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Abstract. We study doubly stochastic operators with zero entropy. We gen-
eralize three famous theorems: Rokhlin’s theorem on genericity of zero entropy,
Kushnirenko’s theorem on equivalence of discrete spectrum and nullity, and
Halmos–von Neumann’s theorem on representation of maps with discrete spec-
trum as group rotations.

1. Introduction

Let µ be a probability measure on a measurable space (X,Σ). By a doubly
stochastic operator (also called bistochastic or Markov operator) we mean a linear
operator T on the space L1(µ) of integrable functions which fulfills the following
conditions:

(i) Tf is positive for every positive f ∈ L1(µ),
(ii) T1 = 1 (where 1(x) = 1 for all x ∈ X),
(iii)

∫
Tf dµ =

∫
f dµ for every f ∈ L1(µ).

For each p > 1, the space Lp(µ) ⊂ L1(µ) is invariant under the action of a doubly
stochastic operator T . Conversely, if T : Lp(µ) → Lp(µ) is doubly stochastic,
then it can be uniquely extended to an operator on Lq(µ) for any 1 ≤ q < p,
with no harm to the above properties. Therefore, we can study doubly stochastic
operators on the space Lp(µ) for any p ≥ 1, in particular, on the space L2(µ)
of square integrable real functions. Note that such operators preserve conjugacy,
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and hence transform real functions into real functions; conversely, the action of
T is determined by its action on the space of real functions. The set of all doubly
stochastic operators on L1(µ) will be denoted by DS(µ).

A special role is played by operators which are induced by transition probabil-
ities (or probability kernels), that is, operators defined by the formula

Tf(x) =

∫
f(y)P (x, dy),

where P : X×Σ → [0, 1] is a transition probability. It is known that on a standard
probability space every doubly stochastic operator is of this form.

In this article, we generalize three famous theorems on dynamical systems
with zero entropy to doubly stochastic operators with zero entropy. The first
one is Rokhlin’s theorem (see [8]) on genericity of systems with entropy zero
in the weak topology on the set of all measure-preserving maps on (X,Σ, µ).
Vershik [9] asked if the same holds for entropy of Markov operators, whatever the
definition of entropy can be in this case. We prove that, in the strong operator
topology, the set of doubly stochastic operators with zero entropy is residual in
the set of all doubly stochastic operators on L1(µ). Recall that the strong operator
topology is just the topology of pointwise convergence; that is, Tn converges to
T in the strong operator topology if ‖Tnf − Tf‖ converges to zero for each
f ∈ L1(µ). It is known that in pointwise case, the weak topology on the space of
transformations coincides with the strong operator topology on the set of their
Koopman operators. Our result (Theorem 3.5) is thus a true analogue of Rokhlin’s
result.

The second aim is to give an analogue of Kushnirenko’s theorem, which char-
acterizes null transformations, that is, maps with zero sequence entropy along
all sequences, as maps with discrete spectrum. In the operator case this equiv-
alence is no longer valid, because null operators need not have a linearly dense
set of eigenfunctions. Nevertheless, we present an appropriate modification using
the Jacobs–de Leeuw–Glicksberg decomposition associated to an operator (see
Theorem 5.4). The description of null operators naturally leads us to a general-
ization of the Halmos–von Neumann theorem (see Theorem 6.3), which in this
formulation becomes the characterization of nullity (not the discrete spectrum).

In defining entropy, we will follow the ideas which first appeared in [2]. To
be more specific, we put the finite collections of functions in the role that finite
partitions played in the classic definition of entropy. First we define their join and
the entropy of a single collection, then we calculate the entropy of T with respect
to a collection as an appropriate limit, and finally we take the supremum over all
such collections. The details are given in the forthcoming section.

2. Definition of entropy

By a collection of functions we mean a finite sequence of measurable functions
with range in the unit interval. For a function f : X → [0, 1], let

Af =
{
(x, t) ∈ X × [0, 1] : t ≤ f(x)

}
,
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and let Af be the partition of X×[0, 1] consisting of Af and its complement. For a
collection F , we define AF =

∨
f∈F Af . If F∨G denotes a concatenation of collec-

tions F and G, then, clearly, AF∨G = AF ∨AG. To shorten the notation, we write
T nF = {T nf : f ∈ F} and Fn

T for the concatenation of F , TF , . . . , T n−1F . For
two collections of measurable functions F = {f1, . . . , fr} and G = {g1, . . . , gr′},
r′ ≤ r, we define their L1-distance dist(F ,G) by a formula

dist(F ,G) = min
π

{
max
1≤i≤r

∫
|fi − gπ(i)| dµ

}
,

where the minimum ranges over all permutations π of a set {1, 2, . . . , r} and
where G is considered an r-element collection by setting gi ≡ 0 for r′ < i ≤ r.

Let λ be the Lebesgue measure on the unit interval. We define

H(F) = Hµ×λ(AF) = −
∑
A∈AF

(µ× λ)(A) · log(µ× λ)(A),

h(T,F) = lim
n→∞

1

n
H(Fn

T ),

h(T ) = sup
F

h(T,F)

with the supremum ranging over all finite collections of measurable functions from
X to [0, 1] (existence of the limit was proved in [2]). For the conditional entropy
of a collection F with respect to the collection G, we put

H(F | G) = H(F ∨ G)−H(G) = Hµ×λ(AF | AG).

The following continuity assertion is true: for every r ≥ 1 and ε > 0 there is a
δ > 0 such that if F and G have cardinalities at most r and dist(F ,G) < δ, then
|H(F | G)| < ε.

It is known that the preceding procedure leads to a common value of entropy
h(T ) of a doubly stochastic operator for many reasonable choices of H(F) (see
[1] or [2] for details on axiomatic theory of metric entropy of doubly stochastic
operators). We find the above version convenient for our purposes. Moreover, we
see that since the definition depends only on bounded functions, in fact only on
functions X → [0, 1], the choice of the domain Lp(µ) of an operator does not
affect the value of entropy.

The sequence entropy of a measure-preserving map T with respect to a partition
ξ along a subsequence A = (in)n∈N of {0, 1, 2, . . .} is defined by

hA(T, ξ) = lim sup
n→∞

1

n
H
( n∨
k=1

T−ikξ
)
,

and the sequence entropy of T is

hA(T ) = sup
ξ

hA(T, ξ),

where the supremum ranges over all finite partitions of X. Similarly, in the oper-
ator case we formulate the following definition.
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Definition 2.1. The sequence entropy of a doubly stochastic operator T with
respect to a collection of functions F along a sequence A = (in)n∈N is defined as

hA(T,F) = lim sup
n→∞

1

n
H
( n∨
k=1

T ikF
)
,

and the sequence entropy of the operator T along a sequence A is given by

hA(T ) = sup
F

hA(T,F).

By a brief inspection of arguments in [2], we check that the value of hA(T ) does
not depend on the choice of the static entropy H(F) as long as the latter fulfills
requirements of the axiomatic definition of entropy.

3. Genericity of entropy zero

Lemma 3.1. Let T be a doubly stochastic operator on Lp(µ). Let Sf =
∫
fdµ.

Then (1− 1
n
)T+ 1

n
S converges to T in operator norm, hence also in strong operator

topology.

Proof. We have∥∥∥((1− 1

n

)
T +

1

n
S
)
f − Tf

∥∥∥
p
=

1

n
‖Tf − Sf‖p

≤ 1

n

(
‖Tf‖p + ‖Sf‖p

)
≤ 2

n
‖f‖p.

This ends the proof for strong operator topology. For norm topology, it is enough
to take the supremum over f ∈ Lp(µ) with ‖f‖p = 1. �

Corollary 3.2. The set of doubly stochastic operators with zero entropy is dense
in the strong operator topology and in the norm operator topology.

Proof. For every α ∈ (0, 1), the operator (1−α)T +αS has zero entropy, because
((1− α)T + αS)nf converges to a constant function for every f . �

Lemma 3.3. The set of doubly stochastic operators with zero entropy is a Gδ set
in the strong operator topology in L1(µ).

Proof. Fix ε > 0, a positive integer n, and a finite collection F of r measurable
functions X → [0, 1]. We will show that the set

U(ε, n,F) =
{
T ∈ DS(µ) : 1

n
H(Fn) < ε

}
is open. Let T ∈ U(ε, n,F), and let 1

n
H(Fn) = γ < ε. Choose δ > 0 so that

dist(G,G ′) < nδ guarantees that H(G | G ′) +H(G ′ | G) < ε− γ for all collections
G, G ′ containing r functions. Consider an open set

C =
{
P ∈ DS(µ) : ∀k = 0, . . . , n− 1 ∀f ∈ F ‖PT k−1f − T kf‖1 < δ

}
.

Note that if P lies in C, then we have

‖P kf − T kf‖1 ≤ ‖P kf − P k−1Tf‖1 + ‖P k−1Tf − P k−2T 2f‖1 + · · ·
+ · · ·+ ‖PT k−1f − T kf‖1 < kδ
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for every f ∈ F and k = 0, 1, . . . , n − 1, because P is a contraction. Then
H(T kF | P kF ) < ε implying that

H
(n−1∨
k=0

P kF
∣∣∣ n−1∨
k=0

T kF
)
≤

n−1∑
k=0

(
H(P kF | T kF )

)
< n(ε− γ)

and

1

n
H
(n−1∨
k=0

P kF
)
≤ 1

n
H
(n−1∨
k=0

T kF
)
+

1

n
H
(n−1∨
k=0

P kF
∣∣∣ n−1∨
k=0

T kF
)
< ε.

Consequently, U(ε, n,F) is open.
Since L1 is separable, we can choose a countable dense subset F of the set of

all integrable functions with range in [0, 1]. Now

U =
⋂
m

⋂
r

⋂
F∈Fr

⋂
N

⋃
n≥N

U
( 1

m
,n,F

)
is a Gδ set. We will prove that this is exactly the set of operators having zero
entropy.

If T has entropy zero, then it clearly belongs to this set. On the other hand,
again let ε > 0, let n ∈ N, and let F be a collection of r functions. For T ∈ U ,
choose F̃ ∈ Fr so that dist(F , F̃) is small enough to ensure that H(F | F̃) < ε/2.

Then also H(T kF | T kF̃) < ε/2 for k ∈ N and, consequently,

H(Fn
T | F̃n

T ) ≤
n−1∑
k=0

H(T kF | T kF̃) < nε/2.

Therefore,

H(Fn
T ) ≤ H(F̃n

T ) +H(Fn
T | F̃n

T ) < H(F̃n
T ) + nε/2.

For any m we can find arbitrarily large n for which 1
n
H(F̃n

T ) < 1
m
, so taking

m > ε/2 we obtain the existence of a large n such that 1
n
H(Fn

T ) < ε. Finally, we

obtain a subsequence of 1
n
H(Fn

T ) tending to zero, but since the whole sequence
is convergent, it converges to zero. The collection F was chosen freely, so the
entropy of T is zero. �

Remark 3.4. Note that it follows that the set is also a Gδ set in the norm topology,
as it has fewer open sets than the strong operator topology.

From Lemma 3.3 and Corollary 3.2, we have the following result.

Theorem 3.5. The set of doubly stochastic operators with zero entropy is residual
in the strong operator topology and in the norm topology of L1(µ).
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4. Decompositions of the domain

We recall some basic facts of the Jacobs–de Leeuw–Glicksberg (JdLG-) decom-
position and Nagy–Foiaş (NF-) decomposition. Our sources of information are
[3] in case of JdLG-decomposition and [7] for NF-decomposition. We say that a
subspace W of the space Lp(µ) is invariant with respect to a doubly stochastic
operator T : Lp(µ) → Lp(µ) if TW ⊂ W .

Definition 4.1. A JdLG-decomposition of the space Lp(µ) associated with a doubly
stochastic operator T is a pair of T -invariant subspaces Erev and Eaws such that
Lp(µ) = Erev ⊕ Eaws, where Erev is the range and Eaws is the kernel of a unique
minimal idempotent of the weak operator closure of the semigroup {I, T, T 2, . . .}.
The spaces Erev and Eaws are called the reversible part and the almost weakly
stable part of the space, respectively.

The existence of a unique minimal idempotent follows from Ellis’s famous the-
orem proved in [4, Lemma 1] and such a decomposition can be obtained even in
more general situations. It is clear from the definition that this decomposition
is unique. For our purposes, the following characterizations will be of greatest
importance.

Theorem 4.2. If T is a doubly stochastic operator (or just a contraction) on
Lp(µ) and Erev ⊕ Eaws is its JdLG-decomposition, then

(1) Erev = lin{f ∈ Lp(µ) : ∃λ ∈ C, |λ| = 1 s.t. Tf = λf} (see [3, Theo-
rem 16.33]);

(2) for every f ∈ Eaws either {T nf : n ∈ N} is not precompact in Lp-norm
topology or infn∈N ‖T nx‖ = 0 (see [3, Theorem 16.29]).

Now assume that H is a Hilbert space and that T is a contraction of H . We
say that W reduces H if both W and W⊥ are invariant (or, equivalently, W is
invariant with respect both to T and T ∗). An operator T on a Hilbert space H
is completely nonunitary (c.n.u.) if there is no reducing subspace on which it is
unitary.

Definition 4.3. Let T be a contraction of a Hilbert space H . AnNF-decomposition
is a decomposition H = Huni ⊕ Hcnu into an orthogonal sum of two subspaces
reducing T such that T |Huni

is unitary and T |Hcnu is c.n.u. The spaces Huni and
Hcnu are the unitary part and the completely nonunitary part of H , respec-
tively, and the restrictions of T to these subspaces are the unitary part and the
completely nonunitary part of T (cf. [7, Theorem 3.2]).

Just as in the previous case, the decomposition is unique. Note that for a
unitary operator the c.n.u. part is trivial, while for a c.n.u. operator the unitary
part is trivial. A doubly stochastic operator on L2(µ) is never c.n.u., because the
subspace consisting of constants is a reducing subspace on which T is unitary.
Roughly speaking, the unitary part captures all the invertibility of a doubly
stochastic operator in the sense that if there is an invertible pointwise factor,
then there is a closed invariant subspace of L2(µ). Moreover, if T is a Koopman
operator of an invertible map, then L2(µ)cnu = {0}. In other cases the c.n.u.
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part is nontrivial and it can be the whole L2
0(µ)—the orthogonal complement of

constants—even for pointwise operators, for example, for a one-sided shift. It is
easy to see that if Hrev ⊕ Haws is a JdLG-decomposition and Huni ⊕ Hcnu is an
NF-decomposition of a Hilbert space H , then

Hrev ⊂ Huni and Haws ⊃ Hcnu.

5. Discrete spectrum versus nullity

One of the basic definitions in ergodic theory is that of a discrete spectrum
of a measure-preserving transformation. In a more general setup, we have the
following.

Definition 5.1. A power bounded operator T on a Banach space V has discrete
spectrum if

V = lin
{
v ∈ V : ∃λ ∈ C, |λ| = 1, s.t. Tv = λv

}
.

Clearly, it is applicable to the case of doubly stochastic operators because
‖T n‖p = 1 for all n ∈ N. Similarly to the case of pointwise maps, we have the
following.

Definition 5.2. A doubly stochastic operator T is null if hA(T ) = 0 for every
sequence A = {t1 < t2 < t3 < · · · } of positive integers.

We now state the theorem which we aim to generalize.

Theorem 5.3 (Kushnirenko [6, Theorem 4]). A transformation T has discrete
spectrum if and only if T is null.

This equivalence fails for doubly stochastic operators. For example, Tf =∫
f dµ does not have discrete spectrum, but hA(T ) = 0 for every sequence A,

which shows that nullity does not imply discrete spectrum. On the other hand, a
contraction may have a linearly dense set of eigenvectors, though its unitary part
is reduced to constants. Indeed, let R be an irrational rotation on the circle S1,
let Rz = αz, and let Tf = 1

2
f ◦ R + 1

2

∫
f dλ, where λ is the Haar probability

measure. Clearly, each en(z) = zn is a “c.n.u eigenfunction” for eigenvalue 1
2
αn.

These examples show that for a general doubly stochastic operator null sequential
entropy does not imply anything about existence or density of eigenvectors.

Theorem 5.4. The following conditions are equivalent for a doubly stochastic
operator T : Lp(µ) → Lp(µ).

(1) T is null.
(2) Lp(µ) = V ⊕W , where T has discrete spectrum on V and limn→∞ ‖T nf‖p =

0 for every f ∈ W .
(3) If Erev ⊕ Eaws is a JdLG-decomposition of Lp(µ) associated with T , then

limn→∞ ‖T nf‖p = 0 for every f ∈ Eaws.

If p = 2, then each of the above conditions is equivalent to the following.

(4) If Huni ⊕ Hcnu is the NF-decomposition of L2(µ) with respect to T , then
T has discrete spectrum on Huni and ‖T nf‖2 converges to zero for every
f ∈ Hcnu.
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Before starting the proof of this theorem, we need to state several lemmas.
Walking in Kushnirenko’s footsteps, we translate a part of his proof to the oper-
ator case.

Lemma 5.5. Let A = {t1 < t2 < t3 < · · · } be a sequence of positive integers.
Then hA(T ) = 0 if and only if hA(T, {f}) = 0 for every f .

Proof. By the definition of entropy, hA(T ) ≥ supf hA(T, {f}), where the supre-
mum ranges over the set of all measurable functions f : X → [0, 1]. On the other
hand, it follows easily from the subadditivity of entropy that if hA(T, {f}) = 0 for
every f , then hA(T,F) = 0 for every collection F of measurable functions. �

Lemma 5.6. Let f : X → [0, 1] be a measurable function. Then the closed orbit

ŌT (f) = {T nf : n = 0, 1, 2, . . .} is compact if and only if hA(T, {f}) = 0 for all
sequences A = {t1 < t2 < t3 < · · · }.

Proof. Fix ε > 0, and let A = {tn : n ∈ N}. Let us abbreviate ATnf by ξn. Let
Z be the set of all countable measurable partitions of X with Hµ(ξ) < ∞. We
recall that in the context of entropy, the natural distance between two partitions
ξ and ζ belonging to Z is given by the Rokhlin metric:

ρ(ξ, ζ) = Hµ(ξ | ζ) +Hµ(ζ | ξ).

If ŌT (f) is compact in Lp(µ), then {Ag : g ∈ ŌT (f)} is compact in Z. Indeed,
limn→∞ ‖gn − g‖p = 0 implies that limn→∞ µ(Agn4Ag) = 0, so a convergent

subsequence of (gn)n∈N induces a convergent subsequence of (Agn)n∈N. The closure
of {ξtn : n ∈ N} is also compact, and hence it contains an ε-dense set {ξtn : 1 ≤
n ≤ N}. Therefore,

hA

(
T, {f}

)
= lim sup

n→∞

1

n
H
( n∨
i=1

ξti

)
≤ lim sup

n→∞

1

n
(H

( N∨
i=1

ξti

)
+

n∑
j=N+1

H
(
ξtj

∣∣∣ N∨
i=1

ξti

)
≤ ε.

Conversely, let ŌT (f) be noncompact; that is, for some γ > 0 there is a sequence
gn ∈ ŌT (f) satisfying ‖gm − gn‖p ≥ γ for any m 6= n. Then ‖gm − gn‖1 ≥ γp,

implying that µ(Agm4Agn) are separated from zero for all pairsm 6= n. Therefore,
ρ(Agm ,Agn) > ε for some ε > 0 and all m 6= n. We now inductively choose a
sequence ξn satisfying lim supn→∞

1
n
H(

∨n
i=1 ξi) ≥ δ for some δ > 0. It suffices to

ensure that H(ξn |
∨n−1

i=1 ξi) ≥ δ for all n > 1. The appropriate number δ > 0 is
chosen using the following lemma. This is a slight modification of the one proved in
[6], so we leave the proof as an exercise (hint: if g ∈ ŌT (f), then

∫
g dµ =

∫
f dµ).

Lemma 5.7. For every ε > 0, there exists a δ > 0 such that for any finite
partition ξ of X × [0, 1] and any partition ζ = Ag with g ∈ ŌT (f) the inequality
H(ζ | ξ) < δ implies the existence of ξ′ ≺ ξ such that ρ(ζ, ξ′) < ε/2.

Let ξ1 = Ag1 . Note that there are only two partitions coarser than ξ1, namely,
the trivial partition and ξ1 itself. By the above lemma, if H(Agm | ξ1) < δ
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for all m, then each Agm is ε/2-close (in Rokhlin metric) to one of these two
partitions, which contradicts the fact that all partitions Agm are ε-separated.
Hence, there is a partition ξ2 of the form Agm such that H(ξ2 | ξ1) ≥ δ. For
the induction step, suppose that we have already found partitions ξ1, ξ2, . . . , ξn−1,
chosen from (Agm)m. Let ξ =

∨n−1
i=1 ξi. Similarly as before, there are only finitely

many partitions ξ′ coarser than ξ, and each Agmsatisfying H(Agm | ξ) < δ is
ε/2-close to some ξ′ (by Lemma 5.7). Since all partitions Agm are ε-separated,
the tail of the sequence (Agm)m contains some element ξn satisfying H(ξn | ξ) ≥ δ.
(Note that it is irrelevant that ξ′ need not be of the form Ag for any g.) �

Putting these pieces together, we obtain the following.

Corollary 5.8. A doubly stochastic operator T on Lp(µ) is null if and only if the
closed orbit ŌT (f) is compact for every f ∈ Lp(µ).

Lemma 5.9. If T is a doubly stochastic operator, then the closed orbit ŌT (f) is
compact for any f ∈ Erev.

Proof. If {en : n ∈ N} is a linearly dense set of eigenvectors, then the orbit of
f =

∑∞
n=1 anen is a subset of the compact set {

∑∞
n=1 bnen : |bn| ≤ |an|}. �

Corollary 5.10. If T is a doubly stochastic operator with discrete spectrum, then
T is null.

Proof of Theorem 5.4. The third condition is just a reformulation of the second
one, as Erev is exactly the set spanned by the eigenvectors of T . We concentrate
on proving that the first two statements are equivalent. We remark that for a
doubly stochastic operator, we have infn∈N ‖T nf‖p = limn→∞ ‖T nf‖p.

Assume that T is null. Let V = Erev, W = Eaws, where Erev ⊕ Eaws is a
JdLG-decomposition of Lp(µ) associated with T . By definition of Erev, an oper-
ator T has discrete spectrum on V . By Corollary 5.8, nullity is equivalent to
all orbits being precompact, which in view of Theorem 4.2 forces all orbits in
Eaws to approach zero. On the other hand, assuming the second condition, we
obtain from Lemma 5.9 that all orbits of elements of V are precompact. Clearly,
orbits of elements of W are also precompact (simply because they are convergent
sequences), so all functions from V ⊕ W have precompact orbits and it follows
from Corollary 5.8 that T is null.

To prove the last statement, note that it is always true that Erev ⊂ Huni

and Hcnu ⊂ Eaws. If T
nf converges to zero, then f ∈ Hcnu, hence these two

decompositions coincide. On the other hand, if T has discrete spectrum on Huni,
then Huni = Erev, so again the decompositions coincide. �

An entire class of well-studied operators is guaranteed to be null.

Definition 5.11. A doubly stochastic operator T on L2(µ) is quasicompact if there
exists a direct sum decomposition L2(µ) = F ⊕H and r < 1 such that

(1) F and H are closed invariant subspaces of L2(µ),
(2) dim(F ) < ∞ and all eigenvalues of T |F have modulus larger than r,
(3) the spectral radius of T |H is smaller than r.

Theorem 5.12. If T is a quasicompact doubly stochastic operator, then T is null.



DOUBLY STOCHASTIC OPERATORS WITH ZERO ENTROPY 153

Proof. By Corollary 5.8, it suffices to show that the closed orbit of f is compact
for every f ∈ L2(µ). Let L2(µ) = F ⊕H be the decomposition from the definition
of quasicompactness, and let f = g + h, where g ∈ F , h ∈ H. Since F is a
finite-dimensional invariant subspace, the closure of the set {T ng : n ∈ N} is
compact. On the other hand, by the spectral radius formula, we know that for
every ε > 0 we have ‖T nh‖2/‖h‖2 = O(enεrn). If we take ε < log 1

r
, this implies

that ‖T nh‖2 converges to zero, and thus the orbit ŌT (f) is compact. �

Remark 5.13. The above argument can be repeated to prove the following fact:
if T is a doubly stochastic operator and V ⊕W is the decomposition into unitary
and c.n.u. parts such that T |V has discrete spectrum and T |W has spectral radius
strictly smaller than 1, then T is null.

To illustrate that having the spectral radius equal to 1 does not guarantee
nonnullity, we will show an example of a null c.n.u. operator which has spectral
radius equal to 1 when considered on the orthogonal complement of constants.
In addition, the operator has no nontrivial eigenfunctions.

Example 5.14. For every n, let Xn = [0, 1], let µn be the Lebesgue measure, and
let Rn be an operator defined on L2(Xn) by the formula (Rnf)(x) =

n−1
n
f(x) +

1
n

∫
fdµn. Let X = X1 × X2 × · · · , and let µ be the product measure. Define

the operator R first on functions of the form f(x) = f1(x1)f2(x2) · · · fn(xn), x =
(xk)k∈N, fk ∈ L2(µk), as Rf = R1f1R2f2 · · ·Rnfn. Since the functions of this form
are linearly dense in L2(µ), R extends to a doubly stochastic operator on all of
L2(µ). Let S be a doubly stochastic operator on L2(µ) induced by the left shift,
that is, (Sf)(x1, x2, x3, . . .) = f(x2, x3, . . .). Finally, let T = SR. For any k, if we
take any g ∈ L2(µk) and define f ∈ L2

0(µ) as f(x) = g(xk), then

Tmf(x) = (Rm+k−1Rm+k−2 · · ·Rkg)(xm+k−1)

=
k − 1

m+ k − 1
g(xm+k−1) +

m

m+ k − 1

∫
g dµk. (5.1)

Moreover,

Tmf(x) =
n∏

k=1

Tmfk(xm+k−1)

for f(x) = f1(x1)f2(x2) · · · fn(xn), x = (xk)k∈N, fk ∈ L2(µk). Below we verify the
aforementioned properties of T .

• T is null because the orbit of every function is precompact. To see this, first
note that if f(x) = f1(x1)f2(x2) · · · fn(xn), x = (xk)k∈N, then Tmf converges to
the constant function equal to

∫
f1µ1 · · ·

∫
fndµn =

∫
fdµ. Since such functions

are linearly dense in L2(µ), the same convergence to a constant holds for every
function in L2(µ).

• If f is any function orthogonal to the constants, then the images of f under
iterations of T converge to zero, which means that T is c.n.u. on the space of
such functions.

• If f ∈ L2
0(µ) has the form f(x) = g(xk) for g ∈ L2(µk), x = (xk)k∈N, then

by (5.1) we have ‖Tmf‖2 = k−1
m+k−1

‖f‖2. Since k was arbitrary, the norm of Tm
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is equal to 1. By the spectral radius formula, we conclude that P has spectral
radius equal to 1.

• Finally, suppose that for some λ 6= 0 there is a function f ∈ L2
0(µ) such that

Tf = λf . If g is any function dependent only on the first m coordinates, then
since Tm(f) depends only on coordinates from m + 1 onward, Tmf and g are
orthogonal. As Tmf = λmf , this means that f is orthogonal to every function
dependent only on the first m coordinates. As m was arbitrary, it follows that f
is orthogonal to every function dependent only on finitely many coordinates, but
since such functions are dense in L2

0(µ), we conclude that f = 0.

6. Representation theorem

The celebrated theorem of Halmos and von Neumann states that every ergodic
measure-preserving dynamical system with discrete spectrum is isomorphic to
a Kronecker system, that is, a rotation of a compact Abelian group. Since by
Kushnirenko’s theorem the discrete spectrum is equivalent to being null, it is
natural to search for an analogous representation theorem for null systems in
case of doubly stochastic operators. Consider the following example.

Example 6.1. Let X be the annulus S1 × I, I = [0, 1], with the product of the
Haar and Lebesgue measures. For α ∈ [0, 1) define an operator by

Tf(z, x) =

∫
f(ze2πiα, x) dλ(x),

namely, a product of a rotation by α and a trivial integral operator. Clearly,
it is null with the reversible part Erev of the JdLG-decomposition consisting of
functions constant on fibers {z} × I. It is essentially a rotation of a circle with
each point of a circle pumped to the unit interval, and the transition probability
between these intervals is given by the uniform distribution.

It is easy to modify the above example to see that we cannot expect a represen-
tation in a form of a product action. For instance, on the same space X = S1× I
let us define the measure

ν(A) = λ× λ(
(
A ∩ (N × I)

)
+ λ× δ0

(
A ∩ (N c × I)

)
,

where N = {z : arg(z) ∈ [0, π)}. An appropriate modification of T , namely,

Tf(z, x) =

∫
f(ze2πiα, x) dλ(x) · 1R−1

α N(z) + f(ze2πiα, 0) · 1R−1
α Nc(z),

again gives a null operator with the same reversible part Erev.

Let Σrev = {A ∈ Σ : 1A ∈ Erev}. It is known that Σrev is a sub-σ-algebra of Σ
and Erev = L1(X,Σrev, µ).

Definition 6.2. Let T be a Markov operator on L1(µ).

• T is a Markov embedding if it is a lattice homomorphism (i.e., |Tf | = T |f |
for every f ∈ L1(µ)) or, equivalently, there is a Markov operator S such
that ST is an identity.

• T is a Markov isomorphism if it is a surjective Markov embedding.
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Markov embeddings preserve lattice operations of taking the maximum or min-
imum and transform characteristic functions into characteristic functions. There-
fore, they are in a natural one-to-one correspondence with homomorphisms of
measure algebras, and in the case of Lebesgue spaces, they are just Koopman
operators of measure-preserving transformations. Hence, for a Lebesgue space a
Markov isomorphism can always be replaced by a point isomorphism of dynamical
systems.

Theorem 6.3. An ergodic doubly stochastic operator T on L1(X,Σ, µ) is null if
and only the following two conditions are satisfied:

(1) the action of T on Erev = L1(X,Σrev, µ) is Markov isomorphic to a rota-
tion R of a compact Abelian group G with Haar measure λ;

(2) we have

lim
n→∞

∥∥T nf − T nE(f | Σrev))
∥∥
1
= 0

for every f .

Furthermore, if X is a Lebesgue space and PT is a transition probability induc-
ing T , then the Markov isomorphism becomes a point isomorphism of dynamical
systems, there is a measure-preserving map π : X → G satisfying T (g ◦ π) =
g ◦R ◦ π for every g ∈ L1(G, λ), and PT (x, ·) is supported on π−1Rπ(x).

Proof. The fact that the action of T on Erev is Markov isomorphic to a rotation of
a compact Abelian group is an extension of the Halmos–von Neumann theorem
formulated as Theorem 17.6 in [3]. Since E(f | Σrev) ∈ Erev, the function f−E(f |
Σrev) belongs to Eaws. If hA(T ) = 0 for every sequence A, then

lim
n→∞

∥∥T n
(
f − E(f | Σrev)

)∥∥
1
= 0

by Theorem 5.4. Conversely, this condition guarantees that hA(T ) = 0 for every
A, because E(f | Σrev) = 0 for f ∈ Eaws.

The existence of a factor map π in the case of a Lebesgue space follows from
the fact that a natural injection Σrev → Σ is a measure algebra homomorphism,
hence it comes from a measure-preserving map. Finally, if X is a Lebesgue space,
then for any g ∈ L1(G, λ),∫

g ◦ π(y)PT (x, dy) = T (g ◦ π)(x) = g
(
Rπ(x)

)
.

Taking g = 1{Rπ(x)}, we obtain that PT (x, ·) is supported on π−1Rπ(x). �
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and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland.

E-mail address: Bartosz.Frej@pwr.edu.pl; Dawid.Huczek@pwr.edu.pl

http://www.emis.de/cgi-bin/MATH-item?1088.47006
http://www.ams.org/mathscinet-getitem?mr=2129106
https://doi.org/10.1017/S014338570400032X
http://www.emis.de/cgi-bin/MATH-item?1353.37002
http://www.ams.org/mathscinet-getitem?mr=3410920
https://doi.org/10.1007/978-3-319-16898-2
http://www.emis.de/cgi-bin/MATH-item?0092.39702
http://www.ams.org/mathscinet-getitem?mr=0101283
https://doi.org/10.2140/pjm.1958.8.401
http://www.emis.de/cgi-bin/MATH-item?1279.37005
http://www.ams.org/mathscinet-getitem?mr=2997702
https://doi.org/10.1088/0951-7715/25/12/3453
https://doi.org/10.1088/0951-7715/25/12/3453
http://www.emis.de/cgi-bin/MATH-item?0169.46101
http://www.ams.org/mathscinet-getitem?mr=0217257
http://www.emis.de/cgi-bin/MATH-item?0201.45003
http://www.ams.org/mathscinet-getitem?mr=0275190
http://www.emis.de/cgi-bin/MATH-item?0096.31405
http://www.ams.org/mathscinet-getitem?mr=0103258
http://www.emis.de/cgi-bin/MATH-item?1173.47306
http://www.ams.org/mathscinet-getitem?mr=2241424
https://doi.org/10.1090/S1061-0022-06-00928-9
mailto:Bartosz.Frej@pwr.edu.pl
mailto:Dawid.Huczek@pwr.edu.pl

	1 Introduction
	2 Definition of entropy
	3 Genericity of entropy zero
	4 Decompositions of the domain
	5 Discrete spectrum versus nullity
	6 Representation theorem
	Acknowledgment
	References
	Author's addresses

