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Abstract. Using C∗-algebraic techniques and especially AF-algebras, we
present a complete classification of the continuous unitary representations for
a class of infinite wreath product groups. These nonlocally compact groups are
realized by a topological completion of the semidirect product of the countably
infinite symmetric group acting on the countable direct product of a finite
Abelian group.

1. Introduction

The continuous unitary representations for the unitary group U(H) (with the
strong operator topology) of a separable Hilbert space H or the full symmetric
group S(∞) (with the topology of pointwise convergence) on a countable set
are equivalent to the tame representations of dense direct limit subgroups. For
U(H), the subgroup is U(∞), the inductive limit unitary group lim→ U(n); while
for S(∞) it is S(∞), the group of finitely supported permutations on positive
integers.

These results suggest the following general problem: if G is a topological com-
pletion of a countable discrete subgroup G, determine the representation theory of
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G through the restriction of its representations to G. In this context, a tame rep-
resentation of G is exactly the restriction of a continuous unitary representation
of G. In general, G may not be locally compact.

In this article, we study the representation theory of an infinite wreath product
group G relative to a fixed finite Abelian group A. The subgroup G is a countable
locally finite group obtained as a canonical semidirect product of S(∞) with the
countably infinite direct sum

⊕
A. In Section 2.3, we give a natural topology on

G whose completion G is a nonlocally compact topological group.
We classify the tame representations of G, that is, the restriction to G of the

continuous unitary representations of the completion group G using C∗-algebraic
techniques applied to the group algebra of G. Since the completion G is not locally
compact, classical methods do not directly apply. For the unitary group and the
full symmetric group, Olshanski [8] introduced the method of semigroups to clas-
sify tame representations. The C∗-algebra approach we use here provides an alter-
native method to semigroups. (See [1], [2] for other applications of C∗-algebraic
techniques to study the representation theory of nonlocally compact groups.)

2. Background

2.1. Wreath product representations. Let S(n) be the symmetric group on
n letters. As usual we identify its irreducible representations λ ∈ S(n)∧ (the dual
space of S(n)) with the partitions of n; that is, λ : λ1 ≥ · · · ≥ λ` > 0, where∑

λj = n and ` is the number of parts of the partition. The representation λ has
an alternate description as a shape or (Ferrers) diagram D(λ), that is, a finite
subset of N2 where (i, j) ∈ D(λ) if and only if 1 ≤ j ≤ λi, for 1 ≤ i ≤ `. As a
diagram, ` is the number of its rows. The diagram of the partition of 0 is simply
∅. Note that the trivial representation of S(n) is given by the diagram with a
single row (` = 1). The restriction of λ ∈ S(n)∧ to S(n − 1) decomposes simply
as a direct sum of µ ∈ S(n− 1)∧, where |D(λ) \D(µ)| = 1.

2.1.1. Classification. Let A be a finite Abelian group with dual group Â =
{ω1, . . . , ω|A|}, where ω1 denotes the trivial character which is identically 1. Let
G(n) be the wreath product of S(n) with

∏n
j=1 A; that is, G(n) is the semidi-

rect product of the natural action of the symmetric group S(n) on the product
of Abelian groups. Explicitly, if σ ∈ S(n) and a = (a1, . . . , an) ∈

∏n
j=1A, then

σ · a = (aσ−1(1), . . . , aσ−1(n)). The dual space G(n)∧ of irreducible representations

of G(n) is given by Â-tuples (λ(ω) : ω ∈ Â) such that λ(ω) is a partition of |λ(ω)|
and

∑
{|λ(ω)| : ω ∈ Â} = n (see [11]). We allow |λ(ω)| = 0 which corresponds to

a partition whose diagram D(λ(ω)) = ∅. The restriction λ ∈ G(n)∧ to G(n − 1)
decomposes without multiplicity; its components µ ∈ G(n− 1)∧ must satisfy the

following condition: there exists ω′ ∈ Â such that

µ(ω) =

{
λ(ω), ω 6= ω′,

µ(ω′), |D(λ′) \D(ω′)| = 1.
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The trivial representation 1G(n) = 1 of G(n) has the form

1G(n) =

{
λ1(ω), ω = ω1,

∅, ω 6= ω1,

where ω1 is the trivial character of A and the diagram D(λ1(ω)) consists of the
single row: {(1, j) : 1 ≤ j ≤ n}.

2.1.2. Induction product. For a finite group H, we use the notation Rep(H) for
the Grothendieck group generated by the unitary equivalence classes of finite-
dimensional representations of H. For the wreath product groups G(n), there is
a natural induction product on

⊕∞
n=0 Rep(G(n)) given by

µ ◦ ν = Ind
G(n1+n2)
G(n1)×G(n2)

(µ� ν),

where µ ∈ Rep(G(n1)), ν ∈ Rep(G(n2)), � denotes the outer tensor product of
representations, and G(n1) and G(n2) are the natural subgroups of G(n). (We
refer the reader to [11] for a detailed discussion.) If µ and ν are also irreducible,
then there is an explicit irreducible decomposition of µ ◦ ν,

Ind
G(n1+n2)
G(n1)×G(n2)

(µ� ν) =
⊕{

cγµ,νγ : γ ∈ G(n1 + n2)
∧},

where the integers cγµ,ν are given by

cγµ,ν =
∏

{cγ(ω)µ(ω),ν(ω) : ω ∈ Â},

where c
γ(ω)
µ(ω),ν(ω) are the usual Littlewood–Richardson coefficients for the symmetric

group induction product (see [4, Theorem 4.3]).
For m < n, let Gm(n) be the subgroup of G(n) given by Sm(n) ·

∏n
j=m+1A,

where Sm(n) is the centralizer of the natural copy of S(m) in S(n). Further, we
set Gm(∞) =

⋃∞
n=m Gm(n), the corresponding subgroup of the infinite wreath

product G. If λ ∈ G(n)∧ and µ ∈ G(m)∧ appears as an irreducible component of
the restriction λ|G(m), write µ < λ.

2.2. AF C∗-algebras. Let G =
⋃∞

n=0G(n), the infinite wreath product group.
Since G is a countable discrete locally compact group, its group C∗-algebra C∗(G)
is an approximately finite-dimensional (AF) C∗-algebra; that is, it is the induc-
tive limit of lim→ C∗(G(n)) where each C∗(G(n)) is isomorphic to the direct sum⊕

{M(H(λ)) : λ ∈ G(n)∧}, where the embedding of C∗(G(n)) into C∗(G(n+1))
is consistent with the restriction rule. (See [9] and [10] for a general discussion
of AF-algebras.) We remark that G is also the semidirect product of S(∞) with⊕∞

n=1 A. If T is a unitary representation of G, then we write T̃ for the corre-
sponding representation of C∗(G).
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2.2.1. Primitive ideal parameterization for wreath products. A primitive ideal J

of C∗(G) is parameterized by a diagram DJ which is an Â-tuple, where each
DJ(ω) is a certain infinite subset of N2. Either DJ(ω) = N2 or is a proper subset
of the form DJ(ω) = DJ(k(ω), `(ω), Y (ω)):

DJ

(
k(ω), `(ω), Y (ω)

)
=

{
(i, j) : 1 ≤ j < ∞ for 1 ≤ i ≤ k(ω)

}
∪
{
(i, j) : 1 ≤ i < ∞ for 1 ≤ j ≤ `(ω)

}
∪
((
k(ω), `(ω)

)
+ Y (ω)

)
,

where Y (ω) is the diagram of some partition and (k(ω), `(ω)) ∈ N2 (see [3]).

2.2.2. Primitive quotient spectrum. The diagram DJ of a primitive ideal J nat-
urally describes the Bratteli diagram of the primitive quotient AJ = C∗(G)/J ,
where AJ = lim→(AJ)n, where (AJ)n is a subalgebra of C∗(G(n)). Its spec-
trum (AJ)

∧
n ⊂ G(n)∧ consists of those irreducible representations λ such that

D(λ(ω)) ⊂ DJ(ω) for all ω ∈ Â.

2.2.3. Tame primitive ideals. We are particularly concerned with primitive ideals
for which k(ω) = `(ω) = 0 for ω 6= ω1 and `(ω1) = 0, k(ω1) = 1. We will call these
primitive ideals tame and simplify their notation. If J is tame, then we write

DJ,T =
(
DJ,T (ω) : ω ∈ Â

)
,

where

DJ,T (ω) =

{
Y (ω), ω 6= ω1,

((0, 1) + Y (ω1)) ∪R0, ω = ω1,

where Y (ω) is a diagram for some partition and R0 = {(1, j) : 1 ≤ j < ∞}.
In other words, there is a bijection between tame primitive ideals and Â-tuples

of finite diagrams.

2.2.4. Postliminary primitive quotient. If π is a factor representation of a sep-
arable C∗-algebra A, then its kernel J = Ker(π) is a primitive ideal. Moreover,
every primitive ideal is the kernel of some irreducible representation. If π1 and π2

are irreducible representations with the same kernel, then it is not true in general
that they are unitarily equivalent. This holds if the primitive quotient A/J is
postliminary or type I.

For AF C∗-algebras, every primitive ideal is the kernel of an irreducible rep-
resentation π which is a direct limit of irreducible representations; that is, if
A = lim→ An and πn is an irreducible representation of An, then π = lim→ πn

(see [9, Chapter 1]). If the primitive quotient A/J is postliminary, then every
irreducible representation with kernel J is, in particular, unitarily equivalent to
a direct limit of irreducible representations.

An AF C∗-algebra A = lim→ An has finite rank if there is a constant K such

that |Ân| ≤ K for all n. In general, a finite rank AF-algebra may either be
postliminary or not.
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2.3. Tame representations and topological completion G of G. Suppose
that a group K has the form

⋃∞
n=1K(n), where {K(n)}∞n=1 is an increasing

sequence of subgroups. Neeb [6, Definition 3.4] says that the {K(n)} are well
complemented by a decreasing sequence {Kn}∞n=1 of subgroups if

⋂∞
n=1Kn = {1}

and K(n) commutes with Kn for all n. He further observed that {Kn} is a basis
of neighborhoods of the identity for a unique Hausdorff group topology τ for K.

A unitary representation T of K is tame (see [8], [6]) if the space
⋃∞

n=0Hn(T )
is dense in H(T ), where Hn(T ) is the subspace

Hn(T ) =
{
v ∈ H(T ) : T (g)v = v for all g ∈ Kn

}
.

If T is an irreducible representation, then T is tame if and only if there exists
some m such that Hm(T ) 6= {0}. Then the representation T of K is tame if and
only if it is continuous relative to the topology τ (see [6, Section 3]).

If G is the infinite product group, its subgroups G(n) are well-complemented
by the subgroups Gn(∞). The resulting topology τ is the topology of pointwise
convergence. To make this explicit, we treat G as the set S(∞) ×

⊕∞
n=1A. For

σ ∈ S(∞) and a = (an) ∈
⊕∞

n=1A, map (σ, a) to (σ(n), an)
∞
n=1 ∈

∏∞
n=1(Z+ ×A).

The topology τ is identical to the pullback of the restriction of the topology of
pointwise convergence (or product topology) of the image of G. Furthermore, the
image of G is dense in the full product.

Let G be a semidirect product of the full symmetric group S(∞) (of Z+) with
the Abelian infinite product group

∏∞
n=1A, where the topology is given by the

identification with
∏∞

n=1(Z+ × A). Since G is dense in G, the classification of
the tame representations of G is equivalent to classifying the continuous unitary
representations of G.

3. Irreducible tame representations of G

Proposition 3.1. Let m < n. Then there is an injection of G(m)∧ into G(n)∧

given by

ν 7→ µ = ν ◦ 1,
where µ ◦ 1 denotes the induction product. Further, λ ∈ G(n)∧ is in the image if
and only if the restriction of λ to G(m)×Gm(n) is equivalent to ν � 1 for some
irreducible representation ν ∈ G(m)∧. For m < k < n, π ∈ G(k)∧ lies in the

restriction µ|G(k) if and only if D(π(ω)) ⊂ D(µ(ω)) for ω ∈ Â.

Proof. This follows immediately using the Littlewood–Richardson rule extended
to wreath products. �

Proposition 3.2. Let µm be an irreducible representation of G(m). If µm+j ∈
G(m + j)∧ such that its restriction µm+j|G(m) × Gm(m + j) = µm � 1 and
µm+j < µm+j+1, then the direct limit representation µ = lim→ µm+j is irreducible
and tame.

Proof. We know that µ is irreducible since it is a direct limit of irreducible repre-
sentations (see [5, Theorem 1]). To verify that µ is tame it is enough to show that
Hm(µ) 6= {0}. By construction, µm+j|G(m) × Gm(m + j) = µm � 1 for any j.
Hence, H(µ) ⊂ Hm(µ); in particular, it is nonzero. �
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Proposition 3.3. Let J be a primitive tame ideal of C∗(G). Then the primitive
quotient AJ = C∗(G)/J is postliminary.

Proof. Write AJ = lim→(AJ)n. Then λ ∈ G(n)∧ lies in (AJ)
∧
n if and only if

D(λ(ω)) ⊂ DJ,T (ω) for ω 6= ω1 and D(λ(ω1)) ⊂ {(1, j) : 1 ≤ j < ∞} ∪DJ,T (ω1).
The primitive quotient AJ is postliminary provided that it contains an ideal
isomorphic to the algebra K of compact operators. Let µn ∈ (AJ)

∧
n such that

D(µn(ω)) ⊂ DJ,T (ω), ω 6= ω1, and D(µn(ω1)) ⊂ (0, 1) + DJ,T (ω1). Consider
λ ∈ (AJ)

∧
n+1 such that µn is contained in the restriction λn+1|G(n). In terms of

diagrams, we have D(µn(ω)) ⊂ D(λ(ω)) for ω ∈ Â. By the set containments
forced by the primitive ideal condition, we conclude that λ = µn+1.

To finish, we look at the central decompositions (AJ)j =
⊕

{M(π) : π ∈ (AJ)
∧
n}

(for j = n, n + 1). Then the matrix algebra M(µn) ⊂ (AJ)n embeds simply into
M(µn+1) ⊂ (AJ)n+1. This is exactly the embedding that gives an ideal isomorphic
to K. �

Corollary 3.4. Let J be a primitive tame ideal of C∗(G). Then J = Ker(µ̃) for
some irreducible tame representation µ of G.

Proof. This follows easily from the Proposition 3.3. Consider the direct limit rep-
resentation µ = lim→ µn. By Proposition 3.2, µ is irreducible and tame. Further-
more, µ̃ is a faithful representation of AJ = C∗(G)/J because any two nonzero
ideals in a primitive algebra intersect. In particular, if P is the kernel of µ̃, then it
has a nonzero intersection with Q, where Q is the ideal generated by

⋃
nM(µn).

This contradicts that µ is nonzero on Q by construction. �

Theorem 3.5. Let T̃ be an irreducible representation of C∗(G), where T is an
irreducible tame representation of G. Let J = Ker(T̃ ) ∈ Prim(G). Then J is a
primitive tame ideal.

Proof. Assume that T is an irreducible tame representation. Then there exists a
positive integer m such that Hm(T ) 6= {0}. Consider T |G(m) acting on Hm(T ).
Since G(m) is a finite group, Hm(T ) decomposes discretely into a direct sum
of irreducible representations; pick one, say, µ ∈ G(m)∧ and the corresponding
subspace Vm. Note that by construction, T (g) = I for Gm(∞). Next consider the
cyclic subspace Vm+1 generated by T (G(m + 1)) acting on Vm. We decompose
Vm+1 into a direct sum of subspaces where G(m+ 1) acts irreducibly.

Now Vm ⊂ Vm+1 by construction. Furthermore, T |(G(m)×Gm(m+1)) = µ�1
on the subspace Vm. But this condition uniquely determines an irreducible rep-
resentation, say, mum+1 ∈ G(m + 1)∧. By the minimality of the cyclic sub-
space Vm+1, this subspace supports the irreducible representation µm+1. Con-
sequently, we have constructed a chain µm < µm+1 < · · · such that µm+j ∈
G(m + j)∧, H(µm+j) ⊂ H(µm+j+1), H(µm+j) ⊂ Hm+j(T ). By construction, the
union

⋃∞
j=0H(µm+j) is invariant under G. By the irreducibility of T , the infinite

union is dense in H(T ).
Consider the primitive quotient AJ = C∗(G)/J . Then its Bratteli diagram is

given by the minimal choice of sets Xm+j that satisfy: (1) Xm+j ⊂ G(m + j)∧;
(2) µm+j ∈ Xm+j; (3) if µ ∈ Xm+j+1, then all the irreducible components of its
restriction µ|G(m+ j) belong to Xm+j.



INFINITE WREATH PRODUCTS 103

We will be able to identify Xm+j by means of the irreducible representations
µm+j and their restrictions. First note that

D
(
µm+j(ω)

)
= D

(
µm(ω)

)
, ω 6= ω1

for all j ≥ 0. We write D(µm(ω1)) in the form

D
(
µm(ω1)

)
=

(
(0, 1) + Y0

)
∪R0,

where

R0 =
{
(1, i) : 1 ≤ i ≤

∣∣µm(ω1)
∣∣− |Y0|

}
.

Then we write the diagram D(µm+j(ω1)) in the form

D
(
µm+j(ω1)

)
=

(
(0, 1) + Y0

)
∪Rj,

where

Rj =
{
(1, i) : 1 ≤ i ≤

∣∣µm+j(ω1)
∣∣− |Y0|

}
;

that is, it is independent of j except for the length of its first row.
We now choose diagrams D(ω), ω 6= ω1 such that

D(ω) ⊂ D
(
ωm(ω)

)
and a diagram Y such that Y ⊂ Y0. These diagrams specify uniquely the irre-
ducible representation µ ∈ G(m+ i)∧ given by

D
(
µ(ω)

)
=

{
D(ω) ω 6= ω1,

((0, 1) + Y ) ∪R ω = ω1,

where R = {(1, α) : 1 ≤ α ≤ k} and k = m + i − |Y | −
∑

{|D(ω)| : ω 6= ω1}.
Then the set Xm+i ⊂ G(m+ i)∧ is the collection of all such µ ∈ G(m+ i)∧. It is
straightforward to verify that these sets satisfy the above properties (1)–(3). Since
T̃ is a faithful irreducible representation of AJ , we identify that the diagrams for
J are those for a tame ideal. �

Corollary 3.6. Let T1 and T2 be irreducible tame representations of G. Then T1

and T2 are unitarily equivalent if and only if Ker(T̃1) = Ker(T̃2).

Corollary 3.7. Every irreducible tame representation T is unitarily equivalent
to a direct limit lim→ Tn of irreducible representations Tn ∈ G(n)∧.

Remark 3.8. By construction, the cardinality of the collection of tame primitive

ideals is countable since they are uniquely determined by Â-tuples of (finite)
diagrams. In turn, there are only countably many distinct unitary equivalence
classes of tame irreducible representations of G.

By [3], the finite-rank primitive quotients of C∗(G) are all postliminary. This
is not true for general C∗-algebras. It would be interesting to have a deeper
group-theoretic understanding of this relationship.
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Proposition 3.9. Every tame representation T of G decomposes uniquely as a
direct sum of irreducible tame representations; that is, let T be the collection of
the unitary equivalence classes of tame irreducible representations. Then

T '
⊕

{nττ : τ ∈ T },

where the multiplicity of τ in T is unique.

Proof. The proof in [2, p. 385] applies word for word here since the cardinality
of the set of equivalence classes of the irreducible tame representations is count-
able. �

4. Induced representation realization

In this section, we show that the tame irreducible representations of G can
be realized as induced representations just as the case for the infinite symmetric

group (see [8]). Let (D(ω)) be an Â-tuple, and set m =
∑

|D(ω)|. Correspond-
ing to (D(ω)) there are two objects: λ ∈ G(m)∧ and a primitive tame ideal J .
Consider the subgroup G(n) of G with m < n. For the sake of notation, set
K = G(m) × Gm(∞) ⊂ G and K(n) = G(n) ∩K. We can extend λ trivially to
an irreducible representation to either K or K(n) by λ� 1, where 1 is the trivial
representation of either K or K(n). Let

T = IndG
K(λ� 1), Tn = Ind

G(n)
K(n)(λ� 1);

that is, Tn = λ◦1 (induction product) in the notation of Proposition 3.1. We will
identify the representation spaces H(λ�1) and H(λ) so the representation space
H(Tλ) consists of all functions f : G → H(λ) such that f(gk) = (λ � 1)(k)−1 =
λ(k′)−1f(g), where k = k′k′′, k′ ∈ G(m) and k′′ ∈ Gm(∞), and satisfies the
L2-condition

∑
‖f(ġ)‖2H(λ) (sum over the cosets ġ = gK). This is similarly the

case for H(Tn): f0 : G(n) → H(λ) such that f0(g0k0) = λ(k′
0)

−1f0(g0), where
g0 ∈ G(n), k0 ∈ K(n), and k0 = k′

0k
′′
0 , where k′

0 ∈ G(m) and k′′
0 ∈ Gm(n).

A function f0 ∈ H(Tn) has a unique extension to f̃0 ∈ H(T ):

f̃0(x) =

{
f0(g0k

′), x = g0k, g0 ∈ G(n), k = k′k′′, k′ ∈ G(m), k′′ ∈ Gm(∞),

0 otherwise.

It is straightforward to check that f̃0 lies in H(T ) and the L2-norm is preserved.
We conclude that the induced representation T is the direct limit of Tn. An
important consequence of the direct limit form of T is that it allows us to find
the primitive ideal corresponding to T by Proposition 3.1. We summarize this
discussion.

Proposition 4.1. Let λ ∈ G(m)∧. Then the induced representation

T = IndG
G(m)×Gm(∞)(λ� 1)

is an irreducible tame representation of G with tame primitive ideal Ker(T̃ ) = J

given by DJ,T (ω) = λ(ω) for ω ∈ Â.
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The induced representation T can be studied directly using the results of [7,
Theorems 1, 2] to deduce their irreducibility and their equivalence. The classifi-
cation of the irreducible representations of G is consistent with Mackey’s results
on semidirect products; unfortunately, they did not apply since G is not locally
compact.
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