
Ann. Funct. Anal. 10 (2019), no. 1, 106–121

https://doi.org/10.1215/20088752-2018-0012

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

ON J-FRAMES RELATED TO
MAXIMAL DEFINITE SUBSPACES

ALAN KAMUDA and SERGII KUZHEL*

Communicated by O. Christensen

Abstract. We propose a definition of frames in Krein spaces which general-
izes the concept of J-frames defined relatively recently by Giribet, Maestripieri,
Mart́ınez-Peŕıa, and Massey. The difference consists in the fact that a J-frame
is related to maximal definite subspaces M± which are not assumed to be uni-
formly definite. The latter allows us to extend the set of J-frames. In particular,
some J-orthogonal Schauder bases can be interpreted as J-frames.

1. Introduction

Usually, frames are defined in a Hilbert space setting: let H be an (infinite-
dimensional) Hilbert space with an inner product (·, ·). A frame for H is a family
of vectors F = {fn} that satisfies inequalities

A‖f‖2 ≤
∑
n∈N

∣∣(f, fn)∣∣2 ≤ B‖f‖2, f ∈ H, (1.1)

for constants 0 < A ≤ B < ∞, which are called frame bounds. Sometimes, it is
convenient to work with frames defined in terms of an indefinite inner product.
The development of such an ideology leads to the following definition. Denote
by (H, [·, ·]) a Krein space with indefinite inner product [·, ·] and fundamental
symmetry J . The associated Hilbert space (H, (·, ·)) is endowed with the positive

inner product (·, ·) = [J ·, ·] and the norm ‖ · ‖ =
√

(·, ·).
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Definition 1.1 ([6, Definition 3.1]). Let (H, [·, ·]) be a Krein space. A family of
vectors F = {fn} is called a frame if

A‖f‖2 ≤
∑
n∈N

∣∣[f, fn]∣∣2 ≤ B‖f‖2, f ∈ H,

for some constants 0 < A ≤ B < ∞.

Since the operator of fundamental symmetry J is unitary and self-adjoint in H,
Definition 1.1 implies that F is a frame in the Krein space (H, [·, ·]) if and only
if F is a frame with the same frame bounds in the Hilbert space (H, (·, ·)) (see
[6, Theorem 3.3]). This means that the definition just rephrases the conventional
definition of frames in terms of Krein spaces. It seems natural to consider a more
general setting, that is, to define frames in the Hilbert space HW with W -metric
(W ·, ·) (see [4, Definition 2.12]), which is the completion of H with respect to
(|W |·, ·), where a bounded self-adjoint operator W with kerW = {0} is the “light
version” of the operator of fundamental symmetry J (see [2, Section 1.6]).

Another reason for studying frames in Krein spaces has to do with the signal
processing problem. The existence of various decompositions of a given Krein
space (H, [·, ·]) into direct sums of positive and negative subspaces (see Section 2
for the Krein spaces terminology) allows one to construct effective filters for the
signals considering vectors f ∈ H as disturbances if their indefinite inner products
[f, f ] are close to zero (see the discussion at the beginning of Section 3 in [9]).
These kind of ideas give rise to the following definition of J-frame. Let F = {fn}
be a Bessel sequence in the Hilbert space H; that is, F satisfies the upper bound
condition in (1.1). Then the synthesis operator

T{cn} =
∑
n∈N

cnfn, {cn} ∈ l2(N) (1.2)

is a bounded map of l2(N) into H. Consider the orthogonal decomposition

l2(N) = l2(N+)⊕ l2(N−), (1.3)

where N+ = {n ∈ N : [fn, fn] ≥ 0}, N− = {n ∈ N : [fn, fn] < 0}, and determine
the restrictions of T onto l2(N±): T± = T �l2(N±).

Definition 1.2 ([9, Definition 3.1]). The Bessel sequence F = {fn} is called a
J-frame if the ranges R(T±) are, respectively, maximal uniformly positive and
maximal uniformly negative subspaces of the Krein space (H, [·, ·]).

The requirement of being maximal uniformly definite imposed on R(T±) is
sufficiently strong, and an elementary analysis carried out in [9] shows that each
J-frame F in the Krein space (H, [·, ·]) has to be a conventional frame in the
Hilbert space (H, (·, ·)). For this reason, each J-frame is a frame in the sense
of Definition 1.1. The inverse implication is not true. In particular, there exist
orthonormal bases of the Hilbert space H which cannot be J-frames. Indeed,
let L be a hypermaximal neutral subspace of the Krein space (H, [·, ·]); then
H = L ⊕ JL. If {fn} is an orthonormal basis of L, then F = {fn} ∪ {Jfn}
is an orthonormal basis of (H, (·, ·)). However, F cannot be a J-frame because
R(T+) = H and R(T−) = {0}.
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The last few years have seen the publication of many papers devoted to the
development of full-scale frame theory based on Definition 1.1 (see [1], [4]–[6]) as
well as on Definition 1.2 (see [8], [9], [12], [15]). In particular, J-fusion frames were
defined and studied in [1] and [12]. However, in our opinion, the above definitions
do not completely fit the ideology of Krein spaces and some modification that
provides deeper insights into the structural subtleties of frames in Krein spaces
is still needed. The matter is that the concept of Krein spaces is more reach
in contrast to Hilbert ones due to the possibility of generating infinitely many
(not necessarily equivalent) definite inner products (·, ·) beginning with a given
indefinite inner product [·, ·]. For this reason, it seems natural to define frames
in a Krein space (H, [·, ·]) in terms of frame inequalities based on the indefinite
inner product [·, ·] without any relation to frames in the associated Hilbert space
(H, (·, ·)).

Denote

M± = span{F±}, F± = {fn}n∈N± . (1.4)

Due to [9, Theorem 3.9], Definition 1.2 can be rewritten as follows: F = {fn} is
a J-frame if and only if F is a conventional frame in the associated Hilbert space

(H, (·, ·)), the conditions M± ∩M[⊥]
± = {0} hold (the J-orthogonal complements

M[⊥]
± of M± are defined in (2.2)), and there exist constants B− ≤ A− < 0 <

A+ ≤ B+ such that

A+[f, f ] ≤
∑
n∈N+

∣∣[f, fn]∣∣2 ≤ B+[f, f ], ∀f ∈ M+,

(1.5)
A−[f, f ] ≤

∑
n∈N−

∣∣[f, fn]∣∣2 ≤ B−[f, f ], ∀f ∈ M−.

It is easy to see that the families F± are conventional frames of the Hilbert
spaces (M±,±[·, ·]) and the subspaces M± coincide with R(T±). Therefore, the
M±’s have to be maximal uniformly definite in the Krein space (H, [·, ·]). Weak-
ening this condition, we generalize the concept of J-frames.

Definition 1.3. Let (H, [·, ·]) be a Krein space with fundamental symmetry J .
A family of vectors F = {fn} is called a J-frame if the subspaces M± defined by
(1.4) are maximal definite in (H, [·, ·]) and there are constants B− ≤ A− < 0 <
A+ ≤ B+ such that the inequalities (1.5) hold.

The aim of this work is to develop a theory of J-frames which is based on
Definition 1.3. The results essentially depend on coinciding the direct sum D =
M++̇M− with H. If D = H, then the subspacesM± have to be uniformly definite
in the Krein space (H, [·, ·]), the conditions of Definition 1.2 are satisfied, and our
results in Section 3.1 are close to [9] (see Remark 3.3).

If D 6= H, then at least one ofM± loses the property of being uniformly definite
and the new inner product (·, ·)1 defined on D is not equivalent to the initial one.
In this case a J-frame F = {fn} cannot be a Bessel sequence in H and, hence,
Definition 1.2 cannot be applied. Moreover, this case cannot be studied within
the framework of Hilbert spaces HW with W -metric (see Section 2.2).
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We show that each J-frame F can be realized as a conventional frame in the new
Hilbert space (Ĥ, (·, ·)1) (see Proposition 3.4) and that the reconstruction formula

(3.9) holds for elements of Ĥ (see Proposition 3.6). The results are simplified when
the subspaces M± are J-orthogonal (see Corollary 3.7). Definition 1.3 allows one
to consider some J-orthogonal sequences and J-orthogonal Schauder bases as
J-frames (see Proposition 4.2, Corollary 4.4). This opens up the possibility of

describing the common part D = H ∩ Ĥ and the subset Dun ⊂ D, where the
series f =

∑
n∈N cnfn converges unconditionally in terms of the corresponding

coefficients {cn} (see Proposition 4.6, Theorem 4.7). The eigenfunctions of the
shifted harmonic oscillator are considered as examples of J-frames.

This article is organized as follows. We begin with an elementary presentation
of the Krein spaces theory. The monograph [2] is recommended as complementary
reading on the subject. In Section 3, we show that each J-frame can be considered
as a conventional frame in some Hilbert space. The corresponding reconstruction
formulas are rewritten in terms of indefinite inner products. Special attention
is paid to the case where the corresponding subspaces M± are J-orthogonal.
Section 4 deals with a special class of J-frames: J-orthogonal sequences.

In what follows, H is a complex Hilbert space with inner product (·, ·) linear in
the first argument. Sometimes it is useful to specify the inner product associated
with H. In this case, the notation (H, (·, ·)) is used. All topological notions refer to
the Hilbert space topology. For instance, a subspace of H is a linear manifold in
H which is closed with respect to the norm ‖ · ‖ =

√
(·, ·). The symbols D(A) and

R(A) denote the domain and the range of a linear operator A. The restriction of
A onto a set D is denoted as A �D. The notation L1 ⊕ L2 means the orthogonal
(with respect to an inner product) direct sum of two subspaces Li.

2. Elements of Krein spaces theory

2.1. Notation and terminology. Let H be a complex linear space with an
indefinite inner product (indefinite metric) [·, ·]. The space (H, [·, ·]) is called a
Krein space if H admits a decomposition

H = H+[+̇]H−, (2.1)

which is an orthogonal (with respect to [·, ·]) direct sum of two Hilbert spaces
(H+, [·, ·]) and (H−,−[·, ·]). The decomposition (2.1) is considered fundamental
and it induces the positive inner product

(f, g) := [f+, g+]− [f−, g−], f = f+ + f−, g = g+ − g−, f±, g± ∈ H±

and the associated Hilbert space (H, (·, ·)). The operator

Jf = f+ − f−, f = f+ + f−, f± ∈ H±,

called the operator of fundamental symmetry, is unitary and self-adjoint in the
Hilbert space (H, (·, ·)). The fundamental symmetry J allows one to express (·, ·)
in terms of an indefinite metric: (·, ·) = [J ·, ·].

A closed subspace L of the Krein space (H, [·, ·]) is called neutral, negative, or
positive if all nonzero elements f ∈ L are, respectively, neutral [f, f ] = 0, negative
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[f, f ] < 0, or positive [f, f ] > 0. Further, L is called uniformly positive, uniformly
negative if, respectively, [f, f ] ≥ α(f, f), −[f, f ] ≥ α(f, f) for certain α > 0 and
all f ∈ L. A subspace L of H is called definite if it is either positive or negative.
The term uniformly definite is defined accordingly.

In each of the above-mentioned classes we can define maximal subspaces. For
instance, a closed positive subspace L is called maximal positive if L is not a
proper subspace of a positive subspace in H. A maximal neutral subspace L
is called hypermaximal if the Hilbert space (H, (·, ·)) admits the decomposition
H = L ⊕ JL. Subspaces L1, L2 of H are said to be J-orthogonal if [f, g] = 0 for
all f ∈ L1 and g ∈ L2. The J-orthogonal complement of a subspace L of H is
defined as

L[⊥] =
{
g ∈ H : [f, g] = 0,∀f ∈ L

}
(2.2)

and it is a subspace of the Hilbert space (H, (·, ·)). Let A be a densely defined oper-
ator in a Krein space (H, [·, ·]). Repeating the standard definition of the adjoint
operator with the use of an indefinite inner product [·, ·], we define the adjoint
operator A+ of A. In this case, [Af, g] = [f, A+g] for all f ∈ D(A) and all
g ∈ D(A+). An operator A is called J-self-adjoint if A = A+. An operator A is
called J-positive if [Af, f ] > 0 for f( 6= 0) ∈ D(A).

2.2. Positive inner products generated by an indefinite inner product.
Case I. Let M± be maximal uniformly definite (positive/negative) subspaces of
the Krein space (H, [·, ·]). It is easy to see from [10, Lemma 2.1] that

H = M+ +̇ M−. (2.3)

The direct sum (2.3) determines the operator

JMf = fM+ − fM− , f = fM+ + fM− , fM± ∈ M± (2.4)

and the new positive inner product

(f, g)1 := [fM+ , gM+ ]− [fM− , gM− ], (2.5)

which is equivalent to (·, ·). The operator JM is bounded in H and J2
M = I.

Lemma 2.1. Let (·, ·)1 be defined by (2.5). Then

(·, ·)1 = [C·, ·], C =
1

2
(JM + J+

M), (2.6)

where J+
M is the adjoint of JM with respect to the indefinite inner product [·, ·].

Proof. It follows from (2.4) and (2.5) that, for all f, g ∈ H,

(f, g)1 =
1

4

([
(I + JM)f, (I + JM)g

]
−

[
(I − JM)f, (I − JM)g

])
=

1

2

(
[JMf, g] + [f, JMg]

)
=

1

2

[
(JM + J+

M)f, g
]
,

and that completes the proof. �
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Relation (2.6) implies that C is a bounded, J-self-adjoint, and J-positive oper-
ator in the Krein space (H, [·, ·]). Moreover, 0 ∈ ρ(C).

Case II. Assume that the subspaces M± are maximal definite but that at least
one of them loses the property of being uniformly definite. Then the direct sum

D = M+ +̇ M− (2.7)

does not coincide with H and D is a dense set in the Hilbert space (H, (·, ·)).
Similarly to case I, the direct sum (2.7) generates by the formula (2.5) a new

inner product (·, ·)1 defined on D. In contrast to the previous case, the inner
product (·, ·)1 is not equivalent to the initial product (·, ·), and the linear space D
endowed with (·, ·)1 is a pre-Hilbert space. Let the Hilbert space (Ĥ, (·, ·)1) be the
completion of D with respect to (·, ·)1. By construction, it can be decomposed as

Ĥ = M̂+ ⊕1 M̂−, (2.8)

where the subspaces M̂± of Ĥ are the completion of the subspaces M± and ⊕1

indicates the orthogonality of M̂± with respect to (·, ·)1.
The Krein space structure of Ĥ can be introduced by (2.8). Considering (2.8) as

the fundamental decomposition of Ĥ, we define the new indefinite inner product

[f, g]1 := [fM̂+
, gM̂+

] + [fM̂−
, gM̂−

], f, g ∈ Ĥ. (2.9)

The Hilbert space associated with the Krein space (Ĥ, [·, ·]1) coincides with

(Ĥ, (·, ·)1). The corresponding operator of fundamental symmetry JM̂ is the clo-

sure in (Ĥ, (·, ·)1) of the operator JM defined by (2.4). The operator JM̂ is bounded

and self-adjoint in (Ĥ, [·, ·]1) and (·, ·)1 = [JM̂·, ·]1.
On the other hand, since (·, ·) and (·, ·)1 are not equivalent, the operator JM is

a closed unbounded operator in (H, (·, ·)). The adjoint J+
M of JM with respect to

[·, ·] in H has the domain D(J+
M) = M[⊥]

− +̇M[⊥]
+ and its action is defined similarly

to (2.4), where the maximal definite subspaces M[⊥]
∓ are used instead of M±. In

general, the domains D(JM) and D(J+
M) do not coincide. Therefore, the operator

C in (2.6) can only be defined on D0 = D(JM) ∩ D(J+
M). By analogy with the

proof of Lemma 2.1, we obtain that

(f, g)1 = [Cf, g], ∀f ∈ D0, ∀g ∈ D. (2.10)

Case III. For the important particular case where the M±’s are J-orthogonal,
the subspace D0 coincides with D and the operator C is J-self-adjoint. More-
over, C coincides with JM and hence, it is characterized by the additional con-
dition C2f = f for all f ∈ D(C) = D(JM). In this case, the operator C can
be presented as C = JeQ, where Q is an unbounded self-adjoint operator in
(H, (·, ·)) anticommuting with J (see [13, Theorem 2.1]). It follows from above
that eQ = JC = JJM. Therefore, eQ/2 =

√
JJM. The operator Q character-

izes the “deviation” of subspaces M± with respect to the subspaces H± in the
fundamental decomposition (2.1). Precisely (see [13]),

M+ = (I − tanhQ/2)H+, M− = (I − tanhQ/2)H−. (2.11)
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Let D be the energetic space constructed by the self-adjoint operator eQ. In
other words, D denotes the completion of D = D(C) = D(eQ) with respect to the
energetic norm

‖f‖2en := ‖f‖2 + ‖f‖21 = ‖f‖2 + [Cf, f ] = ‖f‖2 + (eQf, f), f ∈ D.

The energetic space D coincides with D(eQ/2) and it is a Hilbert space (D, (·, ·)en)
with respect to the energetic scalar product (·, ·)en = (·, ·) + (eQ/2·, eQ/2·). In the
remainder of this article, we will sometimes consider D as the set of elements
(without topology). In this context, the term energetic linear manifold will be
used.

Comparing the definitions of Ĥ and D leads to the conclusion that the energetic

linear manifold D coincides with the common part of H and Ĥ, that is, D = H∩Ĥ.
Obviously, the formula (2.10) can be extended onto D as follows:

(f, g)1 = (eQ/2f, eQ/2g), ∀f, g ∈ D. (2.12)

The Hilbert space Ĥ cannot be interpreted as a Hilbert space HW with W -metric

considered in [4, Section 2.1]. Indeed, if Ĥ = HW for some self-adjoint W , then
D = H (because HW is the completion of H), which is impossible since eQ/2 is an
unbounded operator.

Lemma 2.2. If the M±’s are J-orthogonal, then the indefinite inner products
[·, ·] and [·, ·]1 coincide on the energetic linear manifold D. In the Hilbert space

(Ĥ, (·, ·)1), the indefinite inner product [·, ·] (defined originally on D) can be con-

tinuously extended onto Ĥ and this extension coincides with [·, ·]1.

Proof. By virtue of (2.9) and the J-orthogonality of M±,

[f, g] = [fM+ + fM− , gM+ + gM− ]

= [fM+ , gM+ ] + [fM− , gM− ] = [f, g]1, ∀f, g ∈ D.

The obtained relation is extended onto the energetic space D by the continuity
because max{|[f, f ]|, |[f, f ]1|} ≤ ‖f‖2en. The second statement of the lemma fol-
lows from the coincidence of [·, ·] and [·, ·]1 on D and the definition of

(Ĥ, (·, ·)1). �

3. Frames in Krein spaces and reconstruction formulas

Since the subspaces M± in Definition 1.3 are assumed to be maximal defi-
nite, the linear manifold D in (2.7) is a dense set in (H, (·, ·)). Properties of the
corresponding J-frame F depend on whether D coincides with H or not.

3.1. The set D coincides with H.

Proposition 3.1. Let F = {fn} be a J-frame in the sense of Definition 1.3, and
let D = H. Then F is a conventional frame in the Hilbert space (H, (·, ·)1) with
the frame bounds A = max{A+,−A−}, B = max{B+,−B−}. Moreover, F is a
J-frame in the sense of Definition 1.2.
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Proof. If D = H, then the subspaces M± are maximal uniformly definite in
the Krein space (H, [·, ·]) and (2.7) coincides with (2.3). The decomposition (2.3)
determines the new inner product (·, ·)1 on H which is equivalent to (·, ·). By the
construction, |[f, g]| = |(f, g)1| where f, g ∈ M+ or f, g ∈ M−. Moreover, the
subspaces M± are orthogonal with respect to (·, ·)1. Therefore, the inequalities
(1.5) can be rewritten as

A‖f‖21 ≤
∑
n∈N

∣∣(f, fn)1∣∣2 ≤ B‖f‖21, ∀f ∈ H, (3.1)

where A = max{A+,−A−} and B = max{B+,−B−}. Therefore, F is a frame
in the Hilbert space (H, (·, ·)1) with the frame bounds A ≤ B. The concept of
J-frame defined in Definition 1.2 corresponds to the case where the M±’s are
maximal uniformly definite subspaces. Therefore, the J-frame F considered above
is also a J-frame in the sense of Definition 1.2. �

By virtue of Proposition 3.1, the synthesis operator T : l2(N) → H associated
to J-frame F is well defined. Denote by T † its adjoint as an operator mapping
of the Krein space (H, [·, ·]) into the Hilbert space l2(N), that is, [T{cn}, f ] =
({cn}, T †f)l2(N), where {cn} ∈ l2(N), f ∈ H. It is easy to verify that T †f =
{[f, fn]}. The operator S : H → H,

Sf = TT †f =
∞∑
n=1

[f, fn]fn, (3.2)

is called a J-frame operator associated to J-frame F .

Proposition 3.2. The J-frame operator S is a J-positive, J-self-adjoint bounded
operator in the Krein space (H, [·, ·]) and 0 ∈ ρ(S). The reconstruction formula

f =
∞∑
n=1

[f, S−1fn]fn =
∞∑
n=1

[f, fn]S
−1fn (3.3)

holds, where the series converge in the Hilbert space H.

Proof. By Proposition 3.1, the J-frame F is a conventional frame in the Hilbert
space (H, (·, ·)1). The corresponding frame operator S1 has the form

S1f =
∞∑
n=1

(f, fn)1fn (3.4)

and it is a positive self-adjoint operator in (H, (·, ·)1) such that 0 ∈ ρ(S1). By
virtue of (2.6) and (3.2),

S1 = SC, S−1 = CS−1
1 . (3.5)

It follows from (3.5) that S−1 and S are J-positive, J-self-adjoint bounded oper-
ators in the Krein space (H, [·, ·]). The reconstruction formula for the frame F in
the Hilbert space (H, (·, ·)1) is

f =
∞∑
n=1

(f, S−1
1 fn)1fn =

∞∑
n=1

(f, fn)1S
−1
1 fn, (3.6)
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and its first part is transformed to the first part of (3.3) since

(f, S−1
1 fn)1 = [Cf, S−1

1 fn] = [f, CS−1
1 fn] = [f, S−1fn].

Multiplying (3.6) by the operator C and using the second relation in (3.5), we
obtain

Cf =
∞∑
n=1

(f, fn)1S
−1fn =

∞∑
n=1

[Cf, fn]S−1fn,

which is equivalent to the second relation in (3.3) (since R(C) = H). Thus, the
series (3.3) are convergent in H with respect to (·, ·)1. Obviously, they remain
convergent with respect to (·, ·) since the inner products (·, ·) and (·, ·)1 are equiv-
alent. �

Remark 3.3. In [9], the Hilbert space l2(N) was considered as a Krein space
with indefinite metric generated by the fundamental decomposition (1.3) and
the adjoint T+ of the synthesis operator T was calculated as an operator acting
between two Krein spaces H and l2(N), that is, [T{cn}, f ] = [{cn}, T+f ]l2(N),
where [{cn}, {cn}]l2(N) =

∑
N σn|cn|2 and σn = sgn[fn, fn]. It is easy to check that

T+f =
{
σn[f, fn]

}
.

Then the corresponding J-frame operator S̃ = TT+ acts as (cf. (3.2))

S̃ =
∞∑
n=1

σn[f, fn]fn.

(A detailed investigation of this can be found in [7].) By virtue of (2.4) and (3.2),

the J-frame operators S and S̃ are related as follows:

JMS = S̃, SJ+
M = S̃. (3.7)

Hence, 0 ∈ ρ(S̃) and S̃ is a J-self-adjoint operator in (H, [·, ·]) since S̃+ =

(JMS)+ = SJ+
M = S̃. However, in contrast to S, the J-frame operator S̃ cannot

be J-positive. Indeed, [S̃f, f ] = −
∑

n∈N−
|[f, fn]|2 < 0 for f ∈ M[⊥]

+ . By virtue

of (3.7), the reconstruction formula (3.3) takes the form:

f =
∞∑
n=1

σn[f, S̃
−1fn]fn =

∞∑
n=1

σn[f, fn]S̃
−1fn.

3.2. The set D does not coincide with H.

Proposition 3.4. Let F = {fn} be a J-frame in the sense of Definition 1.3, and
let D 6= H. Then the J-frame F is a conventional frame in the new Hilbert space

(Ĥ, (·, ·)1) with the frame bounds A = max{A+,−A−}, B = max{B+,−B−}.

Proof. If D 6= H, then at least one of the subspaces M± is maximal definite
but not uniformly definite. In this case, the direct sum (2.7) generates the new

Hilbert space (Ĥ, (·, ·)1). Similarly to the proof of Proposition 3.1, we rewrite the
inequalities (1.5) as (3.1) for all f ∈ D. By virtue of [3, Lemma 5.1.7], (3.1) can
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be extended onto Ĥ (since D is dense in Ĥ). Therefore, F is a conventional frame

in the Hilbert space (Ĥ, (·, ·)1) with the frame bounds A ≤ B. �

Corollary 3.5. Let F satisfy the assumptions of Proposition 3.4. Then F cannot
be a Bessel sequence in H.

Proof. Let, for instance, M+ be maximal definite but not uniformly definite. By

virtue of Proposition 3.4, the reconstruction formula (3.6) holds for all f ∈ Ĥ (the

series converge in the Hilbert space (Ĥ, (·, ·)1)). In particular, if f ∈ M̂+, then

f =
∞∑
n=1

(f, S−1
1 fn)1fn, (3.8)

where {(f, S−1
1 fn)1} ∈ l2(N) and (f, S−1

1 fn)1 = 0 if fn ∈ M− (the latter follows

from (2.8) and the fact that the M̂±’s are invariant subspaces for S1).
Assume that F is a Bessel sequence in H. Then the series in (3.8) converges

in (H, (·, ·)) (see [11, Theorem 7.4]) and its limit coincides with f (since ‖g‖21 =

[g, g] ≤ ‖g‖2 for all g ∈ M+). This means that M̂+ = M+, which is impossible.
Therefore, F cannot be a Bessel sequence in H. �

Proposition 3.6. Let F satisfy the assumptions of Proposition 3.4. Then, for

all f ∈ Ĥ,

f =
∞∑
n=1

[f, S−1fn]1fn =
∞∑
n=1

[f, fn]1S
−1fn, (3.9)

where Sf =
∑∞

n=1[f, fn]1fn is a JM̂-self-adjoint bounded operator in the Krein

space (Ĥ, [·, ·]1). The series (3.9) converge in the Hilbert space (Ĥ, (·, ·)1).

Proof. By the construction, the indefinite inner product [·, ·]1 coincides with [·, ·]
on M±, and the M±’s are dense sets in the subspaces M̂± of the Hilbert space

Ĥ. This means that we can replace, in Definition 1.3, [·, ·] and M± by [·, ·]1
and M̂±, respectively. Therefore, the J-frame F in the Krein space (H, [·, ·]) is

simultaneously a JM̂-frame in the Krein space (Ĥ, [·, ·]1). In the latter case, since
decomposition (2.8) holds, we can apply Proposition 3.2 for the JM̂-frame F ,
which completes the proof. �

The above results are simplified when the subspaces M± are J-orthogonal.

Corollary 3.7. Let F satisfy the assumptions of Proposition 3.4, and let the
subspaces M± be J-orthogonal. Then for all elements f from the energetic linear
manifold D (see Section 2.2),

f =
∞∑
n=1

[f, fn]S
−1fn, (3.10)

where Sf =
∑∞

n=1[f, fn]fn and the series converges in the Hilbert space (Ĥ, (·, ·)1).
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Proof. By virtue of Proposition 3.6, the formula (3.9) holds for all f ∈ Ĥ. In a
particular case where f ∈ D, Lemma 2.2 allows one to modify the second part of
(3.9) and the operator S by the replacement of [f, fn]1 with [f, fn]. �

Remark 3.8. The additional assumption that S−1fn ∈ D and Lemma 2.2 lead to
the conclusion that f =

∑∞
n=1[f, S

−1fn]fn for all f ∈ D.

Proposition 3.9. Let F = {fn} satisfy the assumptions of Proposition 3.4, and
let the subspaces M± be J-orthogonal. Then there exists an unbounded self-adjoint
operator Q in the Hilbert space (H, (·, ·)), which anticommutes with J and such
that the sequence {eQ/2fn} is a conventional frame in (H, (·, ·)) with the frame
bounds A = max{A+,−A−}, B = max{B+,−B−}.

Proof. Each direct sum of J-orthogonal maximal definite subspacesM± generates
an unbounded self-adjoint operator Q in the Hilbert space H which anticommutes
with J (see Section 2.2). In this case, the relation (2.12) holds.

According to Proposition 3.4, F is a frame in the Hilbert space (Ĥ, (·, ·)1).
Therefore, the inequalities (3.1) hold for all f ∈ D. Using (2.12), we rewrite them
as follows: A‖γ‖2 ≤

∑
n∈N |(γ, eQ/2fn)|2 ≤ B‖γ‖2, where γ = eQ/2f runs the

dense set R(eQ/2) in (H, (·, ·)). The obtained inequalities can be extended onto H
due to [3, Lemma 5.1.7]. Therefore, {eQ/2fn} is a frame in (H, (·, ·)). �

The inverse statement is also true.

Proposition 3.10. Assume that {gn} is a frame in the Hilbert space (H, (·, ·))
such that each gn belongs to one of the subspaces H+ or H− of the fundamental
decomposition (2.1) and there exists an unbounded self-adjoint operator Q in H
which anticommutes with J and such that {coshQ/2gn} is a complete set in H.
Then the sequence {e−Q/2gn} is a J-frame in the sense of Definition 1.3.

Proof. The operator coshQ/2 = 1
2
(eQ/2 + e−Q/2) commutes with J (since Q anti-

commutes with J). Therefore, the vector xn = coshQ/2gn belongs to the same
subspace (H+ or H−) that gn does. Denote x±

n = xn if xn ∈ H±. According to
Section 2.2, the operator Q uniquely determines a J-orthogonal pair of maximal
definite subspaces M± (see (2.11)). Denote

M′
+ = span

{
(I − tanhQ/2)x+

n

}
, M′

− = span
{
(I − tanhQ/2)x−

n

}
.

In view of (2.11) and the fact that the set {xn = coshQ/2gn} is complete in
H, we decide that M′

± = M±. Moreover,

fn =
(
I − tanh

Q

2

)
xn =

(
I − tanh

Q

2

)
cosh

Q

2
gn

= cosh
Q

2
gn − sinh

Q

2
gn = e

−Q
2 gn.

Therefore, gn = eQ/2fn, where fn belongs to one of the sets M± and sgn[gn, gn] =
sgn[fn, fn]. The frame inequalities for the frame {gn} can be rewritten as

A‖γ‖2 ≤
∑
n∈N

∣∣(γ, eQ/2fn)
∣∣2 ≤ B‖γ‖2, γ ∈ H. (3.11)
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Assuming in (3.11) that γ = eQ/2f , where f ∈ M±, and using (2.5) and (2.12), we
obtain the inequalities (1.5) with the constants A± = ±A and B± = ±B for all
f ∈ M±. Therefore, {fn = e−Q/2gn} is a J-frame in the sense of Definition 1.3. �

Remark 3.11. If the operator Q in the statement above is bounded, then the sub-
spaces M± in (2.11) are maximal uniformly definite and the sequence {e−Q/2gn}
turns out to be a J-frame in the sense of Definition 1.2.

4. J-orthogonal sequences and J-frames

4.1. J-orthogonal sequences. Let a sequence {fn}∞n=1 be J-orthogonal (i.e.,
[fn, fm] = 0 for n 6= m). Then the subspacesM± defined by (1.4) are J-orthogonal
in the Krein space (H, [·, ·]).
Proposition 4.1. For a J-orthogonal sequence F = {fn} the following are equiv-
alent:

(i) F is a Riesz basis in H;
(ii) F is a J-frame in the sense of Definition 1.2.

Proof. If F is a Riesz basis, then the synthesis operator (1.2) is well defined and
R(T±) = M±, where the M±’s are defined by (1.4). Moreover, (2.3) holds and
therefore, M± must be maximal uniformly definite in (H, [·, ·]). Implication (i) →
(ii) is proved. Conversely, if F is a J-frame in the sense of Definition 1.2, then F
should be an orthogonal system in the Hilbert space (H, (·, ·)1) satisfying (3.1).
The latter means that F is a Riesz basis in H. �

Proposition 4.2. A J-orthogonal sequence F = {fn} is a J-frame in the sense
of Definition 1.3 if and only if F is J-bounded, that is,

0 < A ≤
∣∣[fn, fn]∣∣ ≤ B < ∞, ∀fn ∈ F , (4.1)

and the subspaces M± defined by (1.4) are maximal definite in the Krein space
(H, [·, ·]).
Proof. The J-orthogonality of F and (4.1) allow one to verify the inequalities
(1.5) with constants A± = ±A,B± = ±B for all f ∈ span{F±} (see (1.4)). By
the construction, span{F+} is a dense set inM+. Therefore, the first inequality in
(1.5) can be extended onto M+ (see [3, Lemma 5.1.7]). Similarly, since span{F−}
is dense in M−, the second inequality in (1.5) holds for all f ∈ M−. Therefore,
F is a J-frame in the sense of Definition 1.3. Conversely, if F is a J-frame,
then M± must be maximal definite and (1.5) with f = fn gives (4.1), where
A = max{A+,−A−} and B = max{B+,−B−}. �

Remark 4.3. The maximality of M± ensures the completeness of the correspond-
ing J-orthogonal sequence {fn} in (H, (·, ·)). The inverse statement is not true
(see, e.g., [13]). We can only state that the subspaces M± are definite in (H, [·, ·])
and their direct sum is dense in (H, (·, ·)).

Let {fn} be a complete J-orthogonal sequence. Its biorthogonal sequence {γn}
consists of the elements

γn =
Jfn

[fn, fn]
. (4.2)
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Hence, [γn, γn] = 1/[fn, fn]. By Proposition 4.2, if one of sequences {fn} or {γn}
is a J-frame, then another one is also a J-frame.

Let a complete J-orthogonal sequence F = {fn} be a J-frame in the sense of
Definition 1.3. Then Corollary 3.7 holds and the operator Sf =

∑∞
n=1[f, fn]fn is

well defined on the energetic linear manifold D. It is easy to see that S−1fn =
fn/[fn, fn] and therefore, the decomposition (3.10) can be rewritten as

f =
∞∑
n=1

[f, fn]

[fn, fn]
fn =

∞∑
n=1

(f, γn)fn, f ∈ D, (4.3)

where the series (4.3) converges with respect to the norm ‖·‖1 =
√

(eQ·, ·), where
eQ is a positive self-adjoint operator in H such that eQfn = JJMfn = σnJfn =
σn[fn, fn]γn = |[fn, fn]|γn.

4.2. J-orthogonal Schauder bases. In what follows, we suppose that F =
{fn} is a Schauder basis of (H, (·, ·)).

Corollary 4.4. A J-orthogonal Schauder basis F turns out to be a J-frame if
and only if F is J-bounded.

Proof. The proof follows from Proposition 4.2 and the fact that the subspacesM±
are maximal definite in the case of a J-orthogonal Schauder basis (see [2]). �

Corollary 4.5. If a J-orthogonal Schauder basis F = {fn} is a J-frame, then
the series (4.3) is convergent in the energetic space (D, (·, ·)en), that is, it is
convergent with respect to the energetic norm ‖ · ‖en.

Proof. It follows from the definition of energetic norm in Section 2.2 and the
convergence of (4.3) with respect to ‖ · ‖ (since F is Schauder basis). �

The energetic linear manifold D can be easily described.

Proposition 4.6. Let a J-orthogonal Schauder basis F = {fn} be a J-frame.
Then f ∈ D if and only if the sequence {[f, fn]} belongs to l2(N).

Proof. If f ∈ D, then (4.3) converges simultaneously in H and Ĥ. Moreover, (4.1)

holds and {fn} is a bounded orthogonal basis in Ĥ. This means that the sequence
{[f, fn]} belongs to l2(N). Conversely, assume that f ∈ H and {[f, fn]} ∈ l2(N).
Then the sequence {cn}, where

cn =
[f, fn]

[fn, fn]
= (f, γn) =

(f, fn)1
(fn, fn)1

,

also belongs to l2(N). Hence, gm =
∑m

n=1 cnfn is a Cauchy sequence in (Ĥ, (·, ·)1)
since {fn} is a bounded orthogonal basis in Ĥ. The same is true for the space
H since {fn} is a Schauder basis in H. Therefore, {gm} is a Cauchy sequence in
(D, (·, ·)en) and f belongs to D (since f = lim gm =

∑∞
n=1(f, γn)fn). �

Generally, we cannot state that the convergence of (4.3) is unconditional in D.
Let us discuss this point in detail. Denote

Dun =
{
f ∈ H : the series (4.3) converges unconditionally in H

}
.
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Theorem 4.7. Let a J-orthogonal Schauder basis F = {fn} be a J-frame. Then

Dun ⊂ M++̇M− ⊂ D,

where the inclusions are strict and f ∈ Dun if {[f, fn]} belongs to l1(N).

Proof. First of all, we note that F is bounded in H, that is, 0 < C ≤ ‖fn‖2 ≤
D < ∞. Indeed, the J-orthonormal Schauder basis {fn/[fn, fn]} is bounded in H
(see [2, p. 76]). This means that {fn} is bounded too (since (4.1) holds due to
Corollary 4.4).

Let f ∈ Dun. Then, simultaneously with (4.3), the series
∑

n∈N±

[f,fn]
[fn,fn]

fn con-

verge to elements f± in the Hilbert space H (see, e.g., [11, Theorem 3.10]). By
the construction, f± ∈ M±. Therefore, f = f+ + f− belongs to M++̇M−. The

sequence {fn}N+ is a basis for the Hilbert spaces (M+, (·, ·)) and (M̂+, [·, ·]). In
the last case, {fn}N+ is a bounded orthogonal basis in M̂+. Hence, the relation

f =
∑
n∈N+

cnfn, {cn} ∈ l2(N+) (4.4)

establishes a one-to-one correspondence between Hilbert spaces M̂+ and l2(N+).
Suppose that M+ ⊂ Dun. Then the basis {fn}N+ of (M+, (·, ·)) is uncon-

ditional and bounded. Hence, {fn}N+ is a Riesz basis of (M+, (·, ·)) (see [11,
Theorem 7.13]) and the formula (4.4) describes all vectors of M+. The latter

means that M+ = M̂+, which is impossible. Therefore, M+ does not belong
to Dun. The same statement holds for M−. The strict inclusion Dun ⊂ M++̇M−
is proved.

Let f ∈ H be such that {[f, fn]} ∈ l1(N). Then the sequence {[f, fn]/[fn, fn]}
also belongs to l1(N) (since (4.1) holds). This means that the series (4.3) converges
unconditionally (see [11, Lemma 3.5]). Therefore, f ∈ Dun. �

4.3. Example. Examples of J-frames can be easily constructed with the use of
Proposition 3.10. The principal ingredients are a self-adjoint operator Q anticom-
muting with J and a conventional frame {gn} such that each gn belongs to one
of the subspaces H± of the fundamental decomposition (2.1).

Let us consider a concrete example. In the space H = L2(R), we define a
fundamental symmetry J = P as the space parity operator Pf(x) = f(−x). The
subspaces H± of the fundamental decomposition (2.1) coincide with the subspaces
of even and odd functions of L2(R). The Hermite functions

gn(x) =
1√

2nn!
√
π
Hn(x)e

−x2/2, Hn(x) = ex
2/2

(
x− d

dx

)n

e−x2/2

form an orthonormal basis of L2(R) (particular case of a frame). The functions
gn are either odd or even functions. Therefore, gn ∈ H±.

Since the gn’s are entire functions, the complex shift of gn’s can be defined as

fn(x) = gn(x+ ia), a ∈ R \ {0}, n = 0, 1, 2, . . . .
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The functions {fn} are eigenvectors of the shifted harmonic oscillator

H = − d2

dx2
+ x2 + 2iax.

Applying the Fourier transform Ff = 1√
2π

∫∞
−∞ e−ixξf(x) dx to fn, we get Ffn =

e−aξFgn. Therefore, fn = F−1e−aξFgn. The last relation can be rewritten as

fn = e−Q/2gn,

where Q = −2ai d
dx

is an unbounded self-adjoint operator in L2(R) which anti-
commutes with P . Since Fgn = (−i)ngn(ξ), the completeness of {coshQ/2gn} is
equivalent to the completeness of functions {cosh(aξ)gn(ξ)} in L2(R). The latter
can be established by analogy with the proof of [14, Lemma 2.5].

By Proposition 3.10, F = {fn} is a J-frame in the sense of Definition 1.3.
Moreover, F is a J-orthogonal sequence since

[fn, fm] = (Je−Q/2gn, e
−Q/2gm) = (eQ/2Jgn, e

−Q/2gm) = sgn[gn, gn]δnm.

However, F cannot be a Schauder basis. Indeed, if F is a basis, then ‖fn‖‖γn‖ ≤
C, where {γn} is the biorthogonal sequence (see [11, Theorem 4.13]). This inequal-
ity can be transformed to ‖fn‖2 ≤ C ′ by virtue of (4.1) and (4.2). On the other
hand, limn→∞

1√
n
log ‖fn‖2 = 23/2|a| (see [14, Theorem 2.6]) which contradicts

the inequality above.
The subspaces

M+ = span{fn : n = 2k}, M− = span{fn : n = 2k + 1}, k ∈ N ∪ {0}
are maximal positive/negative in the Krein space (L2(R), [·, ·]) with the indefinite

inner product [f, g] =
∫
R f(−x)g(x) dx. Their direct sum is a dense set in L2(R)

due to [14, Lemma 2.5].
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