the asymptotic behavior.
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4.1.2. (Sub)critical branching
Critical branching requires an approach very different from the supercritical one, since taking expectations now does
not provide a clue: Eω|Zt(ω)| = 1, ∀t > 0, ∀ω ∈ Ω .

Having the obstacles, the first question is whether it is still true that

P ω(extinction) = 1 ∀ω ∈ Ω.

The answer is yes. To see this, note that since |Z| is still a martingale, it has a nonnegative a.s. limit. This limit must be
zero; otherwise |Z| would stabilize at a positive integer. This, however, is impossible because following one Brownian
particle it is obvious that this particle experiences branching events for arbitrarily large times.

Setting β1 = 0, the previous argument still goes through. Let τ denote the almost surely finite extinction time for
this case. One of the basic questions is the decay rate for P ω(τ > t). Will the tail be significantly heavier than O(1/t)?
(Of course 1/t would be the rate without obstacles.)

The subcritical case can be treated in a similar fashion. In particular, the total mass is a supermartingale and
P ω(extinction) = 1 ∀ω ∈ Ω.

4.2. Superprocesses with mild obstacles

A further goal is to generalize the setting by defining superprocesses with mild obstacles analogously to the BBM
with mild obstacles. Recall the concept of an (L,β,α)-superdiffusion: Let Mf denote the set of finite measures μ on
Rd and let α,β denote functions in the Hölder space Cγ satisfying α > 0 and supx∈Rd β(x) < ∞.

Notation 8. Let (X,Pμ , μ ∈ Mf) denote the (L,β,α)-superdiffusion. That is, X is the unique Mf-valued (time-
homogeneous) continuous Markov process which satisfies, for any bounded continuous g : Rd �→ R+ ,

Eμ exp〈Xt ,−g〉 = exp

(
−
∫

Rd

μ(dx) u(t, x)

)
, (10)

where u is the minimal nonnegative solution to

∂

∂t
u = Lu + βu − αu2 on Rd × (0,∞),

limt→0+ u(t, ·) = g(·).

}
(11)

(Here 〈ν,f 〉 denotes the integral
∫

Rd ν(dx)f (x).)

One usually refers to L as migration, β as mass creation and α as the intensity parameter (or variance).
In fact, X also arises as the short life time and high density diffusion limit of a branching particle system, which

can be described as follows: in the nth approximation step each particle has mass 1/n and lives a random time which
is exponential with mean 1/n. While a particle is alive, its motion is described by a diffusion process corresponding
to the operator L. At the end of its life, the particle dies and is replaced by a random number of particles situated at the
parent particle’s final position. The distribution of the number of descendants is spatially varying such that the mean
number of descendants is 1 + β(x)

n
, while the variance is assumed to be 2α(x). All these mechanisms are independent

of each other.
The definition of the superprocess with mild obstacles is straightforward: the parameter α on the (random) set K

is smaller than elsewhere.
Similarly, one can consider the case when instead of α, the ‘mass creation term’ β is random, for example with β

defined in the same way (or with a mollified version) as for the discrete branching particle system. Denote now by
P ω the law of this latter superprocess for a given environment. We suspect that the superprocess with mild obstacles
behaves similarly to the discrete branching process with mild obstacles when λc(L + β) > 0 and P ω(·) is replaced
by P ω(·|X survives). The upper estimate can be carried out in a manner similar to the discrete particle system, as the
expectation formula is still in force for superprocesses.

As we have already pointed out, there is a large amount of ongoing research on catalytic superprocesses; α is
usually taken as a thin (sometimes randomly moving) set, or even another superprocess. In those models, one usually
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cannot derive sharp quantitative results. In a very simple one-dimensional model, introduced in [13], β was spatially
varying but deterministic and non-moving – in fact it was the Dirac delta at zero. Nevertheless, already in this simple
model it was quite challenging to prove the asymptotic behavior of the process (Theorem 2 in [18]). Fleischmann,
Mueller and Vogt suggest, as an open problem, the description of the asymptotic behavior of the process in the three-
dimensional case [23]; the two-dimensional case is even harder, as getting the asymptotics of the expectation is already
difficult. As we have mentioned, the randomization of β may help in the sense that β has some ‘nice’ properties for
almost every environment ω.

5. Preparations

In this section we present some preparatory lemmas and also the proofs of the preliminary claims.

Lemma 9 (Expectation given by Brownian functional). Fix ω. Then

Eω|Zt | = E exp

[∫ t

0
β(Ws)

]
ds. (12)

Proof. It is well known (‘first moment formula’ of spatial branching processes3; see, for instance (1.50a) in [10]),
that Eω

x |Zt | = (Tt1)(x), where u(x, t) := (Tt1)(x) is the minimal solution of the parabolic problem:

∂u

∂t
=
(

1

2
Δ + β

)
u on Rd × (0,∞),

u(·,0) = 1, (13)

u ≥ 0.

(Here {Tt }t≥0 denotes of course the semigroup corresponding to the generator 1
2Δ + β on Rd .) This is equivalent (by

the Feynman–Kac formula) to (12). �

We will also need the following result: Let D ⊆ Rd be a (non-empty) domain and let 0 ≤ V , 0 �≡ V be bounded
from above and in Cγ (D), γ ∈ (0,1]. The (binary) (L,V )-branching diffusion (or more precisely, the (L,V ;D)-
branching diffusion) is the Markov process with motion component Y and with spatially dependent branching rate V ,
replacing particles by precisely two offspring when branching. At each time t > 0, the process consists of a point
process Xt defined on Borel sets of D.

Lemma 10 ([15], Theorem 3). Given D, let P denote the law of the (L,V )-branching diffusion X and let λc :=
λc(L + V ).

(i) Under P the process X exhibits local extinction if and only if λc ≤ 0.
(ii) When λc > 0, for any λ < λc and any open ∅ �= B ⊂⊂ D, one has4

Pμ

(
lim sup

t↑∞
e−λtXt (B) = ∞

)
> 0 and Pμ

(
lim sup

t↑∞
e−λctXt (B) < ∞

)
= 1.

5.1. Proof of Lemma 9

Since β := β11K + β21Kc = β2 − (β2 − β1)1K , we can rewrite the equation (12) as

Eω|Zt | = eβ2tE exp

[
−
∫ t

0
(β2 − β1)1K(Ws)ds

]
.

3The statements and their derivations are the same for branching processes and superprocesses.
4B ⊂⊂ D means that B is bounded and its closure B satisfies B ⊂ D.
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The expectation on the right-hand side is precisely the survival probability among soft obstacles of ‘height’ β2 − β1,
except that we do not sum the shape functions on the overlapping balls. However this does not make any difference
with regard to the asymptotics (see [35], Remark 4.2.2.). The statements thus follow from the well known Donsker–
Varadhan type ‘Wiener asymptotics’ for soft obstacles (see [35], Theorems 4.5.1. and 4.5.3.; see also [9]).

5.2. Proof of Claim 5

Since in this case L = Δ/2 and since λc(Δ/2,Rd) = 0, the statement immediately follows from Claim 7.

5.3. Proof of Claim 7

In order to be able to use Lemma 10, we compare the rate β with another, smooth (i.e. Cγ ) function V . Recalling that
K = Kω :=⋃xi∈supp(ω) B(xi, a), let us enlarge the obstacles:

K∗ = K∗
ω :=

⋃
xi∈supp(ω)

B(xi,2a).

Then (K∗)c ⊂ Kc . Recall that β(x) := β11K(x) + β21Kc(x) ≤ β2 and let V ∈ Cγ (γ ∈ (0,1]) with

β21(K∗)c ≤ V ≤ β. (14)

(The existence of a continuous function satisfying (14) would of course immediately follow from Uryson’s lemma
(Lemma 4.4 in [27]). In fact it is easy to see the existence of such functions which are even C∞ by writing β =
β2 −(β2 −β1)1K and considering the function V := β2 −(β2 −β1)f , where f ≥ 1K∗ and f is a C∞-function obtained
as follows. f is a sum of compactly supported C∞-functions fn, n ≥ 1, with disjoint support, where supp(fn) is in the
εn-neighborhood of the nth connected component of 1K∗ , with appropriately small 0 < εn’s.) Consider the operator
L + V on Rd and let λc = λc(ω) denote its generalized principal eigenvalue. Since V ∈ Cγ , we are in the setting of
Chapter 4 in [32] and Lemma 10. In particular, since V ≤ β2, one has λc ≤ λc(L)+β2 for every ω (see Theorem 4.4.4
in [32]).

On the other hand, one gets a lower estimate on λc as follows. Fix R > 0. Since β21(K∗)c ≤ V , by the homogene-
ity of the Poisson point process, for almost every environment the set {x ∈ Rd | V (x) = β2} contains a clearing of
radius R. Hence, by comparison, λc ≥ λ(R), where λ(R) is the principal Dirichlet eigenvalue of L + β2 on a ball of ra-
dius R. Since R can be chosen arbitrarily large and since limR↑∞ λ(R) = λc(L)+β2, we conclude that λc ≥ λc(L)+β2
for almost every environment.

From the lower and upper estimates, we obtain that

λc = λc(L) + β2 for a.e. ω. (15)

Consider now the branching processes with the same motion component L but with rate V , respectively constant
rate β2. The statements (i) and (ii) of Claim 7 are true for these two processes by (15) and Lemma 10. As far as the
original process (with rate β) is concerned, (i) and (ii) of Claim 7 now follow by ω-wise comparison.

6. Proof of Theorem 1

We give an upper and a lower estimate separately.

6.1. Upper estimate

Let ε > 0. Using the Markov inequality along with the expectation formula (1), we have that on a set of full P-measure:

P ω
[
(log t)2/d(rt − β2) + c(d, ν) > ε

]
= P ω

{|Zt | > exp
[
t
(
β2 − c(d, ν)(log t)−2/d + ε(log t)−2/d

)]}
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≤ Eω|Zt | ·
(
exp
[
t
(
β2 − c(d, ν)(log t)−2/d + ε(log t)−2/d

)])−1

= exp
[−εt (log t)−2/d + o

(
t (log t)−2/d

)]→ 0 as t → ∞.

6.2. Lower estimate

We give a ‘bootstrap argument’: we first prove a weaker estimate which we will later use to prove the stronger result.
For better readability, we broke the relatively long proof into three parts.

6.2.1. Part I: A rough exponential lower estimate
Let 0 < δ < β2. Then on a set of full P-measure

lim
t→∞P ω

(|Zt | ≥ eδt
)= 1. (16)

To prove (16), we invoke the definition of the function V from Section 5.3: V ∈ Cγ (γ ∈ (0,1]) with

β21(K∗)c ≤ V ≤ β. (17)

(Recall that β(x) := β11K(x) + β21Kc(x).) By comparison, it is enough to prove (16) for the ‘smooth version’ of the
process, where β is replaced by V . The law of this modified process will be denoted by P V (and the notation Z is
unchanged).

Considering the operator L + V on Rd we have seen in Section 7 that its generalized principal eigenvalue is
λc(Δ;Rd) + β2 = β2 for every ω.

Take R > 0 large enough so that λc = λc(
1
2Δ + V ;B(0,R)), the principal eigenvalue of 1

2Δ + V on B(0,R)

satisfies

λc > δ.

Let ẐR be the process obtained from Z by introducing killing at ∂B(0,R) (the corresponding law will be denoted
by P

(R)
x ). Then

lim
t→∞P V

(|Zt | < eδt
)≤ lim

t→∞P (R)
(∣∣ẐR

t

∣∣< eδt
)
. (18)

Let 0 ≤ φ = φR be the Dirichlet eigenfunction corresponding to λc on B(0,R), and normalize it by
supx∈B(0,R) φ(x) = 1. Then we can continue inequality (18) with

≤ lim
t→∞P (R)

(〈
ẐR

t , φ
〉
< eδt

)
,

where 〈ẐR
t , φ〉 :=∑i φ(Ẑ

R,i
t ) and {ẐR,i

t } is the ‘ith particle’ in ẐR
t . Notice that Mt = M

φ
t := e−λct 〈ẐR

t , φ〉 is a
nonnegative martingale (see p. 84 in [15]), and define

N := lim
t→∞Mt.

Since λc(B(0,R)) > δ, and thus limt→∞ P (R)(Mt < e(δ−λc)t ∩ {N > 0}) = 0, the estimate is then continued as

= lim
t→∞P (R)

(
Mt < e(δ−λc)t |N = 0

)
P (R)(N = 0) ≤ P (R)(N = 0).

We have that

lim
t→∞P V

(|Zt | < eδt
)≤ P (R)(N = 0)

holds for all R large enough. Therefore, in order to prove (16), it is sufficient to show that

lim
R→∞P (R)(N > 0) = 1. (19)
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Consider now the elliptic boundary value problem (which of course depends on K),

1

2
Δu + V

(
u − u2)= 0 in B(0,R),

lim
x→∂B(0,R)

u(x) = 0, (20)

u > 0 in B(0,R).

The existence of a solution follows from the fact that λc > 0 by an analytical argument given in [33] pp. 262 and
263. (The proof of the existence of such a u relies on finding so-called lower and upper solutions. The assumption
λc > 0 enters the stage when a positive lower solution is constructed.) Uniqueness follows by the semilinear maximum
principle (Proposition 7.1 in [16]).

The argument below gives a probabilistic construction for the solution. Namely, we show that wR(x) :=
P

(R)
x (N > 0) solves (20). To see this, let v = vR := 1 − wR . Let us fix an arbitrary time t > 0. Using the Markov

and branching properties of Z at time t , it is straightforward to show that

P (R)(N = 0|Ft ) =
∏
i

P
(R)

Ẑ
R,i
t

(N = 0).

Since the left hand-side of this equation defines a P (R)-martingale in t , so does the right-hand side. That is

M̃t :=
∏
i

v
(
Ẑ

R,i
t

)
defines a martingale. From this, it follows by Theorem 17 of [14] that v solves the equation obtained from the first
equation of (20) by switching u − u2 to u2 − u. Consequently, wR(x) := P

(R)
x (N > 0) solves the first equation of

(20) itself. That wR solves the second equation, follows easily from the continuity of Brownian motion. Finally its
positivity (the third equation of (20)) follows again from the fact that λc > 0 (see Lemma 6 in [15]).

By the semilinear elliptic maximum principle (Proposition 7.1 in [16]; see also [33]), wR(·) is monotone increasing
in R. Using standard arguments, one can show that 0 < w := limR→∞ wR too solves the equation in array (20) (see
the proof of Theorem 1 in [33]).

Applying the strong maximum principle to v := 1 − w, it follows that w is either one everywhere or less than one
everywhere. We now suppose that 0 < w < 1 and will get a contradiction.

When d ≤ 2, this is simple. We have

1

2
Δw = V

(
w2 − w

)
� 0 in Rd ,

(Δw is nonnegative and not identically zero) and this contradicts the recurrence of the Brownian motion in one and
two dimensions, because it is known that if L corresponds to a recurrent diffusion then there is no positive function
w satisfying Lw � 0 (see Theorem 4.3.9 in [32]). This contradiction proves that in fact w = 1 and consequently it
proves (16).

Consider now the problem

1

2
Δu + V

(
u − u2)= 0 in Rd,

(21)
0 < u < 1.

The nonexistence of solutions in the general d ≥ 1 case is more subtle than for d ≤ 2. It follows from the fact that β

is bounded from below by β1 along with Theorem 1.1 and Remark 2.4 in [17] (set g ≡ β1 in Remark 2.4 in [17]).
We have now shown (16) and completed the first part of our ‘bootstrap’ proof.
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6.2.2. Part II: Scaling for the refined lower estimate
Let us return to the proof of the lower estimate in Theorem 1. Let ε > 0. We have to show that on a set of full
P-measure,

lim
t→∞P ω

[
(log t)2/d(rt − β2) + c(d, ν) < −ε

]= 0. (22)

To achieve this, we will define a particular function pt (the definition is given in (31)) satisfying that as t → ∞,

pt = exp

[
−c(d, ν)

t

(log t)2/d
+ o

(
t

(log t)2/d

)]
. (23)

Using this function we are going to show a statement implying (22), namely, that for all ε > 0 there is a set of full
P-measure, where

lim
t→∞P ω

[
log |Zt | < β2t + logpt − εt (log t)−2/d

]= 0. (24)

Let us first give an outline of the strategy of our proof. A key step will be introducing three different time scales, �(t),
m(t) and t where �(t) = o(m(t)) and m(t) = o(t) as t → ∞. For the first, shortest time interval, we will use that
there are ‘many’ particles produced and they are not moving ‘too far away,’ for the second (of length m(t) − �(t)) we
will use that one particle moves into a clearing of a certain size at a certain distance, and in the third one (of length
t −m(t)) we will use that there is a branching tree emanating from that particle so that a certain proportion of particles
of that tree stay in the clearing with probability tending to one.

To carry out this program, first recall the following fact (for example see Lemma 4.5.2 in the proof of Theorem 4.5.1
in [35]): Let

R0 = R0(d, ν) :=
√

λd

c(d, ν)
=
(

d

νωd

)1/d

(recall that λd is the principal Dirichlet eigenvalue of − 1
2Δ on the d-dimensional unit ball, and ωd is the volume of

that ball) and let

ρ(l) := R0(log l)1/d − (log log l)2, l > 1. (25)

Then,

P
(∃l0(ω) > 0 such that ∀l > l0(ω) ∃ clearing B

(
x0, ρ(l)

)
with |x0| ≤ l

)= 1. (26)

Next, let � and m be two functions R+ → R+ satisfying the following:

(i) limt→∞ �(t) = ∞,

(ii) limt→∞ log t
log�(t)

= 1,

(iii) �(t) = o(m(t)) as t → ∞,

(iv) m(t) = o(�2(t)) as t → ∞,

(v) m(t) = o(t (log t)−2/d) as t → ∞.

Note that (i)–(v) are in fact not independent, because (iv) follows from (ii) and (v). For example the following choices
of � and m satisfy (i)–(v): let �(t) and m(t) be arbitrarily defined for t ∈ [0, e], and

�(t) := t1−1/(log log t), m(t) := t1−1/(2 log log t) for t ≥ t0 > e.

For concreteness, let us fix these choices and note that ρ is monotone increasing for large t .
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6.2.3. Part III: Completing the refined lower estimate
Fix δ ∈ (0, β2) and define

I (t) := ⌊ exp
(
δ�(t)
)⌋

.

Let At denote the following event:

At := {|Z�(t)| ≥ I (t)
}
.

By (16) we know that on a set of full P-measure,

lim
t→∞P ω(At ) = 1. (27)

By (27), for t fixed we can work on At ⊂ Ω and consider I (t) many particles at time �(t).
As a next step, we need some control on their spatial position. To achieve this, use Remark 1 to compare BBM’s

with and without obstacles, and then, use the following result taken from Proposition 2.3 in [12] (the stronger, a.s.
result is proved in [29]).

Denote Z the BBM without obstacles (and hence with rate β2) starting at the origin with a single particle. Let
R(t) =⋃s∈[0,t] supp(Z(s)) denote the range of Z up to time t . Let

M(t) = inf
{
r > 0: R(t) ⊆ B(0, r)

}
for d ≥ 1, (28)

be the radius of the minimal ball containing R(t). Then M(t)/t converges to
√

2β2 in probability as t → ∞.
Going back to the set of I (t) many particles at time �(t), (28) yields that even though they are at different locations,

still for any ε′ > 0, with P ω-probability tending to one, they are all inside the (
√

2β2 + ε′)�(t)-ball.
Define

ρ(t) = ρ
(
�(t)
) := R0

[
log�(t)

]1/d − [log log�(t)
]2 for t ≥ t0 > ee.

Recall (26). With P-probability one there is a clearing B = B(x0, ρ(t)) such that |x0| ≤ �(t), for all large enough
t > 0. In the sequel we will assume the ‘worst case,’ when |x0| = �(t). Indeed, it is easy to see that |x0| < �(t) would
help in all the arguments below. (Of course, x0 depends on t , but this dependence is suppressed in our notation.) By
the previous paragraph, with P ω-probability tending to one, the distance of x0 from each of the I (t) many particles
is at most(

1 +√2β2 + ε′)�(t).
Now, any such particle moves to B(x0,1) in another m(t) − �(t) time with probability qt , where (using (iii) and (iv)
along with the Gaussian density)

qt = exp

(
−[(1 + √

2β2 + ε′)�(t)]2

2[m(t) − �(t)] + o

( [(1 + √
2β2 + ε′)�(t)]2

2[m(t) − �(t)]
))

→ 0 as t → ∞.

Let the particle positions at time �(t) be z1, z2, . . . , zI (t) and consider the independent system of Brownian particles{
Wzi

; i = 1,2, . . . , I (t)
}
,

where Wzi
(0) = zi; i = 1,2, . . . , I (t). In other words, {Wzi

; i = 1,2, . . . , I (t)} just describes the evolution of the I (t)

particles picked at time �(t) without respect to their possible further descendants and (using the Markov property) by
resetting the clock at time �(t).

Let Ct denote the following event:

Ct := {∃i ∈ {1,2, . . . , I (t)
}
, ∃0 ≤ s ≤ m(t) − �(t) such that Wzi

(s) ∈ B(x0,1)
}
.
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By the independence of the particles,

lim sup
t→∞

P ω
(
Cc

t |At

)= lim sup
t→∞

(1 − qt )
I (t) = lim sup

t→∞
[
(1 − qt )

1/qt
]qt I (t)

. (29)

Since (iii) implies that �2(t)
m(t)

= o(�(t)) as t → ∞ and since (i) is assumed, one has

qte
δ�(t) = exp

(
−[�(t) + (

√
2β2 + ε′)�(t)]2

2[m(t) − �(t)] + δ�(t) + o
(
�(t)
))→ ∞ as t → ∞.

In view of this, (29) implies that limt→∞ P ω(Cc
t |At) = 0. Using this along with (27), it follows that on a set of full

P-measure,

lim
t→∞P ω(Ct ) = 1. (30)

Once we know (30), we proceed as follows. Recall that B = B(x0, ρ(t)) and that {Px; x ∈ Rd} denote the probabilities
corresponding to a single generic Brownian particle W (being different from the Wzi

above). Let σ
x0
B denote the first

exit time from B:

σ
x0
B = σ

x0
B(x0,ρ(t)) := inf{s ≥ 0 | Ws /∈ B}.

Abbreviate t∗ := t − m(t) and define

pt := sup
x∈B(x0,1)

Px

(
σ

x0
B ≥ t∗

)= sup
x∈B(0,1)

Px

(
σB ≥ t∗

)
, (31)

where σB := σ 0
B . Recall that the radius of B is

ρ(t) = R0
[
log�(t)

]1/d − o
([

log�(t)
]1/d)=√ λd

c(d, ν)

[
log�(t)

]1/d − o
([

log�(t)
]1/d)

,

and recall the definition of λd from Claim 3. Then, as t → ∞,

pt = exp

[
−λd · t∗

ρ2(t)
+ o

(
λd · t∗
ρ2(t)

)]
= exp

[
−c(d, ν)

t∗

[log �(t)]2/d
+ o

(
t∗

[log�(t)]2/d

)]
. (32)

Using (ii) and (v), it follows that in fact

pt = exp

[
−c(d, ν)

t

(log t)2/d
+ o

(
t

(log t)2/d

)]
. (33)

A little later we will also need the following notation:

pt
s := sup

x∈B(x0,1)

Px

(
σ

x0
B ≥ s

)= sup
x∈B(0,1)

Px(σB ≥ s), (34)

with this notation,

pt = pt
t∗ .

By slightly changing the notation, let Zx denote the BBM starting with a single particle at x ∈ B; and let Zx,B

denote the BBM starting with a single particle at x ∈ B and with absorbtion at ∂B (and still branching at the boundary
at rate β2).

Since branching does not depend on motion, |Zx,B | is a non-spatial Yule’s process (and of course it does not depend
on x) and thus for all x ∈ B ,

∃N := lim
t→∞ e−β2t

∣∣Zx,B
t

∣∣> 0 (35)
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almost surely (see Theorems III.7.1–2 in [1]).
Note that some particles of Zx may re-enter B after exiting, whereas for Zx,B that may not happen. Thus, by

a simple coupling argument, one has that for all t ≥ 0, the random variable |Zx
t (B)| is stochastically larger than

|Zx,B
t (B)|.
Recall that our goal is to show (24), and recall also (31) and (33). In fact, we will prove the following, somewhat

stronger version of (24): we will show that if the function γ : [0,∞) → [0,∞) satisfies limt→∞ γt = 0, then on a set
of full P-measure,

lim
t→∞P ω

(|Zt | < γt · eβ2t
∗
pt

)= 0. (36)

Recalling t∗ = t − m(t), and setting

γt := exp

(
m(t) − ε

t

(log t)2/d

)
for t ≥ t0 > e,

a simple computation shows that (36) yields (24). Note that this particular γ satisfies limt→∞ γt = 0 because of the
condition (v) on the function m.

By the comparison between |Zx
t (B)| and |Zx,B

t (B)| (discussed in the paragraph after (35)) along with (30) and the
Markov property applied at time m(t), we have that

lim
t→∞P

(|Zt | < γt · eβ2t
∗
pt

)≤ lim
t→∞ sup

x∈B

P
(∣∣Zx,B

t∗ (B)
∣∣< γt · eβ2t

∗
pt

)
.

Consider now the J (x, t) := |Zx,B
t∗ | many Brownian paths starting at x ∈ B , which are correlated through common

ancestry, and let us denote them by W1, . . . ,WJ(x,t). Let

nx
t :=

J (x,t)∑
i=1

1Ai
,

where

Ai := {Wi(s) ∈ B, ∀0 ≤ s ≤ t
}
.

Then we have to show that

L := lim
t→∞ sup

x∈B

P
(
nx

t < γt · eβ2t
∗
pt

)= 0. (37)

Clearly, for all x ∈ B ,

L = lim
t→∞ sup

x∈B

P

(
nx

t

Neβ2t
∗ <

γtpt

N

)
≤ lim

t→∞ sup
x∈B

[
P

(
nx

t

Neβ2t
∗ <

1

2
pt

)
+ P(N ≤ 2γt )

]
. (38)

Using the fact that limt→∞ γt = 0 and that N is almost surely positive,

lim
t→∞P(N ≤ 2γt ) = 0;

hence it is enough to show that

lim
t→∞ sup

x∈B

P

(
nx

t

Neβ2t
∗ <

1

2
pt

)
= 0. (39)
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The strategy for the rest of the proof is conditioning on the value of the positive random variable N and then
using Chebysev’s inequality, for which we will have to carry out some variance calculations. Since the particles are
correlated through common ancestry, we will have to handle the distribution of the splitting time of the most common
ancestor of two generic particles. Doing so, we will prove a lemma, while some further computations will be deferred
to Appendix B.

Let R denote the law of N and define the conditional laws

P y(·) := P(·|N = y), y > 0.

Then

P

(
nx

t

Neβ2t
∗ <

1

2
pt

)
=
∫ ∞

0
R(dy)P y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
.

Define the conditional probabilities

P̃ y(·) := P y
(·|∣∣ZB

t,x

∣∣≥ μt

)= P
(·|N = y,

∣∣ZB
t,x

∣∣≥ μt

)
, y > 0,

where μt = μt,y := 	 3y
4 eβ2t

∗
. Recall that (31) defines pt by taking supremum over x and that |Zx,B
t | in fact does not

depend on x. One has

P

(
nx

t

Neβ2t
∗ <

1

2
pt

)
≤
∫ ∞

0
R(dy)

[
P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
+ P y

(
e−β2t

∗ |Zx,B
t | < 3

4
y

)]
. (40)

As far as the second term of the integrand in (40) is concerned, the limit in (35) implies that

lim
t→∞

∫
R

R(dy)P y

(
e−β2t

∗ ∣∣Zx,B
t

∣∣< 3

4
y

)
= lim

t→∞P

(
e−β2t

∗ ∣∣Zx,B
t

∣∣< 3

4
N

)
= 0.

Let us now concentrate on the first term of the integrand in (40). In fact, it is enough to prove that for each fixed
K > 0,

lim
t→∞

∫ ∞

1/K

R(dy) P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
= 0. (41)

Indeed, once we know (41), we can write

lim
t→∞

∫ ∞

0
R(dy) P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
≤ lim

t→∞

∫ ∞

1/K

R(dy) P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
+ R

([
0,

1

K

])
= R

([
0,

1

K

])
. (42)

Since this is true for all K > 0, thus letting K ↑ ∞,

lim
t→∞

∫ ∞

0
R(dy) P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
= 0.

Returning to (41), let us pick randomly μt many points out of the J (x, t) many particles – this is almost surely possible
under P̃ y . (Again, ‘randomly’ means that the way we pick the particles is independent of their genealogy and their
spatial position.) Let us denote the collection of these μt many particles by Mt . Define

n̂x
t :=

∑
i∈Mt

1Ai
.
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Then, one has

P̃ y

(
nx

t

yeβ2t
∗ <

1

2
pt

)
≤ P̃ y

(
n̂x

t

yeβ2t
∗ <

1

2
pt

)
. (43)

We are going to use Chebyshev’s inequality and therefore we now calculate the variance. Recall that pt =
supx∈B(0,1) Px(σB ≥ t∗). Using that for x ∈ B(0,1),

Px(σB ≥ t) − [Px(σB ≥ t)
]2 ≤ Px(σB ≥ t) ≤ Px(σB ≥ t∗) ≤ pt ,

one has

Ṽary
(̂
nx

t

)≤ μtpt + μt(μt − 1)

∑
(i,j)∈K(t,x) c̃ovy(1Ai

,1Aj
)

μt (μt − 1)
,

where K(t, x) := {(i, j): i �= j,1 ≤ i, j ≤ μt }. Now observe that∑
i,j∈K(t,x) c̃ovy(1Ai

,1Aj
)

μt (μt − 1)
= E c̃ovy(1Ai

,1Aj
) = (E ⊗ P̃ y

)
(Ai ∩ Aj) − p2

t ,

where under P the pair (i, j) is chosen randomly and uniformly over the μt(μt − 1) many possible pairs.
Let Qt,y and Q(t) denote the distribution of the splitting time of the most recent common ancestor of the ith and

the j th particle under P̃ y and under P̃ , respectively. By the Markov property applied at this splitting time s, one has

(
E ⊗ P̃ y

)
(Ai ∩ Aj) = pt

∫ t

s=0

∫
B

pt
t−s,xp̃

(t)(0, s,dx)Qt,y(ds),

where

p̃(t)(0, t,dx) := P0(Wt ∈ dx|Wz ∈ B, z ≤ t).

By the Markov property applied at time s,

pt
s

∫
B

pt
t−s,xp̃

(t)(0, s,dx) = pt ,

and thus(
E ⊗ P̃ y

)
(Ai ∩ Aj) = pt

∫ t

s=0

pt

pt
s

Qt,y(ds).

Hence

Ṽary
(̂
nx

t

)≤ μt

(
pt − p2

t

)+ μt(μt − 1)p2
t · (It − 1), (44)

where

It :=
∫ ∞

s=0

[
pt

s

]−1
Qt,y(ds).

Note that this estimate is uniform in x (see the definition of pt in (31)). Define also

Jt :=
∫ ∞

s=0

[
pt

s

]−1
Q(t)(ds).
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Lemma 11.

lim
t→∞Jt = 1. (45)

The proof of this lemma is deferred to the end of this section.
Once we know (45), we proceed as follows. Using Chebyshev’s inequality, one has

P̃ y

(
n̂x

t

yeβ2t
∗ <

1

2
pt

)
≤ P̃ y

(∣∣̂nx
t − Eyn̂x

t

∣∣> 1

4
ptyeβ2t

∗
)

≤ 16
Ṽary (̂nx

t )

p2
t y

2e2β2t
∗ .

By (44), we can continue the estimate by

≤ 16

[
μtpt

p2
t y

2e2β2t
∗ + 1

2
μt(μt − 1) · y−2e−2β2t

∗ · (It − 1)

]
.

Writing out μt , integrating against R(dy), and using that the lower limit in the integral is 1/K , one obtains the upper
estimate∫ ∞

1/K

R(dy) P̃ y

(
n̂x

t

yeβ2t
∗ <

1

2
pt

)
≤ 12Kp−1

t e−β2t
∗ +
∫ ∞

1/K

R(dy)
1

2
μt(μt − 1) · y−2e−2β2t

∗ · (It − 1). (46)

(Recall that It in fact depends on y.) Since limt→∞ pteβ2t
∗ = ∞, thus the first term on the right-hand side of (46)

tends to zero as t → ∞. Recall now that μt := 	 3yeβ2 t∗
4 
. As far as the second term of (46) is concerned, it is easy to

see that it also tends to zero as t → ∞, provided

lim
t→∞

∫ ∞

0
R(dy)(It − 1) = 0.

But
∫∞

0 R(dy)(It −1) = Jt −1 and so we are finished by recalling (45). Hence (41) follows. This completes the proof
of the lower estimate in Theorem 1.

6.2.4. Proof of Lemma 11
Since Jt ≥ 1, thus it is enough to prove that

lim sup
t→∞

Jt ≤ 1.

For r > 0 we denote by λ∗
r := λc(

1
2Δ,B(0, r)) the principal eigenvalue of 1

2Δ on B(0, r). Since λ∗
r tends to zero as

r ↑ ∞ we can pick an R > 0 such that −λ∗
R < β2. Let us fix this R for the rest of the proof.

Let us also fix t > 0 for a moment. From the probabilistic representation of the principal eigenvalue (see Chapter 4
in [32]) we conclude the following: for ε̂ > 0 fixed there exists a T (ε̂) such that for s ≥ T (ε̂),

logpt
s ≥ (λρ(t) − ε̂)s.

Hence, for ε̂ > 0 small enough (ε̂ < −λ∗
R) and for all t satisfying λρ(t) ≥ λ∗

R + ε̂ (recall that limt→∞ ρ(t) = ∞) and
s ≥ T (ε̂, t),

logpt
s ≥ λ∗

R · s. (47)



Branching Brownian motion in a random medium 511

Note that T (ε̂, t) can be chosen uniformly in t because5 limt→∞ ρ(t) = ∞, and so we will simply write T (ε̂).
Furthermore, clearly, T (ε̂) can be chosen in such a way that

lim
ε̂↓0

T (ε̂) = ∞. (48)

Depending on ε̂ let us break the integral into two parts:

Jt =
∫ T (ε̂)

s=0

[
pt

s

]−1
Q(t)(ds) +

∫ t

s=T (ε̂)

[
pt

s

]−1
Q(t)(ds) =: J (1)

t + J
(2)
t .

We are going to control the two terms separately.
Controlling J

(1)
t : We show that

There exists the limit lim
t→∞J

(1)
t ≤ 1. (49)

First, it is easy to check that for all t > 0, Q(t)(ds) is absolutely continuous, i.e. Q(t)(ds) = g(t)(s)ds with some
g(t) ≥ 0. So

J
(1)
t =

∫ T (ε̂)

s=0

[
pt

s

]−1
Q(t)(ds) =

∫ T (ε̂)

s=0

[
pt

s

]−1
g(t)(s)ds.

Evidently, one has [pt· ]−1 ↓ as t → ∞. Also, since Q(t)([a, b]) is monotone non-increasing in t for 0 ≤ a ≤ b,
therefore g(t)(·) is also monotone non-increasing in t . Hence, by monotone convergence,

lim
t→∞J

(1)
t =

∫ T (ε̂)

s=0
g(s)ds = lim

t→∞

∫ T (ε̂)

s=0
g(t)(s)ds ≤ lim

t→∞

∫ t

s=0
g(t)(s)ds = 1,

where g := limt→∞ g(t).
Controlling J

(2)
t : Recall that

logpt
s ≥ λ∗

R · s, ∀s ≥ T (ε̂). (50)

Thus,

J
(2)
t ≤

∫ t

T (ε̂)

exp
(−λ∗

R · s)Q(t)(ds).

We will show that

lim
ε̂↓0

lim
t→∞

∫ t

T (ε̂)

exp
(−λ∗

R · s)Q(t)(ds) = lim
ε̂↓0

lim
t→∞

∫ t

T (ε̂)

e−(λ∗
R+β2)s eβ2sQ(t)(ds) = 0. (51)

Recall that 0 < β2 + λ∗
R . In order to verify (51), we will show that given t0 > 0 there exists some 0 < K = K(t0) with

the property that

g(t)(s) ≤ Kse−β2s , for t > t0, s ∈ [t0, t]. (52)

Indeed, it will then follow that

lim
ε̂↓0

lim
t→∞

∫ t

T (ε̂)

exp
(−λ∗

R · s)Q(t)(ds) = lim
T (ε̂)→∞

lim
t→∞

∫ t

T (ε̂)

exp
(−λ∗

R · s)g(t)(s)(ds)

≤ K lim
T (ε̂)→∞

∫ ∞

T (ε̂)

se−(λ∗
R+β2)s(ds) = 0.

5Recall that we picked a version of ρ(t) which is monotone increasing for large t ’s.
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Recall that Q(t) corresponds to the conditional law P(·||ZB
t,x | ≥ μt). We now claim that we can work with

P(·||ZB
t,x | ≥ 2) instead of P(·||ZB

t,x | ≥ μt). This is because if Q
(t)
0 corresponds to P(·||ZB

t,x | ≥ 2), then an easy com-
putation reveals that for any ε > 0 there exists a t̂0 = t̂0(ε) such that for all t ≥ t̂0 and for all 0 ≤ a < b,∣∣Q(t)

([a, b])− Q
(t)
0

([a, b])∣∣≤ 2(1 + ε)Q
(t)
0

([a, b]);
thus, if

Q
(t)
0 (ds) ≤ Lse−β2s ds on [t0, t] for t > t0 (53)

holds with some L > 0, then also

Q(t)(ds) = g(t)(s)ds ≤ Kse−β2s ds, t > t0 ∨ t̂0, s ∈ [t0, t] (54)

holds with K := L + 2(1 + ε).
The bound (53) is verified in Appendix B.
It is now easy to finish the proof of (45). To make the dependence on ε̂ clear, let us write J

(i)
t = J

(i)
t (ε̂), i = 1,2.

Then by (49), one has that for all ε̂ > 0,

lim sup
t→∞

Jt ≤ 1 + lim sup
t→∞

J
(2)
t (ε̂).

Hence, (51) yields

lim sup
t→∞

Jt ≤ 1 + lim
ε̂↓0

lim sup
t→∞

J
(2)
t (ε̂) ≤ 1,

finishing the proof of the lemma. �

7. Some additional problems

These problems were deferred to the section after the proofs, because the questions themselves refer to parts of the
proofs.

Problem 12. The end of the proof for the lower estimate in Theorem 1 is basically a version of the Weak Law of
Large Numbers. Using SLLN instead (and making some appropriate changes elsewhere), can one get

lim inf
t→∞ (log t)2/d(rt − β2) ≥ −c(d, η) a.s.?

Problem 13. The question investigated in this paper was the (local and global) growth rate of the population. The next
step can be the following: Once one knows the global population size |Zt |, the model can be rescaled (normalized)
by |Zt |, giving a population of fixed weight. In other words, one considers the discrete probability measure valued
process

Z̃t (·) := Zt(·)
|Zt | .

Then the question of the shape of the population for Z for large times is given by the limiting behavior of the random
probability measures Z̃t , t ≥ 0. (Of course, not only the particle mass has to be scaled, but also the spatial scales are
interesting – see last paragraph.)

Can one for example locate a unique dominant branch for almost every environment, so that the total weight of its
complement tends to (as t → ∞) zero?
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The motivation for this question comes from our proof of the lower estimate for Theorem 1. It seems conceivable
that for large times the ‘bulk’ of the population will live in a clearing within distance �(t) and with radius

ρ(t) := R0
[
log�(t)

]1/d − [log log�(t)
]2

, t ≥ 0,

where

lim
t→∞�(t) = ∞ and lim

t→∞
�(t)

t
= 0 but lim

t→∞
log t

log�(t)
= 1.

8. Proof of Theorem 2

8.1. Preparation for the proof

We first state an abstract lemma as follows.

Lemma 14. Given the probability triple (Ω,F,P ), let A1, A2, . . . ,AN ∈ F be events that are positively correlated
in the following sense. If k ≤ N and {j1, j2, . . . , jk} ⊆ {1,2, . . . ,N} then cov(1Aj1∩Aj2∩Aj3 ···∩Ajk−1

, 1Ajk
) ≥ 0. Then

P

(
N⋂

i=1

Ai

)
≥

N∏
i=1

P(Ai).

Proof. We use induction on N . Let N = 2. Then P(A1 ∩ A2) ≥ P(A1)P (A2) is tantamount to cov(1A1 ,1A2) ≥ 0.

If N + 1 events are positively correlated in the above sense then any subset of them is positively correlated as well.
Given that the statement is true for N ≥ 2, one has

P

(
N+1⋂
i=1

Ai

)
≥ P

(
N⋂

i=1

Ai

)
P(AN+1) ≥ P(AN+1)

N∏
i=1

P(Ai) =
N+1∏
i=1

P(Ai),

and so the statement is true for N + 1. �

Corollary 15. Consider Z, the (L,β)-branching diffusion where L is a second order differential operator corre-
sponding to the diffusion process Y on Rd with probabilities {Qx, x ∈ Rd}, and the branching rate β = β(·) ≥ 0 is
not identically zero. For t > 0 let Nt denote the number of particles at t and let Bt be an open set containing the
origin.

Let the function g : R+ → N+ be so large that limt→∞ P(|Zt | ≤ g(t)) = 1. Then the lower estimate

P0
[
supp(Zs) ∈ Bt , 0 ≤ s ≤ t

]≥ [Q0(Ys ∈ Bt , 0 ≤ s ≤ t)
]g(t) − o(1)

holds.

Proof. Let us label the particles in a way that does not depend on their motion. We get Nt (correlated) trajectories
of Y : Y (i), 1 ≤ i ≤ Nt . Denote Ai := (Y

(i)
s ∈ Bt , 0 ≤ s ≤ t). When Nt < g(t), consider some additional (positively

correlated) ‘imaginary’ particles – for example by taking g(t) − Nt extra copies of the first particle. We have

P0
[

supp(Zs) ∈ Bt , 0 ≤ s ≤ t
] = P0

(
Nt⋂
i=1

Ai

)
≥ P0

(
g(t)⋂
i=1

Ai ∩ {Nt ≤ g(t)
})

≥ P0

(
g(t)⋂
i=1

Ai

)
− P0
(
Nt > g(t)

)
.
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It is easy to check that A1, A2, . . . ,Ag(t) are positively correlated, hence one can continue the lower estimate with

≥
g(t)∏
i=1

P(Ai) − o(1) = [Q0(Ys ∈ Bt , 0 ≤ s ≤ t)
]g(t) − o(1).

The proof is finished. �

8.2. Proof of the theorem

First, the equation (8) follows from the Taylor expansion
√

1 − x = 1 − x
2 +O(x2), x ≈ 0.

For (9), recall that f (t) := c(d, ν) t

(log t)2/d and the result on the quenched global population: there are roughly

exp[β2t − f (t)] particles by time t . More precisely, on a set of full P-measure,

lim
t→∞(log t)2/d(rt − β2) = −c(d, ν) in P ω-probability. (55)

In particular, for all ε > 0, as t → ∞,

P ω
(|Zt | > eβ2t−f (t)+ε

)= o
(
log t−2/d

)
. (56)

The rest is a straightforward computation. We apply Corollary 15 with

g(t) := ⌊eβ2t−f (t)+ε
⌋
.

Denote Ct := {|Zt | ≤ g(t)}. Using that limt→∞ P ω(Ct ) = 1 and that

n2(t) = 2t2[β2 − c(d, ν)(log t)−2/d
]

(57)

along with Corollary 15, it follows that for P-almost all ω,

P ω(At ) ≥
(

1 − exp

[
−n2(t)

2t

])exp[β2t−f (t)+ε]
− o(1)

= (1 − exp
[−β2t + f (t)

])exp[β2t−f (t)+ε] − o(1) −→ e−eε

, as t → ∞.

Consequently, for P-almost all ω, lim inft→∞ P ω(At ) > 0.

Appendix A. Related population models

In this section we explain how our mathematical setting relates to models in biology.
First, one immediately has the following two biological interpretations in mind:

(i) Migration with unfertile areas (Population dynamics): Population moves in space and reproduces by binary split-
ting, but randomly located reproduction-suppressing areas modify the growth.

(ii) Fecundity selection (Genetics): Reproduction and mutation takes place. Certain randomly distributed genetic
types have low fitness: even though they can be obtained by mutation, they themselves do not reproduce easily,
unless mutation transforms them to different genetic types. In genetics this phenomenon is called ‘fecundity
selection.’ Of course, in this setting ‘space’ means the space of genetic types rather than physical space.

One question of interest is of course the (local and global) growth rate of the population. Once one knows the global
population size, the model can be rescaled (normalized) by the global population size, giving a population of unit
mass (somewhat similarly to the fixed size assumption in the Moran model or many other models from theoretical
biology) and then the question becomes the shape of the population.
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In the population dynamics setting this latter question concerns whether or not there is a preferred spatial location
for the process to populate. In the genetic setting the question is about the existence of a certain kind of genetic type
that is preferred in the long run that lowers the risk of low fecundity caused by mutating into less fit genetics types.

Of course, the genealogical structure is a very exciting problem to explore too. For example it seems quite possible
that for large times the ‘bulk’ of the population consists of descendants of a single particle that decided to travel far
enough (resp. to mutate many times) in order to be in a less hostile environment (resp. in high fitness genetic type
area), where she and her descendants can reproduce freely.

For example, a related phenomenon in marine systems [6] is when hypoxic patches form in estuaries because of
stratification of the water. The patches affect different organisms in different ways but are detrimental to some of
them. They appear and disappear in an effectively stochastic way. This is an actual system that has some features that
correspond to the type of assumptions built into our model.

It appears [22] that a very relevant existing ecological context in which to place our model is the so-called ‘source-
sink theory.’ The basic idea is that some patches of habitat are good for a species (and growth rate is positive) whereas
other patches are poor (and growth rate is smaller, or is zero or negative). Individuals can move between patches
randomly or according to more detailed biological rules for behavior.

Another kind of scenario where models such as the proposed one would make sense is in systems that are subject
to periodic local disturbances [6]. Those would include forests where trees sometimes fall creating gaps (which have
various effects on different species but may harm some) or areas of grass or brush which are subject to occasional
fires. Again, the effects may be mixed, but the burned areas can be expected to be less suitable habitats for at least
some organisms.

Finally we refer the reader to the excellent monograph [7] for a modern introduction to population models (from
the PDE point of view).

Appendix B. Proof of the bound (53)

In this section we give the proof of the bound (53). In fact we prove a precise formula for the distribution of the
splitting time of the most recent common ancestor, which, we believe, is of independent interest. The result and its
proof are due to W. Angerer and A. Wakolbinger (personal communication).

For simplicity we set β2 = 1; the general case is similar. Let us fix t > 0. Then for 0 < u < t , one has

Q
(t)
0 (s ≤ u) = 1 − 2ue−u − e−2u + e−t (2u − 3 + 4e−u − e−2u)

(1 − e−t )(1 − e−u)2
; (58)

and so the density is

f (t)(u) := dQt
0

dl
(u) = 2

e−u(u − 2 + (u + 2)e−u) + e−t (1 − 2ue−u − e−2u)

(1 − e−t )(1 − e−u)3
,

where l denotes Lebesgue measure on [0, t].

Proof of (58). Consider the Yule population Yt := |ZB
t,x | and recall that Q

(t)
0 corresponds to P(·|Yt ≥ 2). The first

observation concerns the Yule genealogy. Let us pick a pair of individuals from the Yule population at time t , assuming
that Yt = j, j ≥ 2. Denote by I the size of the population just before the coalescence time s of the two ancestral lines
(where ‘before’ refers to backward time). That is, let I := Ys+dt . Using some formulae from [20], we now show that

P(I = i) = j + 1

j − 1
· 2

(i − 1)i
· i − 1

i + 1
. (59)

Indeed, the distribution of I equals the conditional distribution of F given F ≤ j , where F is defined as follows. First,
the pure birth process K = (Ki) (with respect to ‘Yule-time’ i) is defined in Section 3.5 of [20], and setting n = 2,

P(Ki−1 = 1|Ki = 2) = 2

i(i − 1)
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(see formula (4.10) of the paper). Then the ‘hitting time’ F is defined (in the same section) by F := min{l :Kl = 2}.
The formula for the distribution of F (formula (2.3) of the paper) now becomes

P(F ≤ i) = P(Ki = 2) = i − 1

i + 1
, i ≥ 2.

Let i ≤ j . Then

P(I = i) = P(F = i|F ≤ j) = P(Ki−1 = 1,Ki = 2|F ≤ j)

= P(Ki−1 = 1,Ki = 2|Kj = 2)

= P(Ki−1 = 1,Ki = 2)

P (Kj = 2)
.

From the last three displayed formulae one arrives immediately at (59).
Let us now embed the ‘Yule time’ into real time. Since a Yule population stemming from i ancestors has a negative

binomial distribution, therefore, using the Markov property at times u and u + du, one can decompose

P(Yu = i − 1, Yu+du = i, Yt = j) = p1 · p2 · p3, (60)

where

p1 = e−u
(
1 − e−u

)i−2
,

p2 = (i − 1)du and

p3 =
(

j − 1
i − 1

)
e−(t−u)i

(
1 − e−(t−u)

)j−i
.

That is,

P(Yu = i − 1, Yu+du = i, Yt = j)

= (i − 1)

(
j − 1
i − 1

)
e−(t−u)i

(
1 − e−(t−u)

)j−ie−u
(
1 − e−u

)i−2 du.

Since the pair we have chosen coalesce independently from the rest of the population, the random variables s and
I are independent. Using the definition of s first and then the independence remarked in the previous sentence, and
finally (59) and (60),

P
(
s ∈ [u,u + du], Ys+dt = i, Yt = j

) = P(I = i, Yu = i − 1, Yu+du = i, Yt = j)

= P(I = i)P (Yu = i − 1, Yu+du = i, Yt = j)

=
(

j − 2
i − 2

)
2(j + 1)

i(i + 1)
e−(t−u)i

(
1 − e−(t−u)

)j−ie−u
(
1 − e−u

)i−2 du,

for 0 < u < t.

Now, summing from j = i to ∞, and from i = 2 to ∞, and then dividing by P(Yt ≥ 2) = 1 − e−t , one obtains
(after doing some algebra) that for 0 < u < t ,

Q
(t)
0

(
s ∈ (u,u + du)

) = ∞∑
i=2

e−u 2(2e−(t−u) + i − 1)(1 − e−u)i−2

(1 − e−t )i(i + 1)
du

= 2 · e−u(u − 2 + (u + 2)e−u) + e−t (1 − 2ue−u − e−2u)

(1 − e−t )(1 − e−u)3
du.

Equivalently, in integrated form, one has (58). �
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