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Abstract. This paper studies limit theorems for Markov chains with general state space under conditions which imply subge-
ometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded
functional of the Markov chains under drift and minorization conditions which are weaker than the Foster–Lyapunov conditions.
The regeneration-split chain method and a precise control of the modulated moment of the hitting time to small sets are employed
in the proof.

Résumé. Nous établissons dans ce papier des théorèmes limites pour des chaînes de Markov à espace d’état général sous des
conditions impliquant l’ergodicité sous géométrique. Sous des conditions de dérive et de minorisation plus faibles que celles de
Foster–Lyapounov, nous obtenons un théorème de limite centrale et un principe de déviation modérée pour des fonctionnelles
additives non nécessairement bornées de la chaîne de Markov. La preuve repose sur la méthode de régénération et un contrôle
précis du moment modulé de temps d’atteinte d’ensembles petits.
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1. Introduction

This paper studies limit theorems and deviation inequalities for a positive Harris recurrent Markov chain {Xk}k≥0 on
a general state space X equipped with a countably generated σ -field X . Results of this type for geometrically ergodic
Markov chains are now well established: see, for instance, [14], Chapter 17, for the central limit theorem and the
law of iterated logarithm, [3,6] for moderate deviations results. However, the more subtle subgeometrical case is not
nearly as well understood (see, for instance, [7]).

These results can be obtained by using the regeneration method constructed via the splitting technique on returns
to small sets. These methods typically require bounds for modulated moments of the excursions between two regener-
ations. In practice, one most often controls the corresponding modulated moment of the excursion between two small
set return times rather than regeneration times. Our first result in Section 2 relate these two bounds, extending to sub-
geometrical case results reported earlier in the geometric case by [17]. We then apply these bounds in Sections 3–5. In
Section 3, we establish a CLT and Berry–Esseén bounds, sharpening estimates given in [1]. In Section 4, we establish
a moderate deviation principle for possibly unbounded additive functionals of the Markov chains, extending results
obtained earlier for bounded functionals and atomic chains by [7]. Finally, in Section 5, we give deviation inequality
for unbounded additive functionals of the Markov chain.
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Following [16], we denote by Λ0 the set of sequences such that r(n) is nondecreasing and log r(n)/n ↓ 0 as
n → ∞ and by Λ the set of sequences for which r(n) > 0 for all n ∈ N, and for which there exists an r0 ∈ Λ0 which
is equivalent to r in the sense that

0 < lim inf
n→∞

r(n)

r0(n)
and lim sup

n→∞
r(n)

r0(n)
< ∞.

Without loss of generality, we assume that r(0) = 1 whenever r ∈ Λ0. Examples of subgeometric sequences include:
polynomial sequences r(n) = (n + 1)δ (δ > 0), or subexponential sequences, r(n) = (n + 1)δecnγ

(δ > 0, c > 0 and
γ ∈ (0,1)).

Denote by P the transition kernel of the chain and for n ≥ 1, P n the nth iterate of the kernel. For any signed

measure μ on (X,X ), we denote by ‖μ‖f
def= sup|g|≤f |μ(g)| the f -total variation norm. Let f : X → [1,∞) be a

measurable function and {r(k)} ∈ Λ. We shall call {Xk} (f, r)-ergodic (or f -ergodic at rate {r(k)}) if P is aperiodic,
φ-irreducible and positive Harris recurrent Markov chain and

lim
n→∞ r(n)

∥∥P n(x, ·) − π
∥∥

f
< ∞, for all x ∈ X, (1.1)

where π is the unique stationary distribution of the chain. If (1.1) holds for f ≡ 1, then we call {Xk} r-ergodic
(or ergodic at rate r). For a positive Harris recurrent Markov chain ([14], Chapter V), there exists some (and indeed
infinitely many) small sets satisfying for some constant m and some probability measure ν, the minorization condition:
P m(x, ·) ≥ εν(·), x ∈ C. In what follows, for simplicity of exposition, we shall consider the “strongly aperiodic case”
m = 1, that is

Assumption 1. There exist ε ∈ (0,1], a probability measure ν on (X,X ) such that ν(C) = 1 and for all x ∈ C, A ∈X ,
P(x,A) ≥ εν(A).

The general m case can be straightforwardly, but to the price of heavy notations and calculus (considering, for
example, easy extensions of i.i.d. theorem to the 1-dependent case), recovered from the proofs presented here. Fun-
damental to our methodology will be the regeneration technique (see [15], Chapter IV). The existence of small sets
enables the use of the splitting construction to create atoms and to use regeneration methods, similar to those on
countable spaces. In particular, each time the chain reaches C, there is a possibility for the chain to regenerate. Each
time the chain is at x ∈ C, a coin is tossed with probability of success ε. If the toss is successful, then the chain is
moved according to the probability distribution ν, otherwise, according to (1 − ε)−1{P(x, ·)− εν(·)}. Overall, the dy-
namic of the chain is not affected by this coin toss, but at each time the toss is successful, the chains regenerates with
regeneration distribution ν independent from x. We denote by τ = inf{k ≥ 1,Xk ∈ C} and σ = inf{k ≥ 0,Xk ∈ C} the
first return and hitting time to C and by τ̌ = inf{k ≥ 1, (Xk, dk) ∈ C × {1}} and σ̌ = inf{k ≥ 0, (Xk, dk) ∈ X × {1}}.
Let f be a nonnegative function and r ∈ Λ a subgeometric sequence and μ a probability measure on (X,X ). Our
main result gives a bound to the (f, r)-modulated expectation of moments Ěμ̌[∑σ̌

k=1 r(k)f (Xk)] of the regeneration

time (where Ěμ̌ is the expectation associated to the split chain; see below) in terms of the corresponding moment

of Ẽμ[∑τ
k=0 r(k)f (Xk)] and constants depending only and explicitly on ε and ν and on the sequence r . Here, Ẽμ

denotes the expectation associated to a Markov chain with initial distribution μ and moving according to P outside C

and the residual kernel (1 − ε)−1{P(x, ·) − εν(·)} inside C.
Because finding bounds for Ẽμ[∑τ

k=0 r(k)f (Xk)] is not always easy, we will consider bounds for this quantity
derived from a “subgeometric” condition recently introduced in [8], which might be seen in the subgeometrical case,
as an analog to the Foster–Lyapunov drift condition for geometrically ergodic Markov chains. We obtain, using these
drift conditions, explicit bounds for the (f, r)-modulated expectation of moments of the regeneration times in terms
of the constants in Assumption 1, the sequence r and the constants appearing in the drift conditions. With these
results, we obtain limit theorems for additive functionals and deviations inequalities, under conditions which are easy
to check.
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2. Bounds for regeneration time

We proceed by recalling the construction of the split chain ([15], Chapter 4). For x ∈ C and A ∈ X define the kernel
Q as follows,

Q(x,A) =
{(

1 − ε1C(x)
)−1{

P(x,A) − ε1C(x)ν(A)
}
, 0 ≤ ε1C(x) < 1,

δx(A), ε = 1, C = X.
(2.1)

Define now, on the product space X̌ = X × {0,1} equipped with the product σ -algebra X ⊗ P(0,1) where

P(0,1)
def= {∅, {0}, {1}, {0,1}} the split kernel as follows:

P̌
(
x,0;A × {0}) =

∫
A

Q(x,dy)
{
1 − ε1C(y)

}
, P̌

(
x,0;A × {1}) = εQ(x,A ∩ C),

P̌
(
x,1;A × {0}) =

∫
A

ν(dy)
{
1 − ε1C(y)

}
, P̌

(
x,1;A × {1}) = εν(A ∩ C).

For μ be a probability measure on (X,X ), define the split probability μ̌ on (X × {0,1},X ⊗P({0,1})) by

μ̌
(
A × {0}) =

∫
A

{
1 − ε1C(y)

}
μ(dy), A ∈X , (2.2)

μ̌
(
A × {1}) = εμ(A ∩ C). (2.3)

We denote by P̌μ̌ and Ěμ̌ the probability and the expectation on (XN × {0,1}N, XN ⊗P⊗N({0,1})) associated to the

Markov chain {Xn,dn}n≥0 with initial distribution μ̌ and transition kernel P̌ . The definition of the split kernel implies
that

P̌
(
Xn+1 ∈ A|FX

n ∨Fd
n−1

) = P(Xn,A), (2.4)

P̌
(
dn = 1|FX

n ∨Fd
n−1

) = ε1C(Xn), (2.5)

P̌
(
Xn+1 ∈ A|FX

n ∨Fd
n−1;dn = 1

) = ν(A), (2.6)

where for n ≥ 0, Fd
n = σ(dk, k ≤ n) and by convention Fd

−1 = {∅,Ω). Condition (2.4) simply states that {Xn}n≥0 is
a Markov chain w.r.t. the filtration (FX

n ∨ Fd
n−1, n ≥ 0). Condition (2.5) means that the probability of getting a head

(dn = 1) as the nth toss is equal to ε1C(Xn), independently of the previous history FX
n−1 and of the n − 1 previous

toss. Condition (2.6) says that if head is obtained at the nth toss (dn = 1), then the next transition obeys the transition
law ν independently of the past history of the chain and of the tosses. This means in particular that X × {1} is a proper
atom. From conditions (2.4)–(2.6), we have

P̌
(
Xn+1 ∈ A|FX

n ∨Fd
n−1;dn = 0

) = Q(Xn,A).

We denote respectively by P̃μ and Ẽμ the probability and the expectation on (XN,X⊗N) of a Markov chain with initial
distribution μ and transition kernel Q.

Denote by {σj }j≥0 are the successive hitting times of {Xn} to the set C

σ0
def= inf{n ≥ 0,Xn ∈ C} and σj = inf{n > σj−1,Xn ∈ C}, j ≥ 1, (2.7)

and by Nn the number of visits of {Xn} to the set C before time n,

Nn =
n∑

i=0

1C(Xn) =
∞∑

j=0

1{σj ≤n}. (2.8)
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Define by σ̌ the hitting time of the atom of the split chain X × {1},

σ̌
def= {k ≥ 0, dk = 1}. (2.9)

The stopping time σ̌ is a regeneration time and ν is a regeneration measure, i.e., the distribution of Xn conditional
to σ̌ = n is ν independently of the past history of the chain. The following proposition relates the functionals of the
regeneration time under the probability associated to the split chain P̌μ̌ to the corresponding functionals of the chain

{Xn} under the probability P̃μ.

Proposition 1. Assume Assumption 1. Let μ a probability measure on (X,X ). Let {ξn} be a nonnegative FX-adapted
process and let S be a FX-stopping time. Then,

Ěμ̌[ξS1{S<σ̌ }] = Ẽμ

[
ξS(1 − ε)NS 1{S<∞}

]
, (2.10)

Ěμ̌[ξσ̌ 1{σ̌<∞}] = ε

∞∑
j=0

(1 − ε)j Ẽμ[ξσj
1{σj <∞}]. (2.11)

The proof is given in Appendix A. We will now apply the proposition above to functionals of the form ξn :=∑n
k=0 r(k)g(Xk) where g is a nonnegative function and r ∈ Λ is a sequence, to relate the bounds of the (g, r)-

modulated expectation of moments of regeneration time to the (f, r)-modulated expectation of moments of the hitting
time.

Proposition 2. Assume Assumption 1. Let {r(n)}n≥0 be a sequence such that, for some K , r(n + m) ≤ Kr(n)r(m),
for all (n,m) ∈ N × N. Let g : X → [1,∞) be a measurable function. For x ∈ X, define

Wr,g(x)
def= Ẽx

[
τ∑

k=1

r(k)g(Xk)

]
. (2.12)

Then, for any x ∈ X,

Ě
δ̌x

[
σ̌∑

k=0

r(k)g(Xk)

]
≤ r(0)g(x) + Wr,g(x)1Cc(x) + ε−1(1 − ε)K

(
sup
C

Wr,g

)
Ě

δ̌x

[
r(σ̌ )

]
. (2.13)

If g ≡ 1 and r(n) = βn, this proposition may be seen as an extension of [17], Theorem 2.1, which relates the
generating function of the regeneration time to that of the hitting time to C. Subgeometric sequences r ∈ Λ0 also
satisfies the inequality r(n + m) ≤ r(n)r(m). There is, however, a striking difference with geometric sequence.
Whereas for a geometric sequence lim infn→∞ r(n)/

∑n
k=0 r(k) > 0, for subgeometric sequence we have on the con-

trary lim supn→∞ r(n)/
∑n

k=0 r(k) = 0. This implies that, whereas Ě
δ̌x

[r(σ̌ )] and Ě
δ̌x

[∑σ̌
k=0 r(k)g(Xk)] are of the

same order of magnitude in the geometric case, the second is negligible compared to the first one in the subgeometric
case. In particular,

Corollary 3. Assume Assumption 1. For any function g : X → [0,∞), there exists a constant bg (depending only and
explicitly on ε and supC W1,g) such that

Ě
δ̌x

[
σ̌∑

k=0

g(Xk)

]
≤ g(x) + W1,g(x)1Cc (x) + bg. (2.14)

For any r ∈ Λ0 and δ > 0, there exists a constant br (depending only and explicitly on ε, δ, r and supC Wr,1) such that

Ě
δ̌x

[
σ̌∑

k=0

r(k)

]
≤ (1 + δ)Wr,1(x)1Cc(x) + br . (2.15)
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In general, of course, supC W1,g and supC Wr,1 is not easy to find analytically and, as in other approaches to
this problem, we will consider bounds on these quantities using “subgeometric drift” conditions as introduced in [8],
generalizing a condition implying Riemannian convergence stated in [11] (see also [9]). This condition may be seen as
an analogue for subgeometrically ergodic Markov chain of the Foster–Lyapunov condition for geometrically ergodic
Markov chain.

Assumption 2. There exist a concave, nondecreasing, differentiable function ϕ : [1,+∞) → R
+, a measurable

function V : X → [1,∞) and positive constants b satisfying ϕ(1) > 0, limv→∞ ϕ(v) = ∞, limv→∞ ϕ′(v) = 0,
supx∈C V (x) < ∞ and

PV ≤ V − ϕ ◦ V + b1C,

where the set C is given in Assumption 1.

This drift condition has been checked in a large number of examples arising, for example, in queueing theory,
Markov chain Monte Carlo, time-series analysis (see, for example, [8,11]). Examples of functions ϕ satisfying As-
sumption 2 include of course polynomial functions ϕ(v) = (v +1)α for α ∈ (0,1) but also more general functions like
ϕ(v) = logα(v + 1) for some α > 0, or ϕ(v) = (v + d)/ log(v + d)α , for some α > 0 and sufficiently large constant
d . We refer to [8] for precise statements giving both drift functions and rate ϕ for these examples. Define

Φ(v)
def=

∫ v

1

dx

ϕ(x)
. (2.16)

The function Φ : [1,∞) → [0,∞) is increasing and limv→∞ Φ(v) = ∞ (see [8], Section 2). Define, for u ∈ [1,∞),

rϕ(u)
def= ϕ ◦ Φ−1(u)/ϕ ◦ Φ−1(0), (2.17)

where Φ−1 is the inverse of Φ . The function u �→ rϕ(u) is log-concave, and thus the sequence {rϕ(k)} is subgeometric.
Polynomial functions ϕ(v) = vα , α ∈ (0,1) are associated to polynomial sequences rϕ(k) = (1 + (1 − α)k)α/(1−α).
Functions like ϕ(v) = c(v + d)/ logα(v + d) (α ∈ (0,1) and sufficiently large d) are associated to subexponential
sequences,

rϕ(n) � n−α/(1+α) exp
({

c(1 + α)n
}1/(1+α))

,

where for two sequences {uk} and {vk} of positive numbers, uk � vk if

0 < lim inf
k→∞

uk

vk

≤ lim sup
k→∞

uk

vk

< ∞.

Ref. [8], Proposition 2.2, shows that under Assumptions 1 and 2, for all x ∈ X,

Ex

[
τC−1∑
k=0

ϕ ◦ V (Xk)

]
≤ V (x) + b1C(x), (2.18)

Ex

[
τC−1∑
k=0

rϕ(k)

]
≤ {

V (x) − 1 + brϕ(1)1C(x)
}
/ϕ(1). (2.19)

This implies using [18] that a Markov chain satisfying Assumptions 1 and 2 is both (1, rϕ)- and (f,1)-ergodic. Denote
by G(ϕ) the set of measurable functions satisfying:

G(ϕ)
def=

{
ψ : [1,∞) → R,ψ is nondecreasing,

ψ

ϕ
is nonincreasing

}
. (2.20)
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Similarly to (2.16), for all ψ ∈ G(ϕ), define the function

Φψ :v �→
∫ v

1

ψ

ϕ
(u)du. (2.21)

The function Φψ is concave, nondecreasing and because [ψ/ϕ](u) ≤ [ψ/ϕ](1), Φψ(u) ≤ [ψ/ϕ](1) (u − 1) for all
u ≥ 1. The results of the previous section are used to derive explicit bounds for

Ě
δ̌x

[
σ̌∑

k=0

ψ ◦ V (Xk)

]
and Ě

δ̌x

[
σ̌∑

k=0

rϕ(k)

]
,

where ψ is any function in G(ϕ). The following theorem proved in Appendix B, establishes bounds for the modulated
moment of the excursion of the split chain to the atom X × {1} as a function of the drift condition.

Theorem 4. Assume Assumptions 1 and 2. Then there exists finite constant Bψ (depending only and explicitly on the
constants appearing in the assumptions) such that for all x ∈ X, ψ ∈ G(ϕ),

Ě
δ̌x

[
σ̌∑

k=0

ψ ◦ V (Xk)

]
≤ Φψ ◦ V (x)1Cc(x) + Bψ. (2.22)

For any δ > 0, there exists a finite constant Bϕ (depending only and explicitly on the constants appearing in the
assumptions and δ > 0) such that

Ě
δ̌x

[
σ̌∑

k=0

rϕ(k)

]
≤ (1 + δ)V (x)1Cc(x) + Bϕ. (2.23)

For any c ∈ (0,1) and K ≥ 1, there exists a finite constant κ (depending only and explicitly on the constants appearing
in the assumptions) such that for any ψ ∈ G(ϕ), and x ∈ X,

P̌
δ̌x

(
σ̌∑

k=0

ψ ◦ V (Xk) ≥ M

)
≤ κ

[
1

Φ−1{cM/ψ(K)} + Φψ(K) + 1

(1 − c)MK

]
V (x). (2.24)

The rates of convergence for the tail of the excursions may be obtained by optimizing the choice of the constant K

with respect to M . As an illustration, consider first the case where ψ ≡ 1. Since lims→∞ ϕ(s) = ∞, then

lim
K→∞

Φ(K)

K
= lim

K→∞
1

K

∫ K

1

ds

ϕ(s)
= 0.

Therefore, by letting K → ∞ in the right-hand side of (2.24) and then taking c = 1,

P̌
δ̌x

(σ̌ ≥ M) ≤ κV (x)/Φ−1(M).

Note that this bound could have been obtained directly by using the Markov inequality with the bound (2.23) of the
f -modulated moment of the excursion. Consider now the case: ψ ≡ ϕ. By construction, for any K ≥ 1, (Φψ(K) +
1)/K ≤ 1 and for any positive u, Φ−1(u) ≥ ϕ(1)u + 1. Taking K = 1 in (2.24), Theorem 4 shows that, for some
constant κ ,

P̌
δ̌x

(
σ̌∑

k=0

ψ ◦ V (Xk) ≥ M

)
≤ κV (x)

M
,

which could have been again deduced from the Markov inequality applied to the bound for the excursion (2.22). The
expression (2.24) thus allows to retrieve these two extreme situations. Equation (2.24) also allows to interpolate the
rates for functions growing more slowly than ϕ ◦ V .
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We give now two examples of convergence rates derived from the previous theorem by balancing the two terms of
the right-hand side appearing in Theorem 4.

Polynomial ergodicity
By Eqs (2.16) and (2.17), if ϕ(v) = vα (with α ∈ (0,1)), then rϕ(k) = (1 + (1 − α)k)α/(1−α) and Φ−1(u) � (1 −
α)1/(1−α)u1/(1−α) as u → ∞. Choose β ∈ (0, α) and set ψ(u) = uβ . Then, Φψ(v) = (1 + β − α)−1(v1+β−α − 1) and
the optimal rate in the right-hand side of (2.24) is obtained by setting K = Mα/(β+(α−β)(1−α)). With this choice of K ,
(2.24) implies that

P̌
δ̌x

[
σ̌∑

k=0

V β(Xk) ≥ M

]
≤ κV (x)M−α/(β+(α−β)(1−α)).

This bound shows how the rate of convergence of the tail depends on the tail behavior of the function g and of the
mixing rate of the Markov chain.

Subexponential ergodicity
Assume that ϕ(v) = c(v + d)(log(v + d))−α for some positive constants c and α and sufficiently large d . Then
Φ−1(k) � e(c(1+α)k)1/(1+α)

. Choose, for example, ψ(v) = | log |β(1 + v), v ∈ R
+. By optimising the bound w.r.t. K ,

(2.24) yields:

P̌
δ̌x

[
σ̌∑

k=0

| log |β[
V (Xk)

] ≥ M

]
≤ κe−cM1/(1+α+β)

V (x),

for some constants c and C which does not depend of β or M . Similarly, for ψ(v) = (1 + v)β with β ∈ (0,1), there
exists a constant κ < ∞,

P̌
δ̌x

[
σ̌∑

k=0

V β(Xk) ≥ M

]
≤ κM−1/β log(2αβ−1+β−α)/β(M)V (x).

3. Central limit theorem and Berry–Esseén bounds

As a first elementary application of the results obtained in the previous section, we will derive conditions upon which a

central limit theorem holds for the normalized sum Sn(f )
def= n−1/2 ∑n

i=1(f (Xk)−π(f )) where π is the stationary dis-
tribution for the chain. For u, v two vectors of R

d , denote by 〈u,v〉 the standard scalar product and ‖u‖ = (〈u,u〉)1/2

the associated norm.

Theorem 5. Assume Assumptions 1 and 2. Let ψ be a function such that ψ2 and ψΦψ belong to G(ϕ). Then for any

function f : X → R such that supX
|f |

ψ◦V < ∞,

∫
f 2 dπ +

∫
|f |

∞∑
k=1

∣∣P kf − π(f )
∣∣dπ < ∞.

If in addition σ 2(f ) > 0, where

σ 2(f )
def=

∫ {
f − π(f )

}2 dπ + 2
∫

f

∞∑
k=1

P k
{
f − π(f )

}
dπ, (3.1)

then for any initial probability measure μ on (X,X ) satisfying μ(Φψ) < ∞,
√

nSn(f ) converges in distribution to a
zero-mean Gaussian variable with variance σ 2(f ).
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Polynomial ergodicity
Assume that ϕ(v) = vα for some α ∈ (1/2,1) and choose ψ(v) = vβ for some β ∈ [0, α]. Then, Φψ(v) = (1 + β −
α)−1(v1+β−α − 1) and the conditions of Theorem 5 are satisfied if α > 1/2 and β ∈ [0, α − 1/2]. This is equivalent
to the condition used in the CLT [11], Theorem 4.4, for polynomially ergodic Markov chains. Note that if α < 1/2,
then the moment of order two of the hitting time σ̌ is not necessarily finite, and the CLT does not necessarily holds in
this case.

Subexponential ergodicity
Theorem 5 allows to derive a CLT under conditions which imply subexponential convergence. Assume that ϕ(v) =
(d + v) log−α(d + v), for some α > 0 and sufficiently large d . The condition of Theorem 5 are satisfied for ψ(v) ∝
v1/2{log(v)}−(α+δ) for δ > 0.

By strengthening the assumptions, it is possible to establish a Berry–Esseén theorem with an explicit control of the
constants.

Theorem 6. In addition to the assumptions of Theorem 5, suppose that the functions ψ3, ψ2Φψ and ψΦψ belong to
G(ϕ). Let μ be a probability measure on (X,X ) such that μ(Φψ) < ∞. Then there exist a constant κ depending only
and explicitly on the constants appearing in the Assumptions 1 and 2 and on the probability measure μ such that, for
any function f : X → R such that supX

|f |
ψ◦V < ∞ and σ 2(f ) > 0,

sup
t

∣∣Pμ

(
n−1/2Sn(f )/σ (f ) ≤ t

) − G(t)
∣∣ ≤ κn−1/2, (3.2)

where G is the standard normal distribution function.

Berry–Esseén theorems have been obtained for Harris-recurrent Markov chains under moment and strongly mix-
ing conditions by [1]. The use of the results obtained above allow to check these conditions directly from the drift
condition. A side result, which is not fully exploited here because of the lack of space is the availability of an ex-
plicit computable expression for the constant κ , which allows to investigate to assess deviation of the normalized sum
for finite sample. This provides an other mean to get “honest” evaluation of the convergence of the Markov chain,
under conditions which are less stringent than the ones outlined in [12], based on total variation distance. It is in-
teresting to compare our conditions with those derived in [1], Theorem 1, in the polynomial case, i.e., ϕ(v) = vα ,
α ∈ (0,1). It is straightforward to verify that the conditions of the Theorem 6 are satisfied by ψ(v) = vβ if α > 2/3
and β ∈ [0, α − 2/3]. On the other hand, the strong mixing rate of this chain is r(n) = n−α/(1−α) (see [8] and the
maximum value of p such that π(V pβ) < ∞ is p = α/β . The Bolthausen condition

∑∞
k=1 k(p+3)/(p−3)r(n) < ∞, is,

therefore, satisfied again if α > 2/3 and β ∈ [0, α − 2/3), the value α − 2/3 being this time excluded.

4. Moderate deviations

The main goal of this section is to generalize the MDP result of Djellout–Guillin [7] from the atomic case to the
1-small set case. We will indicate in the proof the easy modifications needed to cover the general case.

4.1. Moderate deviations for bounded functions

We first consider MDP for bounded mapping, including nonseparable case (the functional empirical process and the
trajectorial case).

Theorem 7. Assume Assumptions 1 and 2. Then for all sequence {bn} satisfying, for any ε > 0,

lim
n→∞

(√
n

bn

+ bn

n

)
= 0, (4.1)

lim
n→∞

n

b2
n

log

(
n

Φ−1(εbn)

)
= −∞, (4.2)
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for all initial measure μ satisfying μ(V ) < ∞, for all bounded measurable function f : X → R
d such that π(f ) = 0

and for all closed set F ⊂ R
d , we have

lim sup
n→∞

n

b2
n

logPμ

(
1

bn

n−1∑
k=0

f (Xk) ∈ F

)
≤ − inf

x∈F
Jf (x),

where Jf is a good rate function, defined by

Jf (x)
def= sup

λ∈Rd

(
〈λ,x〉 −

(
1

2

)
σ 2(λ,f )

)
, (4.3)

and σ 2 is defined by (3.1).

The proof is given in Appendix D. [5] proved that the moderate deviation lower bound holds for all bounded
function and all initial measure provided that the chain is ergodic of degree 2, i.e., for all set B ∈ X such that π(B) > 0,∫
B

Ex[τ 2
B ]π(dx) < ∞, where τB

def= inf{k ≥ 1,Xk ∈ B} is the return-time to the set B . It turns out that, under the
Assumptions 1 and 2, the conditions (4.1) and (4.2) implies that the Markov chain is ergodic of degree 2. Note indeed
that the conditions (4.1) and (4.2) implies that limk→∞ k/rϕ(k) = 0. The definition (2.17) of {rϕ(k)} implies that for
some positive c, ϕ(v) ≥ c

√
v, for any v ∈ [1,∞) and Lemma 12 (stated and proved in Appendix D) shows that this

condition implies that the chain is ergodic of degree two. Thus, Theorem 7 together with [5], Theorem 3.1, establish
the full MDP for bounded additive functionals.

Conditions (4.1) and (4.2) linking ergodicity and speed of the MDP may be seen as the counterpart for Markov
chains of the condition of [13] for the MDP of i.i.d. random variable linking the tail of this random variable with the
speed of the MDP. Let us give examples of the range of speed of the MDP allowed as the function of the ergodicity
rate.

Polynomial ergodicity
By Eqs (2.16) and (2.17), if ϕ(v) = vα (with α ∈ (0,1)), then rϕ(k) � kα/(1−α) and Φ−1(k) � k1/(1−α). Therefore,
conditions (4.1) and (4.2) are fulfilled as soon as for any α ∈ (1/2,1) by any sequence {bn} satisfying

lim
n→∞

{√
n

bn

+
√

n logn

bn

}
= 0.

Subexponential ergodicity
Assume that ϕ(v) = (v + d)(log(v + d))−α for some α > 0 and sufficiently large d . Then, Φ−1(k) � eck1/(1+α)

for
some constant c. The conditions (4.1) and (4.2) are fulfilled by any speed sequence {bn} satisfying

lim
n→∞

{√
n

bn

+ bn

n(1+α)/(1+2α)

}
= 0.

The result can be extended to the empiral measure of a Markov chain. Assume that X is a Polish space and denote
by M(X) the set of finite Borel signed measures on X. Denote by B(X) the collection of bounded measurable functions
on X. We equip M(X) with the smallest topology such that the maps ν �→ ∫

X f dν are continuous for each f ∈ B(X),
commonly referred to as the τ -topology. The σ -algebra M(X) on M(X) is defined to be the smallest σ -algebra such
that for each f ∈ B(X), the map ν �→ f dν is measurable. Define the empirical measure Ln as

Ln = 1

bn

n−1∑
k=0

(δXk
− π).

For any B ∈ M(X), we denote by intτ (B) and closτ (B) the interior and the closure of the set B w.r.t. the τ -topology.
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Theorem 8. Under the assumptions of Theorem 7, for every probability measure μ ∈ M(X) satisfying μ(V ) < ∞,
and any B ∈M(X)

lim sup
n

n

b2
n

logPμ(Ln ∈ B) ≤ − inf
γ∈closτ (B)

I0(γ ),

lim inf
n

n

b2
n

logPμ(Ln ∈ B) ≥ − inf
γ∈intτ (B)

I0(γ ),

where for γ ∈ X, setting f̄ = f − π(f ),

I0(γ ) = sup
f ∈B(X)

[∫
f dγ − 1

2

(∫
f̄ 2 dγ + 2

∫
f̄

∞∑
k=1

P kf̄ dπ

)]
. (4.4)

The proof can be directly adapted from the proof of [5], Theorem 3.2, and is omitted for brevity. An explicit
expression of the good rate function can be found in [5], Theorem 4.1. Other MDP principles (for instance, for the
supremum of the empirical process) can be obtained using the results obtained previously by [7]. To save space, we
do not pursue in this direction.

4.2. Moderate deviations for unbounded functionals of Markov chains

We give here conditions allowing to consider unbounded functions. These conditions make a trade-off between the
ergodicity of the Markov chain, the range of speed for which a moderate deviation principle may be established and
the control of the tails of the functions.

Theorem 9. Assume Assumptions 1 and 2 and that there exist a function ψ ∈ G(ϕ) and a sequence {Kn} such that
limn→∞ Kn = ∞ and, for any positive ε,

lim
n→∞

n

b2
n

log

(
n

Φ−1(εbn/ψ(Kn))

)
= −∞, (4.5)

lim
n→∞

n

b2
n

log

(
nΦψ(Kn)

εbnKn

)
= −∞. (4.6)

Then for any initial distribution μ satisfying μ(V ) < ∞ and any measurable function f : X → R
d such that

supX ‖f ‖/ψ ◦ V , the sequence {σ 2
n (λ,f,μ)} where

σ 2
n (λ,f,μ)

def= Eμ

[(
1

n

n−1∑
k=0

{
f (Xk) − π(f )

})2]
,

has a limit σ 2(λ,f ) (which does not depend on μ) and Pμ[Ln(f ) ∈ ·] satisfies a moderate deviation principle with
speed b2

n/n and good rate function Jf ,

Jf (x) = sup
λ∈Rd

[
〈λ,x〉 −

(
1

2

)
σ 2(λ,f )

]
.

Moreover, if ψ2 + ψΦψ ∈ G(ϕ), then σ 2(λ,f ) = σ 2(〈λ,f 〉) and Jf = Jf .

Polynomial ergodicity
By Eqs (2.16) and (2.17), if ϕ(v) = vα (with α ∈ (1/2,1)), then rϕ(k) � kα/(1−α) and Φ−1(k) � k1/(1−α). Choose

ψ(v) = vβ with β < α − 1/2. Then the MDP holds for for any sequence {bn} such that limn→∞{
√

n
bn

+ bn√
n logn

} = 0.
It is worthwhile to note that the speed which can be achieved are the same than in the bounded case.
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Subexponential ergodicity
Assume now that ϕ(v) = (v + d)(log(v + d))−α for some α > 0 and sufficiently marge d . Then letting ψ(v) =
(log(1 + v))β for some β > 0, then Theorem 9 shows the MDP with speed bn = na for a such that

1

2
< a <

β + 1 + α

2β + 1 + 2α
.

Letting ψ(v) = (1 + v)β with β < 1/2, then Theorem 9 shows that the MDP principle holds for any sequence {bn}
such that limn→∞{

√
n

bn
+ bn√

n logn
} = 0.

5. Deviation inequalities

We now investigate some exponential deviation inequalities for Pμ(
∑n

k=0 f (Xi) > εn) valid for each n where f is a
bounded and centered function w.r.t. π . This is to be compared to Bernstein’s inequality for i.i.d. variables or more
precisely to the [10] inequality adapted to Markov chains (as done in a previous work of [4]), except that in this paper,
the Markov chain is not geometrically but subgeometrically ergodic. Extensions to the case of unbounded functions
can be tackled using result of Theorem 4.

Theorem 10. Assume that f is bounded and centered with respect to π and the assumptions of Theorem 1. Then, for
any initial measure μ satisfying μ(V ) < ∞, for any positive ε > 0 and n > n0(ε), there exists L,K (independent of
n and ε) such that, for all positive y

Pμ

(∥∥∥∥∥
n−1∑
k=0

f (Xk)

∥∥∥∥∥ > εn

)
≤ Ln

Φ−1(εn/‖f ‖∞)
+ Ln

Φ−1(y/‖f ‖∞)
+ e−nε2/(K‖f ‖2∞+εy).

The proof is given in Appendix E. Let us give a few comments on the obtained rate in some examples: with
‖f ‖∞ ≤ 1, for n ≥ n1

(1) ϕ(v) = (1 + v)α for α ∈ (1/2,1), then there exists K

Pμ

(∥∥∥∥∥
n−1∑
k=0

f (Xk)

∥∥∥∥∥ > εn

)
≤ K

log(n)1/(1−α)

ε2/(1−α)nα/(1−α)
.

(2) ϕ(v) = (1 + v) log(c + v)−α for positive α, then there exists K,L

Pμ

(∥∥∥∥∥
n−1∑
k=0

f (Xk)

∥∥∥∥∥ > εn

)
≤ Ke−L(nε)1/(2+α)

.

The polynomial rate shown in the first case is better than the one derived by Rosenthal’s inequality, and considering
that we, in fact, only consider integrability assumptions, are not so far from optimal when considering stronger as-
sumptions as weak Poincare inequalities. The subgeometric case is less satisfactory in the sense that when α is near 0,
we hope to achieve an n in the exponential (obtained, for example, via Cramer argument) whereas we obtained instead√

n. The gap here, due to Fuk–Nagaev’s inequality, is fulfilled only asymptotically via the moderate deviations result,
and is left for deviation inequalities for further study.

Appendix A. Proofs of Propositions 1 and 2

Proof of Proposition 1. We first prove by induction that for all n ≥ 0 and all functions f0, . . . , fn ∈ F+(X),

Ěμ̌

[
n∏

i=0

fi(Xi)1{σ̌>n}

]
= Ẽμ

[
n∏

i=0

fi(Xi)(1 − ε)Nn

]
. (A.1)
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We first establish the result for n = 0. For f ∈ F+(X) we have

Ěμ̌

[
f (X0)1{σ̌>0}

] = Ěμ̌

[
f (X0)1{d0=0}

] = (1 − ε)

∫
C

f (x)μ(dx) +
∫

Cc

f (x)μ(dx)

=
∫

X

{
1 − ε1C(x)

}
f (x)μ(dx).

Assume now that the result holds up to order n, for some n ≥ 0. Similarly, for any f ∈F+(X),

Ě
[
f (Xn+1)1{dn+1=0}|FX

n ∨Fd
n

]
1{dn=0} = Ě

[
f (Xn+1)

{
1 − ε1C(Xn+1)

}∣∣FX
n ∨Fd

n

]
1{dn=0}

= Ẽ
[
f (Xn+1)

{
1 − ε1C(Xn+1)

}|Xn

]
1{dn=0}.

Therefore, by the recurrence assumption,

Ěμ̌

[
fn+1(Xn+1)

n∏
i=0

fi(Xi)1{σ̌>n+1}

]
= Ěμ̌

[
Ẽ

[
fn+1(Xn+1)

{
1 − ε1C(Xn+1)

}|Xn

] n∏
i=0

fi(Xi)1{σ̌>n}

]

= Ẽμ

[
Ẽ

[
fn+1(Xn+1)

{
1 − ε1C(Xn+1)

}|Xn

] n∏
i=0

fi(Xi)(1 − ε)Nn

]

= Ẽμ

[
fn+1(Xn+1)

n∏
i=0

fi(Xi)(1 − ε)Nn+1

]
,

showing (A.1). Therefore, the two measures on (Xn+1,X⊗(n+1)) defined respectively by

A �→ Ěμ̌

[
1A(X0, . . . ,Xn)1{σ̌≥n}

]
and A �→ Ẽμ

[
1A(X0, . . . ,X1)(1 − ε)Nn

]
are equal on the monotone class C def= {A,A = A0 × · · · × An,Ai ∈ X } for any n, and thus these two measures co-
incide on the product σ -algebra. The proof of (2.10) follows upon conditioning upon the events {S = n}. We now
prove (2.11). By definition of the hitting time σ̌ to the atom X × {1}, ξσ̌ 1{σ̌<∞} may be expressed as

ξσ̌ 1{σ̌<∞} = ξσ01{dσ0 =1}1{dσ0 <∞} +
∞∑

j=1

ξσj
1{dσj

=1}1{σj−1<σ̌ }1{σj <∞}.

Note that

Ě
[
1{dσ0 =1}ξσj

|FX
σj

]
1{σj <∞} = εĚ

[
ξσj

|FX
σj

]
1{σj <∞}

and (1 − ε)
Nσj 1{σj <∞} = (1 − ε)j+11{σj <∞}. The proof follows from the identity

Ěμ̌[ξσj
1{σj <∞}1{σj−1<σ̌ }] = Ěμ̌

[
Ě

[
ξσj

1{σj <∞}|FX
σj−1

∨Fd
σj−1

]
1{dσj−1 =0}1{σj−1<σ̌ }

]
= Ẽμ

[
Ẽ

[
ξσj

1{σj <∞}|FX
σj−1

]
(1 − ε)

Nσj−1 1{σj−1<∞}
] = (1 − ε)j Ẽμ[ξσj

1{σj <∞}]. �

Proof of Proposition 2. Without loss of generality we assume that supC Wr,g < ∞ (otherwise the inequality is trivial).
In the case ε = 1, Proposition 2 is elementary since by Proposition 1, it then holds that

Ě
δ̌x

[
σ̌∑

k=1

r(k)g(Xk)

]
= Wr,g(x)1Cc(x).
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Consider now the case ε ∈ (0,1). By applying Proposition 1, we obtain:

Ě
δ̌x

[
σ̌∑

k=1

r(k)g(Xk)

]
= εWr,g(x)1Cc(x) + ε

∞∑
j=1

(1 − ε)j Ẽx

[ σj∑
k=1

r(k)g(Xk)

]
. (A.2)

For j ≥ 1, write

Ẽx

[ σj∑
k=1

r(k)g(Xk)

]
= Wr,g(x)1Cc(x) +

j−1∑
�=0

Ẽx

[
σ�+1∑

k=σ�+1

r(k)g(Xk)

]
.

Under the stated assumptions, for all n,m ≥ 0, r(n + m) ≤ Kr(n)r(m). This and the strong Markov property imply,
for x ∈ {Wr,g < ∞}:

Ẽx

[
σ�+1∑

k=σ�+1

r(k)g(Xk)

]
= Ẽx

[
τ◦θσ�∑
k=1

r(k + σ�)g(Xk+σ�
)

]

≤ KẼx

[
r(σ�)Wr,g(Xσ�

)
] ≤ K

(
sup
C

Wr,g

)
Ẽx

[
r(σ�)

]
,

where θ is the shift operator. Plugging this bound into (A.2) and using again Proposition 1, we obtain,

Ě
δ̌x

[
σ̌∑

k=1

r(k)g(Xk)

]
≤ Wr,g(x)1Cc(x) + K

(
sup
C

Wr,g

) ∞∑
j=1

ε(1 − ε)j
j−1∑
�=0

Ẽx

[
r(σ�)

]

= Wr,g(x)1Cc(x) + K
(

sup
C

Wr,g

) ∞∑
�=0

(1 − ε)�+1
Ẽx

[
r(σ�)

]

= Wr,g(x)1Cc(x) + ε−1(1 − ε)K
(

sup
C

Wr,g

)
Ě

δ̌x

[
r(σ̌ )

]
.

�

Proof of Corollary 3. For any r ∈ Λ, limn→∞ r(n)/
∑n

k=1 r(k) = 0. As a consequence, for any r(n) ∈ Λ and any
δ > 0, Nr,δ defined by

Nr,δ
def= sup

{
n ≥ 1, r(n)

/ n∑
k=1

r(k) ≥ δ

}
, (A.3)

is finite. For any n ≥ 0, the definition of Nr,δ implies r(n) ≤ δ
∑n

k=1 r(k) + r(Nr,δ). Hence, for any x ∈ X,

Ě
δ̌x

[
r(σ̌ )

] ≤ δĚ
δ̌x

[
σ̌∑

k=1

r(k)

]
+ r(Nr,δ).

The proof of (2.15) then follows by choosing δ sufficiently small so that (1 − ε−1(1 − ε) supC Wr,1δ)
−1 ≤ 1 + δ. �

Appendix B. Proof of Theorem 4

We preface the proof by the following elementary lemma.
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Lemma 11. Assume Assumption 2. Then, for any ψ ∈ G(ϕ) there exists bψ (depending only and explicitly on b, ψ

and ϕ) such that, for all x ∈ X,

Q(x,Φψ ◦ V ) ≤ Φψ ◦ V (x) − ψ ◦ V (x) + bψ1C(x). (B.1)

Proof. Since Φψ is concave, differentiable, nondecreasing, the Jensen inequality implies, for x /∈ C

P [Φψ ◦ V ] ≤ Φψ(PV ) ≤ Φψ(V − ϕ ◦ V ) ≤ Φψ ◦ V + Φ ′
ψ(V )(−ϕ ◦ V ) ≤ Φψ ◦ V − ψ ◦ V

and

sup
C

Q(x,Φψ ◦ V ) ≤ Φψ

[
(1 − ε)−1

{
sup
C

PV − εν(V )
}]

.

The proof follows. �

Proof of Theorem 4. By Corollary 3, we may write

Ě
δ̌x

[
σ̌∑

k=0

ψ ◦ V (Xk)

]
≤ Ẽx

[
τ−1∑
k=0

ψ ◦ V (Xk)

]
1Cc(x) + sup

C

ψ ◦ V + bg. (B.2)

On the other hand, the comparison theorem ([14], Theorem 11.3.1) and the drift condition (B.1) implies that

Ẽx

[
τ−1∑
k=0

ψ ◦ V (Xk)

]
1Cc(x) ≤ Φψ ◦ V (x)1Cc(x).

The proof of (2.22) follows. The proof of (2.23) is along the same lines using (2.15) instead of (2.14).

We now consider (2.24). Define η
def= inf{k ≥ 0,V (Xk) ≥ K}. We consider first the event {∑σ̌

k=0 ψ ◦ V (Xk) ≥
M,η ≥ σ̌ }, on which ψ ◦V (Xk) remains bounded by ψ(K). Therefore, on {η ≥ σ̌ }, ∑σ̌

k=0 ψ ◦V (Xk) ≤ (σ̌ +1)ψ(K),
which implies that{

σ̌∑
k=0

ψ ◦ V (Xk) ≥ M,η ≥ σ̌

}
⊂

{
σ̌ ≥ M

ψ(K)

}
.

We now consider the complementary event: {∑σ̌
k=0 ψ ◦ V (Xk) ≥ M,η < σ̌ }. We take c ∈ (0,1), Note that, if σ̌ <

cM/ψ(K), then,
∑η−1

k=0 ψ ◦ V (Xk) ≤ ηψ(K) ≤ cM which implies that
∑σ̌

k=η ψ ◦ V (Xk) ≥ (1 − c)M . Therefore,

{
σ̌∑

k=0

ψ ◦ V (Xk) ≥ M,η < σ̌

}
⊂

{
σ̌ ≥ cM

ψ(K)

}
∪

{
η ≤ σ̌ ≤ cM

ψ(K)
,

σ̌∑
k=η

ψ ◦ V (Xk) ≥ (1 − c)M

}
.

Therefore,

P̌
δ̌x

(
σ̌∑

k=0

ψ ◦ V (Xk) ≥ M

)
≤ 2P̌

δ̌x

(
σ̌ ≥ cM

ψ(K)

)

+ P̌
δ̌x

(
η ≤ σ̌ ≤ cM

ψ(K)
,

σ̌∑
k=η

ψ ◦ V (Xk) ≥ (1 − c)M

)
. (B.3)

The first term of the right-hand side of (B.3) is bounded using the Markov inequality with (2.23),

P̌
δ̌x

{
σ̌ ≥ cM

ψ(K)

}
≤ Ě

δ̌x
{∑σ̌

k=0 rϕ(k)}
Φ−1{cM/ψ(K)} ≤ κ0

V (x)1Cc(x) + 1

Φ−1{cM/ψ(K)} ,
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for some finite constant κ0. Similarly, the Markov inequality and the strong Markov property imply using Eq. (2.22),

P̌
δ̌x

{
η ≤ σ̌ ≤ cM

ψ(K)
,

σ̌∑
k=η

ψ ◦ V (Xk) ≥ (1 − c)M

}
≤ 1

(1 − c)M
Ě

δ̌x

(
1{η≤σ̌ }Ě

{
σ̌∑

k=η

ψ ◦ V (Xk)

∣∣∣FX
η

})

≤ κ1

(1 − c)M
Ě

δ̌x

[(
Φψ ◦ V (Xη) + 1

)
1{σ̌≥η}

]
,

for some constant κ1. The function u �→ Φψ(u)/u is nonincreasing. Therefore, (Φψ ◦ V (Xη) + 1)1{η<∞} ≤
K−1(Φψ(K) + 1)V (Xη)1{η<∞}, which implies that

Ě
δ̌x

[(
Φψ ◦ V (Xη) + 1

)
1{σ̌≥η}

] ≤ (Φψ(K) + 1)

K
Ě

δ̌x

[
V (Xη)1{σ̌≥η}

]
.

We now prove that there exists a constant κ2 such that, for any x ∈ X,

Ě
δ̌x

[
V (Xη)1{η≤σ̌ }

] ≤ κ2V (x). (B.4)

Since η is FX-stopping time, using Proposition 1, (2.10), we may write

Ě
δ̌x

[
V (Xη)1{η<σ̌ }

] = Ẽx

[
V (Xη)(1 − ε)Nη1{η<∞}

]
.

By conditioning upon the successive visit to the set C, the right-hand side of the previous equation may be expressed
as

Ẽx

[
V (Xη)(1 − ε)Nη1{η<∞}

] = Ẽx

[
V (Xη)1{η<σ0}

] +
∞∑

j=1

(1 − ε)j Ẽ
[
V (Xη)1{σj−1≤η<σj }

]
. (B.5)

Because V (Xη)1{η<σ0} ≤ V (Xη∧σ0) and η ∧ σ0 is a FX-stopping time, the comparison theorem ([14], Theo-
rem 11.3.1) implies that, under Assumption 2,

Ẽx

[
V (Xη)1{η<σ0}

] ≤ V (x) + b1C(x). (B.6)

Similarly, for any j ≥ 1, we may write

V (Xη)1{σj−1≤η<σj } ≤ V (Xσj ∧η)1{σj−1≤η} ≤ V (Xτ∧η) ◦ θσj−11{σj−1≤η},

and the comparison theorem and the strong Markov property imply that

Ẽx

[
V (Xη)1{σj−1≤η<σj }

] ≤
(

sup
C

V + b
)
. (B.7)

By combining the relations (B.5)–(B.7), we, therefore, obtain the bound

Ẽx

[
V (Xη)(1 − ε)Nη1{η<∞}

] ≤ V (x) + b1C(x) + (1 − ε)

ε

{
sup
C

V + b
}
,

showing (B.4) and concluding the proof. �

Appendix C. Proof of Theorem 5

By [14], Theorem 17.3.6, we only need to check that I = Ěν̌{(
∑σ̌

k=0 |f |(Xk))
2} < ∞. We may write I = I1 + 2I2

where the two terms I1 and I2 are respectively defined by

I1
def= Ěν̌

[
σ̌∑

k=0

f 2(Xk)

]
,
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I2
def= Ěν̌

[
σ̌∑

k=0

|f |(Xk)

σ̌∑
�=k+1

|f |(X�)

]
= Ěν̌

[
σ̌∑

k=0

|f |(Xk)ĚXk,dk

{
σ̌∑

�=0

|f |(X�)

}]
.

The proof follows using Theorem 4.

Appendix D. Proof of Theorem 7

Lemma 12. Assume that Assumptions 1 and 2 hold for some function ϕ such that infv∈[1,∞)
ϕ(v)√

v
> 0. Then, the chain

is ergodic of degree two.

Proof. Recall that for a phi-irreducible Markov chain, the stationary distribution π is a maximal irreducibility measure
(see for instance [14], Proposition 10.4.9). Therefore any set C ∈ X such that π(B) > 0 is accessible. In addition, for
any nonnegative measurable function f , π(f ) = ∫

B
π(dx)Ex(

∑τB−1
k=0 f (Xk)). A direct calculation shows that

Ex

[
τ 2
B

] = 2Ex

[
τB−1∑
k=0

EXk
[τB ]

]
− Ex[τB ].

Therefore, the Markov chain is ergodic of degree 2 if and only if for any B ∈ X ,
∫

X π(dx)Ex[τB ] < ∞. The Jensen
inequality (see for instance [11], Lemma 3.5) shows that there exists two positive constants c0 and b0 such that
P

√
V ≤ √

V − c0 + b01C , and by [14], Theorem 14.2.3, for any x ∈ X, and any B such that π(B) > 0, there exists a
constant c(B) such that, for any x ∈ X,

Ex[τB ] ≤ √
V (x) + c(B).

Applying to the inequality PV + c
√

V ≤ V + b1C shows that π(
√

V ) < ∞, which concludes the proof. �

We will only give here the scheme of the proof generalizing the approach of [7], based on the renewal method
introduced (for discrete Markov chains) by Doeblin. Let us first recall the following crucial result due to Arcones–
Ledoux: suppose that {Ui} are i.i.d. random variables, then b−1

n

∑n
k=1 Uk satisfies a MDP if and only if

lim
n→∞

n

b2
n

log
(
nP

(‖Uk‖ ≥ bn

)) = −∞,

and the rate function is the natural quadratic one. Note that by an easy approximation argument (at least in the finite-
dimensional case) and thus generalizing result by [2], the previous condition gives also the MDP for a 1-dependent
sequence {Ui}.

The renewal approach consists in splitting the sum Sn
def= ∑n−1

i=0 f (Xi) into four different terms:

Sn =
e(n)∑
k=1

ξk + Sσ̌0∧n +
(

i(n)−1∑
k=1

ξk −
e(n)∑
k=1

ξk

)
+

n−1∑
j=(l(n)+1)

f (Xj ), (D.1)

where σ̌0
def= σ̌ and σ̌k = inf{n > σ̌k−1;dn = 1} are the successive return times to the atom of the split chain,

i(n)
def= ∑n−1

k=0 1(dk = 1) is the number of visits the atom before n, e(n) = �επ(C)n� is the expected number of visits to

the atom before n, l(n)
def= σ̌(i(n)−1)∧0 is the index of the last visit to the chain to the atom and ξk

def= ∑σ̌k

j=σ̌k−1+1 f (Xj )

is the f -modulated moment of the excursion between two successive visits to the atom.
The general idea is to show that only the first term contributes to the moderate deviation principle. To this end we

make the following remark: it can be easily checked that {ξk} is a sequence of i.i.d. random variables with common
distribution

P̌(ξ1 ∈ ·) = P̌ν̌

(
σ̌0∑

j=0

f (Xj ) ∈ ·
)

.
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Note that, when m > 1 in Assumption 1 then the sequence becomes 1-dependent but essentially the same argument
can be carried out. Under (4.5) and (4.6), it is easily seen that

lim
n→∞

n

b2
n

log

{
nP̌ν̌

(∥∥∥∥∥
σ̌∑

k=0

f (Xk)

∥∥∥∥∥ ≥ bn

)}
= −∞,

so that the first term satisfies a MDP, the identification of the rate function being easily handled.
Consider now the three remaining terms of the right-hand side of (D.1). We have to show that for any positive ε

lim sup
n→∞

n

b2
n

log P̌μ̌

(‖Sσ̌0∧n‖ ≥ εbn

) = −∞, (D.2)

lim sup
n→∞

n

b2
n

log P̌μ̌

(∥∥∥∥∥
n−1∑

j=l(n)+1

f (Xj )

∥∥∥∥∥ ≥ εbn

)
= −∞, (D.3)

lim sup
n→∞

n

b2
n

log P̌μ̌

(∥∥∥∥∥
i(n)−1∑
j=1

ξj −
e(n)∑
k=1

ξk

∥∥∥∥∥ ≥ εbn

)
= −∞. (D.4)

Remark that the condition ensuring the MDP gives directly the first two needed limits. The last one is more delicate,
but as seen from the proof done in the atomic case, it merely resumes to the MDP of (σ̌k − σ̌k−1 − (επ(C))−1) (given
by Arcones–Ledoux result and (4.5)) which enables us to prove that in the sense of moderate deviations the difference
|i(n)−e(n)| can be arbitrarily considered of size �δn� (δ being arbitrary), and the MDP of the sum of �δn� blocks (ξk).
This last term being clearly negligible as δ is arbitrary.

Proof of Theorem 8. The proof of Theorem 8 follows from the projective limit theorem and from the moderate
deviation principle for bounded functions (as stated in Theorem 7). The key point consists in checking that the rate
function as expressed in Eq. (4.3), Theorem 7 coincides with the one obtained by the projective limit theorem (see,
for instance, [5] and [6]). �

Appendix E. Proof of Theorem 10

We will the same decomposition than in the moderate deviations proof, i.e., decomposition (D.1)

Sn = S(σ̌0)∧n +
i(n)−1∑
k=1

ξk +
n−1∑

j=(l(n)+1)

f (Xj ). (E.1)

We bound Pμ(‖∑n−1
k=0 f (Xk)‖ > εn) by

∑4
i=1 Ii , where

I1
def= P̌μ̌

(∥∥∥∥∥
n−1∑
k=0

f (Xk)

∥∥∥∥∥ > εn, σ̌0 > n

)
,

I2
def= P̌μ̌

(
‖Sσ̌0‖ >

εn

3

)
,

I3
def= P̌μ̌

(∥∥∥∥∥
i(n)−1∑
k=1

ξk

∥∥∥∥∥ >
εn

3

)
,

I4
def= P̌μ̌

(∥∥∥∥∥
n−1∑

j=(l(n)+1)

f (Xj )

∥∥∥∥∥ >
εn

3

)
,
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where

I1 ≤ P̌μ̌(σ̌0 > n) ≤ L

Φ−1(n)
,

by Theorem 4 if μ(V ) < ∞. Remark also

I2 ≤ P̌μ̌

(
σ̌0 >

εn

‖f ‖∞

)
≤ L

Φ−1(εn/‖f ‖∞)
,

and if ν(V ) is bounded,

I4 ≤ P̌μ̌

(
max

k≤/+1
(σ̌k − σ̌k−1) >

εn

‖f ‖∞

)
≤ (n + 1)P̌ν̌

(
σ̌0 >

εn

‖f ‖∞
− 1

)
≤ L(n + 1)

Φ−1(εn/‖f ‖∞)
.

For the last term, note

I3 ≤ P̌μ̌

(
max
i≤n

∥∥∥∥∥
i∑

k=1

ξk

∥∥∥∥∥ >
εn

3

)
≤ 2P̌μ̌

(∥∥∥∥∥
n∑

k=1

ξk

∥∥∥∥∥ >
εn

6

)
,

where the last step follows by Ottaviani’s inequality for i.i.d.r.v. if for n large enough

max
i≤n

P̌μ̌

(∥∥∥∥∥
n∑

k=i

ξk

∥∥∥∥∥ >
εn

6

)
≤ 1

2
.

By Chebyschev’s inequality, independence and zero mean of the (ξk), it is sufficient to choose n such that

n ≥ 72‖f ‖2∞Ěν̌ ((σ̌ + 1)2)

ε2
,

where Ěν̌ ((σ̌ + 1)2) is finite (and can be easily evaluated) under our drift condition.
By using the Fuk–Nagaev inequality for the remaining term, we get that for all y > 0

P̌μ̌

(∥∥∥∥∥
[n/2]+1∑

k=1

ξ2k

∥∥∥∥∥ >
εn

12

)
≤

([
n

2

]
+ 1

)
P̌μ̌

(‖ξ1‖ > y
) + exp

(
− ([n/2] + 1)ε2

(9Ěξ2
1 + εy)

)

≤ L([n/2] + 1)

Φ−1(y/‖f ‖∞)
+ exp

(
− ([n/2] + 1)ε2

(9Ěξ2
1 + εy)

)
,

where Ěξ2
1 is easily controlled under the drift condition. This concludes the proof.
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