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Abstract. The normalised volume measure on the �n
p unit ball (1 ≤ p ≤ 2) satisfies the following isoperimetric inequality: the

boundary measure of a set of measure a is at least cn1/pã log1−1/p(1/ã), where ã = min(a,1 − a).

Résumé. Nous prouvons une inégalité isopérimétrique pour la mesure uniforme Vp,n sur la boule unité de �n
p (1 ≤ p ≤ 2). Si

Vp,n(A) = a, alors V +
p,n(A) ≥ cn1/p ã log1−1/p 1/ã, où V +

p,n est la mesure de surface associée à Vp,n, ã = min(a,1 − a) et c est
une constante absolue.

En particulier, les boules unités de �n
p vérifient la conjecture de Kannan–Lovász–Simonovits (Discrete Comput. Geom. 13

(1995)) sur la constante de Cheeger d’un corps convexe isotrope.
La démonstration s’appuie sur les inégalités isopérimétriques de Bobkov (Ann. Probab. 27 (1999)) et de Barthe–Cattiaux–

Roberto (Rev. Math. Iberoamericana 22 (2006)), et utilise la représentation de Vp,n établie par Barthe–Guédon–Mendelson–Naor
(Ann. Probab. 33 (2005)) ainsi qu’un argument de découpage.
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1. Introduction

We study the isoperimetric properties of the normalised volume measure

Vp,n = Vol |Bn
p

/Vol
(
Bn

p

)
on the �n

p unit ball

Bn
p = {

x = (x1, . . . , xn) ∈ R
n | ‖x‖p

p = |x1|p + · · · + |xn|p ≤ 1
}
, 1 ≤ p ≤ 2.

Recall that the lower Minkowski content μ+ associated to a measure μ is defined as

μ+(A) = lim inf
ε→+0

μ{x | dist(x,A) ≤ ε} − μ(A)

ε

for measurable sets A; we are interested in the behaviour of the isoperimetric function

Iμ(a) = inf
a≤μ(A)<1/2

μ+(A) (1)
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for μ = Vp,n.

Theorem 1. There exists a universal constant c > 0 such that for 1 ≤ p ≤ 2, 0 < a < 1/2

IVp,n(a) ≥ cn1/pa log1−1/p 1

a
. (2)

This extends the previously known case p = 2 (the Euclidean ball), for which Burago and Maz’ya [16] (see also
[1,13]) have found the complete solution to the isoperimetric problem (the extremal sets are half-balls and intersections
of the ball with another one with orthogonal boundary). For p = 1, the theorem answers a question of Sergey Bobkov
(cf. [9]).

The inequality (2) (and hence also (3) and (5) below) is sharp, up to a constant factor, unless a is exponentially
small (in the dimension n). In fact, the left- and right-hand sides of (5) are of the same order when

A = Aξ,t = {
x ∈ R

n | 〈x, ξ〉 ≥ t
}

is a coordinate half-space. In the last section of this note we explain how to obtain a sharp bound for smaller values of
a as well.

Remark 1. Not surprisingly, the complementary bound

JVp,n(a) ≥ cn1/pa log1−1/p 1

a
(3)

for

Jμ(a) = inf
1/2<μ(A)<1−a

μ+(A) (4)

is also true; in fact, Jμ ≡ Iμ according to Proposition A (note however the slight asymmetry between the definitions
of Iμ and Jμ). Then, (2) and (3), combined with a trivial approximation argument for the case Vp,n(A) = 1/2, yield

V +
p,n(A) ≥ cn1/p

(
Vp,n(A) ∧ (

1 − Vp,n(A)
))

log1−1/p 1

Vp,n(A) ∧ (1 − Vp,n(A))
(5)

(valid for any A ⊂ R
n, with the common convention 0 × log 0−1 = 0, ∨ = max and ∧ = min).

Remark 2. The following definition of isoperimetric function is more common than (1), (4):

Isμ(a) = inf
μ(A)=a

μ+(A). (6)

Clearly, Theorem 1 is equivalent to (5) and to the inequality

IsVp,n(a) ≥ cn1/p
(
a ∧ (1 − a)

)
log1−1/p 1

(a ∧ (1 − a))
.

Schechtman and Zinn [24] proved (in particular) the following estimate on the tails of the Euclidean norm with
respect to Vp,n.

Theorem (Schechtman–Zinn). There exist universal constants c and t0 such that the inequality

Vp,n

{‖x‖2 ≥ t
} ≤ exp

(−cntp
)

(7)

holds for t ≥ n−(2−p)/(2p)t0, 1 ≤ p ≤ 2.
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In the subsequent work [25], they showed that this inequality is a special case of a general concentration inequality.
Recall that a median MedF of a real function F on a probability space (X,μ) is (non-uniquely) defined by the
inequalities

μ{F ≥ MedF } ≥ 1

2
, μ{F ≤ MedF } ≥ 1

2
.

Theorem (Schechtman–Zinn). For any 1-Lipschitz function F :Bn
p → R (meaning that |F(x) − F(y)| ≤ ‖x − y‖2

for x, y ∈ Bn
p),

Vp,n{F > MedF + t} ≤ C exp
(−c1ntp

)
, 0 < t < +∞. (8)

Let us sketch the standard argument that recovers (8) (with C = 1/2 and c1 = cp/pp) from (5). Let

φ(h) = Vp,n{F > MedF + h}, h ≥ 0.

Then (5) (applied to A = {F > MedF + h}) implies

φ′(h) ≤ −cn1/pφ(h) log1−1/p 1

φ(h)

(where strictly speaking φ′ stands for the left upper derivative). Therefore the inverse function ψ = φ−1 satisfies

ψ

(
1

2

)
= 0, ψ ′(u) ≥ −

[
cn1/pu log1−1/p 1

u

]−1

;

hence

ψ(u) = −
∫ 1/2

u

ψ ′(u1)du1 ≤ log1/p(1/u) − log1/p 2

cn1/p/p
≤

[
log(1/2u)

c1n

]1/p

and φ(h) ≤ exp(−c1nhp)/2 as in (8).
The proof of Theorem 1 splits into two cases. In Section 2 we apply Bobkov’s isoperimetric inequality [6] to deal

with a as small as exp(−Cnp/2).
For larger a, the representation of Vp,n put forward by Barthe, Guédon, Mendelson and Naor [4] allows us to

reduce the question to an analogous one for a certain product measure. We deal with this case in Section 3, making
use of the Barthe–Cattiaux–Roberto isoperimetric inequality [3].

We devote the last section to remarks and comments.

2. Small sets

This section is based on the following isoperimetric inequality, due to Sergey Bobkov [6]. Recall that a probability
measure μ on R

n is called log-concave if for any A,B ⊂ R
n and for any 0 < t < 1

μ
(
(1 − t)A + tB

) ≥ μ(A)1−tμ(B)t .

Theorem (Bobkov). Let μ be a log-concave probability measure on R
n. Then, for any A ⊂ R

n and any r > 0,

μ+(A) ≥ 1

2r

{
μ(A) log

1

μ(A)
+ (

1 − μ(A)
)

log
1

1 − μ(A)
+ logμ

{‖x‖2 ≤ r
}}

. (9)

Apply (9) to μ = Vp,n, which is log-concave according to the Brunn–Minkowski inequality. If r > n−(2−p)/(2p)t0,
the Schechtman–Zinn theorem (7) yields

Vp,n

{‖x‖2 ≥ r
} ≤ exp

(−cnrp
)
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and

logVp,n

{‖x‖2 ≤ r
} ≥ log

(
1 − exp

(−cnrp
)) ≥ −C exp

(−cnrp
)

(here and further C, c, c1, c2, C′, etc. denote universal constants that may change their meaning from line to line,
unless explicitly stated).

On the other hand, for Vp,n(A) < c′,

(
1 − Vp,n(A)

)
log

1

1 − Vp,n(A)
≥ c′′Vp,n(A).

Hence for

r = 1

c1/pn1/p
log1/p C

c′′Vp,n(A)

the sum of the last two terms in the right-hand side of (9) is not negative. We conclude:

Proposition 1. There exist two universal constants c,C > 0 such that

V +
p,n(A) ≥ cn1/pVp,n(A) log1−1/p 1

Vp,n(A)

for sets A ⊂ R
n such that Vp,n(A) < exp(−Cnp/2).

3. Big sets

To complete the proof of Theorem 1, we need

Proposition 2. There exists a constant c′ > 0 such that

V +
p,n(A) ≥ c′n1/pVp,n(A) log1−1/p 1

Vp,n(A)

for sets A ⊂ R
n such that exp(−Cnp/2) ≤ Vp,n(A) < 1/2 (where C is the same as in Proposition 1).

Consider the product measure

μp,n = μ⊗n
p ⊗ νp,

where

dμp(t) = exp(−|t |p)

2�(1 + 1/p)
dt,

dνp(t) = ptp−1 exp(−tp)1[0,+∞)(t)dt;
define T (z) = x/‖z‖p for z = (x, y) ∈ R

n+1 = R
n ×R. Barthe, Guédon, Mendelson and Naor proved [4] that the map

T : Rn+1 → R
n pushes μp,n forward to Vp,n (that is, Vp,n(A) = μp,n(T

−1A) for A ⊂ R
n).

Key fact (Barthe–Cattiaux–Roberto [3]). The measure μ = μp,n satisfies the isoperimetric inequality

Iμ(a) ≥ ca log1−1/p 1

a
, 0 < a <

1

2
. (10)
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The notation here differs slightly from that in [3]; therefore we provide a short explanation, reproducing the argu-
ment in the proof of [3], Theorem 21.

Explanation. First, the measures μp and νp are log-concave. Therefore we can use the following proposition.

Proposition (Bobkov [10]). Let μ be a log-concave measure on R; denote Fμ(x) = μ(−∞, x]. Then

Isμ(a) = min
(
F ′

μ

(
F−1

μ (a)
)
,F ′

μ

(
F−1

μ (1 − a)
))

, 0 < a < 1

(in other words, the extremal sets are half-lines).

Now a simple computation shows that

c−1
1 Isμp(a) ≥ (

a ∧ (1 − a)
)

log1−1/p 1

(a ∧ (1 − a))
≥ c1Isμp(a);

(11)

Isνp (a) ≥ c2
(
a ∧ (1 − a)

)
log1−1/p 1

(a ∧ (1 − a))

and thereby Isμp ,Isνp ≥ c3Isμp .
The measure μp is log-concave; therefore, according to the comparison theorem due to Barthe [2], Theorem 10,

Isμp,n = Isμn
p⊗νp ≥ c3Is

μn+1
p

.

Barthe, Cattiaux and Roberto proved that the products of the measure μp satisfy a dimension-free isoperimetric
inequality. More precisely, according to inequality (4) in the Introduction to [3],

Is
μn+1

p
(a) ≥ c4

(
a ∧ (1 − a)

)
log1−1/p 1

(a ∧ (1 − a))
.

We conclude that

Isμp,n(a) ≥ c3c4
(
a ∧ (1 − a)

)
log1−1/p 1

(a ∧ (1 − a))

and

Iμp,n(a) ≥ c3c4a log1−1/p 1

a
, 0 < a <

1

2
.

Remark 3. The proof in [3] relies on rather involved semigroup estimates. For p = 1, μ = μ1,n, the inequality (10)
was proved earlier by Bobkov and Houdré [11], using a more elementary argument. For p = 2, μ = μ2,n, (10)
follows from the Gaussian isoperimetric inequality that was proved by Sudakov and Tsirelson [26] and Borell [14]; an
elementary proof was given by Bobkov [8].

If the Lipschitz semi-norm of T were of order n−1/p , the main inequality (2) would follow immediately (since
Lipschitz maps preserve isoperimetric inequalities). Unfortunately, ‖T ‖Lip = +∞ (as follows from the computation
in the proof of Lemma 1). Therefore we use a cut-off argument, cutting off the parts of the space where the local
Lipschitz norm is too big. This appears more natural when the isoperimetric inequality is written in a functional form.

Functional forms of isoperimetric inequalities were introduced around 1960 by Maz’ya [22], Federer and Fleming
[17]. We follow the approach developed by Bobkov and Houdré [11]; the reader may refer to the latter work for a
more general and detailed exposition.

Proposition A (Maz’ya, Federer–Fleming, Bobkov–Houdré). Let μ be a probability measure, 0 < a < 1/2, b > 0.
The following are equivalent:
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(1) Iμ(a) ≥ b;
(2) Jμ(a) ≥ b;
(3) for any locally Lipschitz function φ : suppμ → [0,1] such that μ{φ = 0} ≥ 1/2 and μ{φ = 1} ≥ a,∫

‖∇φ‖2 dμ ≥ b.

Proof. We shall only prove (1) ⇔ (3); the proof is similar for (2) ⇐⇒ (3).

(1) ⇒ (3): by the co-area inequality (which is just the first inequality in the following, cf. Bobkov and Houdré [11]),

∫
‖∇φ‖2 dμ ≥

∫ 1

0
μ+{φ > u}du ≥

∫ 1

0
Iμ(a)du = Iμ(a) ≥ b.

(3) ⇒ (1): for a set A of measure a ≤ μ(A) < 1/2, let

φ(x) = 0 ∨ (
1 − s−1 dist

(
x,

{
y | dist(y,A) ≤ r

}))
.

If x ∈ A, φ(x) = 1; thereby μ{φ = 1} ≥ a. If dist(x,A) > r + s, then φ(x) = 0; the set of all these x has measure
≥ 1/2 for sufficiently small r + s, except maybe for the trivial case μ+(A) = +∞.

Further, ‖∇φ(x)‖2 ≤ s−1, and is 0 unless r ≤ dist(x,A) ≤ r + s. Therefore according to the assumption

s−1μ
{
r ≤ dist(x,A) ≤ r + s

} ≥ b

(for sufficiently small r + s). Letting r, s → +0 so that r/s → 0 we recover (1). �

Now let us formulate (and prove) some technical lemmata. First, we need an estimate on the operator norm of the
(adjoint) derivative

D∗T (z) : Rn → R
n+1.

Lemma 1. For 0 �= z ∈ R
n,

∥∥D∗T (z)
∥∥ ≤ 1

‖z‖p

{
1 + n(2−p)/(2p)

∥∥T (z)
∥∥

2

}
.

Proof. To simplify the notation, assume that zi ≥ 0, i = 1,2, . . . , n + 1. Then

∂Tj

∂zi

(z) = 1

‖z‖p

{
δij − xj z

p−1
i

‖z‖p
p

}
= 1

‖z‖p

(
1 − zp−1 ⊗ x

‖z‖p
p

)
ij

(where the power zp−1 is computed coordinate-wise). Now,∥∥zp−1 ⊗ x
∥∥ = ∥∥zp−1

∥∥
2 × ‖x‖2 = ‖z‖p−1

2(p−1)
× ‖x‖2

≤ n(2−p)/(2p) × ‖z‖p−1
p × ‖x‖2 = n(2−p)/(2p) × ‖z‖p

p × ∥∥T (z)
∥∥

2

by the Hölder inequality. �

The following trivial lemma justifies the cut-off arguments.

Lemma 2. If k,h : Rn → [0,1] are two locally Lipschitz functions, then

‖∇k‖2 ≥ ∥∥∇(kh)
∥∥

2 − ‖∇h‖2.
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Define two cut-off functions{
h1 : Rn → [0,1], x �→ 0 ∨ (

1 ∧ (
2 − c1n

(2−p)/(2p)‖x‖2
))

and
h2 : Rn+1 → [0,1], z �→ 0 ∨ (

1 ∧ (
c2n

−1/p‖z‖p − 1
))

.

The function h1 will be used to cut off the part of the space where ‖T z‖2 is too large; the function h2 will be used to
cut off the part of the space where ‖z‖p is too small. We shall choose c1 and c2 later on, in the proof of Proposition 2.

The next lemma collects the properties of h1 and h2.

Lemma 3. The function h1 is identically 0 on {‖x‖2 ≥ 2c−1
1 n−(2−p)/(2p)} and 1 on {‖x‖2 ≤ c−1

1 n−(2−p)/(2p)}. The
gradient modulus ‖∇h1‖2 is not greater than c1n

(2−p)/p , and vanishes outside{
c−1

1 n−(2−p)/(2p) ≤ ‖x‖2 ≤ 2c−1
1 n−(2−p)/(2p)

}
.

The function h2 is 0 on {‖z‖p ≤ c−1
2 n1/p} and 1 on {‖z‖p ≥ 2c−1

2 n1/p}; ‖∇h2‖2 is not greater than c2n
−1/2, and

vanishes outside{
c−1

2 n1/p ≤ ‖z‖p ≤ 2c−1
2 n1/p

}
.

Proof. The inequality ‖∇h2‖2 ≤ c2n
−1/2 follows from Hölder’s inequality:∥∥h2(z) − h2

(
z′)∥∥

2 ≤ c2n
−1/p

∥∥z − z′∥∥
p

≤ c2n
−1/2

∥∥z − z′∥∥
p
;

the other statements are obvious. �

Finally, we have the following lemma.

Lemma 4. For any C1 > 0 there exists C2 > 0 (independent of p ∈ [1,2] and n ∈ N) such that

Vp,n

{‖x‖2 ≥ C2n
−(2−p)/(2p)

} ≤ exp
(−C1n

p/2)
and

μp,n

{‖z‖p ≤ C−1
2 n1/p

} ≤ exp(−C1n) ≤ exp
(−C1n

p/2).
Proof. The first part follows from the Schechtman–Zinn theorem (7).

As for the second part,

μp,n

{‖z‖p ≤ (cn)1/p
} = μp,n

{∑
|zi |p ≤ cn

}
. (12)

If Z = (Z1, . . . ,Zn+1) ∼ μp,n, then |Zi |p are nonnegative independent random variables. The density of Zi

(1 ≤ i ≤ n) is

x−(p−1)/p exp(−x)

�(1/p)
1[0,+∞)(x)dx,

the density of Zn+1 is

exp(−x)1[0,+∞)(x)dx,

and both are bounded by const · x−(p−1)/p dx (what is essential here is that the density does not grow too fast near 0).
Thus, an estimate on (12) follows from standard large deviation arguments that we reproduce for completeness in
Lemma 5. �



An isoperimetric inequality on the �p balls 369

Lemma 5. Let X1, . . . ,XN ≥ 0 be independent random variables such that the density of every one of them is bounded
by Ax−α dx for some A > 0 and 0 ≤ α < 1. Then

P{X1 + · · · + XN ≤ Nε} ≤ [
C(A,α)ε

](1−α)N
,

where C(A,α) = e
1−α

[A�(1 − α)]1/(1−α).

Proof. Let Y = X1 + · · · + XN . For 1 ≤ i ≤ N , ξ ≥ 0,

E exp(−ξXi) ≤ A

∫ ∞

0
exp(−ξx)x−α dx = A�(1 − α)ξ−(1−α);

therefore

E exp(−ξY ) ≤ [
A�(1 − α)

]N
ξ−N(1−α).

By Chebyshev’s inequality

P{Y ≤ Nε} = P

{
exp

(
−1 − α

ε
Y

)
≥ exp

(−(1 − α)N
)}

≤ exp
(
(1 − α)N

)
E exp

(
−1 − α

ε
Y

)

≤ exp
(
(1 − α)N

)[
A�(1 − α)

]N(
1 − α

ε

)−(1−α)N

. �

Proof of Proposition 2. Let 0 < a < 1/2. Pick f :Bn
p → [0,1] such that Vp,n{f = 0} ≥ 1/2 and Vp,n{f = 1} ≥ a ≥

exp(−Cnp/2). Then (by Lemmata 2 and 3)∫
‖∇f ‖2 dVp,n ≥

∫ ∥∥∇(f h1)
∥∥

2 dVp,n −
∫

‖∇h1‖2 dVp,n

≥
∫ ∥∥∇(f h1)

∥∥
2 dVp,n − c1n

(2−p)/(2p)Vp,n

{‖x‖2 ≥ c−1
1 n−(2−p)/(2p)

}
. (13)

Let g = (f h1) ◦ T . By the definition of push-forward and Lemma 1,∫ ∥∥∇(f h1)
∥∥

2 dVp,n =
∫ ∥∥∇(f h1) ◦ T

∥∥
2 dμp,n

≥
∫

Rn+1

‖∇g(z)‖2

‖D∗T (z)‖ dμp,n

≥
∫

Rn+1

‖∇g(z)‖2‖z‖p

1 + n(2−p)/(2p)‖T (z)‖2
dμp,n.

According to Lemma 3, ‖T (z)‖2 ≤ 2c−1
1 n−(2−p)/(2p) whenever h1(T (z)) �= 0; hence∫ ∥∥∇(f h1)

∥∥
2 dVp,n ≥ c3

∫
Rn+1

‖∇g‖2‖z‖p dμp,n, (14)

where c3 = c1/(c1 + 2). Applying Lemmata 2 and 3 once again,∫
Rn+1

‖∇g‖2‖z‖p dμp,n ≥
∫

Rn+1

∥∥∇(gh2)
∥∥

2‖z‖p dμp,n −
∫

Rn+1
‖∇h2‖2‖z‖p dμp,n

≥ c−1
2 n1/p

∫
Rn+1

∥∥∇(gh2)
∥∥

2 dμp,n − 2n(2−p)/(2p)μp,n

{‖z‖p ≤ 2c−1
2 n1/p

}
. (15)
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The inequalities (13)–(15) show that∫
‖∇f ‖2 dVp,n ≥ c4n

1/p

∫
Rn+1

∥∥∇(gh2)
∥∥

2 dμp,n − c1n
(2−p)/(2p)Vp,n

{‖x‖2 ≥ c−1
1 n−(2−p)/(2p)

}
− 2c3n

(2−p)/(2p)μp,n

{‖z‖p ≤ 2c−1
2 n1/p

}
, (16)

where c4 = c3c
−1
2 . Therefore by Lemma 4 (with C1 larger than C from Proposition 1) we can choose c1 and c2 so that

∫
‖∇f ‖2 dVp,n ≥ c4n

1/p

∫
Rn+1

∥∥∇(gh2)
∥∥

2 dμp,n − exp
(−Cnp/2)/2. (17)

The function gh2 = ((f h1) ◦ T )h2 vanishes on a set of μp,n-measure ≥ 1/2 (for example, it is zero on T −1{f =
0}). Also,

{gh2 = 1} ⊃ {g = 1} \ {h2 < 1} ⊃ T −1({f = 1} \ {h1 < 1}) \ {h2 < 1}

is of μp,n-measure at least

Vp,n{f = 1} − Vp,n

{‖x‖2 > c−1
1 n−(2−p)/(2p)

} − μp,n

{‖z‖2 < 2c−1
2 n1/p

}
≥ Vp,n{f = 1} − exp

(−Cnp/2)/2 ≥ 1

2
Vp,n{f = 1} ≥ a

2
.

Therefore by inequality (10) and Proposition A∫
Rn+1

∥∥∇(gh2)
∥∥

2 dμp,n ≥ c
a

2
log1−1/p 2

a
≥ c5a log1−1/p 1

a
.

To conclude, combine this inequality with (17) and apply Proposition A once again. �

4. Remarks

(1) Let us briefly recall the connection between the isoperimetric inequality as in Theorem 1 and related L2 in-
equalities.

According to Proposition A, (2) for μ = Vp,n can be written as

∫
‖∇φ‖2 dμ ≥ cn1/pa log1−1/p 1

a
for 0 ≤ φ ≤ 1 such that μ{φ = 0} ≥ 1

2
, μ{φ = 1} ≥ a. (18)

The following is well known.

Proposition B. If a probability measure μ satisfies (18), then also∫
‖∇φ‖2

2 dμ ≥ c1n
2/pa log2−2/p 1

a
for 0 ≤ φ ≤ 1 such that μ{φ = 0} ≥ 1

2
, μ{φ = 1} ≥ a (19)

(with some constant c1 depending on c).

As proved by Barthe and Roberto [5], (19) is (up to constants and normalisation) an equivalent form of the Latała–
Oleszkiewicz inequality (introduced in [21] under the name I (p)).

Proof of Proposition B. Assume for simplicity that φ has no atoms except for 0 and 1. For 0 ≤ u, ε ≤ 1, let φu,ε =
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0 ∨ (1 ∧ ε−1(φ − u)). By (18) and Jensen’s inequality,∫
u≤φ≤u+ε

‖∇φ‖2
2 dμ = ε2

∫
‖∇φu,ε‖2

2 dμ

≥ ε2

μ{u ≤ φ ≤ u + ε}
[∫

‖∇φu,ε‖2 dμ

]2

≥ ε2

μ{u ≤ φ ≤ u + ε}c
2n2/pm2

u+ε log2−2/p 1

mu+ε

,

where mu = μ{φ ≥ u}. Let u0 = 0, ui+1 = ui + εi , choosing εi so that

μ{ui < φ ≤ ui + εi} = mui+εi
= 1/2i+1

(except for the last step, i = [log 1/a]). As
∑

εi = 1, the Cauchy–Schwarz inequality yields∫
‖∇φ‖2

2 dμ ≥
∑

i

c2ε2
i n

2/pmui+1 log2−2/p 1

mui+1

≥ c2n2/p

( ∑
1≤i≤log(1/a)

2i log−(2−2/p) 2i

)−1

≥ c1n
2/pa log2−2/p 1

a
. �

In the class of log-concave measures, the last proposition can be reversed (that is, (19) implies (18) with a constant
c depending on c1). This was proved by Michel Ledoux [20] for p = 1,2 (see also [6], Theorem 1.3), and extended
by Barthe–Cattiaux–Roberto [3] to all 1 ≤ p ≤ 2.

(2) The volume measure VK = Vol |K/Vol(K) on a convex body K ⊂ R
n has attracted much interest in recent

years. For any body K ⊂ R
n there exists a nondegenerate linear map T : Rn → R

n such that K̃ = T K is isotropic,
meaning that

Vol K̃ = 1,

∫
K̃

xixj

n∏
k=1

dxk = L2
Kδij for 1 ≤ i, j ≤ n.

The number LK is an invariant of the body called the isotropic constant; LK > c for some universal constant c > 0
(independent of K and n). The famous hyperplane conjecture asserts that LK ≤ C. So far, it is only known that
LK ≤ Cn1/4; this was recently proved by Bo’az Klartag [18], improving the celebrated estimate of Bourgain [15]
with an extra logarithmic factor.

Kannan, Lovász and Simonovits [19] conjectured that there exists a universal constant c0 > 0 such that for any
isotropic convex body K the measure μ = VK satisfies the Cheeger-type inequality

Iμ(a) ≥ c0a

LK

(20)

for 0 < a ≤ 1/2.
The inequality (20) has so far been proved for a mere few families of convex bodies (cf. [9,12] for an extensive

discussion and related results, and [7,11] for several families of examples in the larger class of log-concave measures).
As B̃n

p = C(n,p)Bn
p , where cn1/p ≤ C(n,p) ≤ Cn1/p , Theorem 1 shows that the conjecture is true for B̃n

p , 1 ≤ p ≤ 2.
Recently, Grigoris Paouris [23] proved that for any isotropic convex body K ,

VK

{‖x‖2 ≥ t
} ≤ exp

(
− ct

Lk

)
, t ≥ t0LK

√
n. (21)

Repeating the proof of Proposition 1 with (21) instead of the Schechtman–Zinn theorem, we obtain:

Proposition B. If K ⊂ R
n is an isotropic convex body, then (20) holds for 0 < a < exp(−C

√
n) (where C is a

universal constant).
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(3) The right-hand side in the inequality (2) behaves like c(n)a log1/p 1
a

as a → 0, whereas the correct asymptotics
should be c(n)a1−1/n (the difference becomes essential however only for a � e−cn logn).

To recover the correct behaviour for small a, note that the inequality (9) that we used in the proof of Proposition 1
is dimension free. We can use instead the following dimensional extension, due to Franck Barthe [2]:

Theorem (Barthe). Let K be a convex body in R
n and let VK be the normalised volume measure on K . Then, for

any A ⊂ K and any r > 0,

V +
K (A) ≥ n

2r

{[
VK(A)1−1/n + (

1 − VK(A)
)1−1/n]

VK

{‖x‖2 ≤ r
}1/n − 1

}
.

Acknowledgments

I thank Franck Barthe for illuminating discussions, for sharing his interest in functional inequalities, and for bringing
the problem to my attention. I thank my supervisor Vitali Milman for encouragement and support. I thank Sergey
Bobkov for comments and explanations.

I thank them and the anonymous referees for the remarks on preliminary versions of this note.
This work was done while the author enjoyed the hospitality of the Paul Sabatier University, Toulouse, staying

there on a predoc position of the European network PHD.

References

[1] F. J. Almgren. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math.
Soc. 4 (1976) 165. MR0420406

[2] F. Barthe. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002) 32–55. MR1904555
[3] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry.

Rev. Math. Iberoamericana 22 (2005) 993–1067. MR2320410
[4] F. Barthe, O. Guédon, S. Mendelson and A. Naor. A probabilistic approach to the geometry of the �n

p -ball. Ann. Probab. 33 (2005) 480–513.
MR2123199

[5] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. MR2052235
[6] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903–1921. MR1742893
[7] S. G. Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. Geometric Aspects of Functional Analysis

(Notes of GAFA Seminar) 37–43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. MR2083386
[8] S. G. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann.

Probab. 25 (1997) 206–214. MR1428506
[9] S. G. Bobkov. On isoperimetric constants for log-concave probability distributions. Lecture Notes in Math. 1910 (2007) 81–88.

[10] S. Bobkov. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35–48. MR1387625
[11] S. G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. MR1428505
[12] S. G. Bobkov and B. Zegarlinski. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 829. MR2146071
[13] J. Bokowski and E. Sperner. Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312 (1979) 80–100.

MR0549959
[14] C. Borell. The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30 (1975) 207–216. MR0399402
[15] J. Bourgain. On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (Notes of GAFA

Seminar) 127–137. Lecture Notes in Math. 1469. Springer, Berlin, 1991. MR1122617
[16] Y. D. Burago and V. G. Maz’ja. Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naučn.
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