Ann. Funct. Anal. 10 (2019), no. 1, 72-80
https://doi.org/10.1215/20088752-2018-0009
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

# CYCLIC WEIGHTED SHIFT MATRIX WITH REVERSIBLE WEIGHTS 

PENG-RUEI HUANG ${ }^{1 *}$ and HIROSHI NAKAZATO ${ }^{2}$

Communicated by I. M. Spitkovsky


#### Abstract

We characterize a class of matrices that is unitarily similar to a complex symmetric matrix via the discrete Fourier transform.


## 1. Introduction

The numerical range $W(A)$ of an $n \times n$ matrix $A$ is defined as

$$
W(A)=\left\{\xi^{*} A \xi: \xi \in \mathbb{C}^{n}, \xi^{*} \xi=1\right\} .
$$

Toeplitz introduced the compact set $W(A)$, and Hausdorff proved its convexity. Kippenhahn developed a birational algebraic-geometric method to study the set $W(A)$. He introduced a real ternary homogeneous form

$$
F_{A}(x, y, z)=\operatorname{det}\left(x \Re(A)+y \Im(A)+z I_{n}\right),
$$

where $\Re(A)=\left(A+A^{*}\right) / 2, \Im(A)=\left(A-A^{*}\right) /(2 i)$ for the conjugate transpose $A^{*}$ of $A$. He showed that the form $F_{A}$ completely determines the range $W(A)$. In particular, he showed that the convex hull of the points $z=x_{0}+i y_{0}$ (with $\left.\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}\right)$, for which the line $x_{0} x+y_{0} y+1=0$ is a tangent of the real affine curve $F_{A}(x, y, 1)=0$ at some point, coincides with the range $W(A)$. The real form $F_{A}(x, y, z)$ satisfies $F_{A}(0,0,1)=1$, and every solution of the equation $F_{A}\left(x_{1}, y_{1}, z\right)=0$ in $z$ is real for every $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$. Recently, Plaumann and

[^0]Vinzant [13] proved that a ternary form $F(x, y, z)$ possessing the above property is expressed as

$$
F(x, y, z)=\operatorname{det}\left(x H_{1}+y H_{2}+z I_{n}\right)
$$

by using some real Hermitian matrices $H_{1}, H_{2}$. Their proof is rather elementary. Lentzos and Pasley [11] proved that the matrices $H_{1}+i H_{2}$ can be taken as a cyclic weighted shift matrix if the hyperbolic form $F$ is weakly circular invariant. A strict assertion for an arbitrary hyperbolic form

$$
F(x, y, z)=\operatorname{det}\left(x S_{1}+y S_{2}+z I_{n}\right)
$$

has been proved by Helton and Vinnikov in [10]. Using the result in [10], Helton and Spitkovsky [9] proved that the numerical range $W(A)$ of an arbitrary $n \times n$ matrix $A$ has some $n \times n$ complex symmetric matrix $S$ satisfying $W(A)=W(S)$. These results provide new motivation for considering the following question: What matrix $A$ is unitarily similar to a complex symmetric matrix? In particular, what cyclic weighted shift matrix is unitarily similar to a symmetric matrix? In addition, complex symmetric matrices or operators have been widely studied over the past decade (see [1], [6], [7]). Chien, Liu, Nakazato, and Tam [4] recently provided some unitary matrices which uniformly turn Toeplitz matrices into symmetric matrices. We wish to provide another class of matrices satisfying a similar property.

An $n \times n$ matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ with the entries $a_{12}=w_{1}, a_{23}=w_{2}, \ldots, a_{n-1, n}=$ $w_{n-1}, a_{n, 1}=w_{n}, a_{i j}=0$ for $(i, j)$ other than $(i, j)=(1,2), \ldots,(n-1, n),(n, 1)$ is called a weighted shift matrix. It is given by

$$
\left[\begin{array}{l|lllll} 
& w_{1} & & & &  \tag{1.1}\\
& & w_{2} & & & \\
0 & & & w_{3} & & \\
& & & & \ddots & \\
& & & & & w_{n-1} \\
\hline w_{n} & & & 0 & &
\end{array}\right]
$$

where the $w_{j}$ 's are called weights. Various interesting properties are known for weighted shift matrices (see [8], [14]). As it was shown in [5], the weighted shift matrix

$$
\left[\begin{array}{lll}
0 & 8 & 0 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

is not unitarily similar to a complex symmetric matrix.
The characteristic polynomial of a weighted shift matrix is given by

$$
\lambda^{n}-w_{1} w_{2} \cdots w_{n}
$$

Hence if none of the $w_{j}$ 's vanish, then the weighted shift matrix is similar to a diagonal matrix

$$
\left(w_{1} w_{2} \cdots w_{n}\right)^{1 / n} \operatorname{diag}\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right)
$$

by an invertible matrix $g \in \operatorname{GL}(n: \mathbb{C})$, where $\left(w_{1} w_{2} \cdots w_{n}\right)^{1 / n}$ is one of the $n$th root of $w_{1} w_{2} \cdots w_{n}$ in the field $\mathbb{C}$ and $\omega=\exp (2 \pi \sqrt{-1} / n)$. In the case where one of the $w_{j}$ 's vanishes, the weighted shift matrix $S$ is nilpotent. So various studies of weighted shift matrices are usually based on the different methods according to whether $w_{1} w_{2} \cdots w_{n} \neq 0$ or $w_{1} w_{2} \cdots w_{n}=0$. However, the method used in this article does not need the assumption $w_{1} w_{2} \cdots w_{n} \neq 0$. A weighted shift matrix satisfying this condition is called cyclic. A weight sequence $W=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is called reversible if $w_{n-k+1}=w_{k}$ for $k=1,2, \ldots, n$. We mainly treat the matrix (1.1) with reversible weights.

## 2. Main result

The Fourier transform $\tilde{A}$ of an $n \times n$ matrix $A$ is defined as $U^{*} A U$, where $U$ is the $n \times n$ unitary matrix defined by

$$
U=\frac{1}{\sqrt{n}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdot & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdot & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdot & \omega^{2(n-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdot & \omega^{3(n-1)} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdot & \omega^{(n-1)^{2}}
\end{array}\right]
$$

where $\omega=\exp (2 \pi \sqrt{-1} / n)$. The $(k, \ell)$-entry $b_{k \ell}$ of the Fourier transform $B=\tilde{A}$ of an $n \times n$ matrix $A=\left(a_{p q}\right)$ is given by

$$
\tilde{b}_{k \ell}=n b_{k \ell}=\sum_{p, q=1}^{n} \omega^{-(k-1)(p-1)} \omega^{(\ell-1)(q-1)} a_{p, q}
$$

We present our main theorem.
Theorem 2.1. Let $A=\left(a_{p q}\right)$ be an $n \times n$ complex matrix. Then the Fourier transform $B=U^{*} A U$ of $A$ is a complex symmetric matrix if and only if $a_{1, k+1}=$ $a_{n-k+1,1}$ and $a_{1+k, 1+\ell}=a_{n+1-\ell, n+1-k}$ for all $k, \ell=1,2, \ldots, n-1$. That is,

$$
A=\left[\begin{array}{c|ccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\hline a_{1 n} & & & \\
\vdots & & \tilde{A} & \\
a_{12} & & &
\end{array}\right]
$$

where $\tilde{A}$ is an $(n-1) \times(n-1)$ complex matrix which is symmetric with respect to the main skew-diagonal line.

For the $5 \times 5$ case, $A$ is of the following form:

$$
A=\left[\begin{array}{l|llll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline a_{15} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{14} & a_{32} & a_{33} & a_{34} & a_{24} \\
a_{13} & a_{42} & a_{43} & a_{33} & a_{23} \\
a_{12} & a_{52} & a_{42} & a_{32} & a_{22}
\end{array}\right] .
$$

Proof. Suppose that $B=U^{*} A U$ is a complex symmetric matrix. Note that $A=$ $\left(a_{p q}\right)$ can be divided by the following:

$$
\sum_{\substack{q-p \equiv 1 \\ \bmod n}}\left(a_{p q}\right)+\sum_{\substack{q-p \equiv 2 \\ \bmod n}}\left(a_{p q}\right)+\cdots+\sum_{\substack{q-p \equiv n \\ \bmod n}}\left(a_{p q}\right) .
$$

For instance, when $n=4, A$ can be divided by

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & a_{12} & 0 & 0 \\
0 & 0 & a_{23} & 0 \\
0 & 0 & 0 & a_{34} \\
a_{41} & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & a_{13} & 0 \\
0 & 0 & 0 & a_{24} \\
a_{13} & 0 & 0 & 0 \\
0 & a_{24} & 0 & 0
\end{array}\right]} \\
& +\left[\begin{array}{cccc}
0 & 0 & 0 & a_{14} \\
a_{21} & 0 & 0 & 0 \\
0 & a_{32} & 0 & 0 \\
0 & 0 & a_{43} & 0
\end{array}\right]+\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & a_{33} & 0 \\
0 & 0 & 0 & a_{44}
\end{array}\right] .
\end{aligned}
$$

Fix $m=1, \ldots, n$, and let $b_{i j}^{(m)}$ be the $(i, j)$-entry of $\left(a_{p q}\right)$ under the discrete Fourier transform, where $m$ satisfies $q-p \equiv m(\bmod n)$. Therefore,

$$
\begin{aligned}
& b_{i j}^{(m)}=\frac{1}{n}\left(U^{*}\right)_{i *}
\end{aligned}
$$

$$
\begin{aligned}
& \times U_{* j} \\
& =\frac{\omega^{m(j-1)}}{n}\left(a_{1, m+1}+a_{2, m+2} \omega^{(j-i)}+\cdots+a_{n-m, m} \omega^{(n-m+1)(j-i)}\right. \\
& \left.+a_{n-m+1,1} \omega^{(n-m)(j-i)}+a_{n-m+2,2} \omega^{(n-m-1)(j-i)}+\cdots+a_{n-m, n} \omega^{(n-1)(j-i)}\right) \\
& =\left(\frac{\omega^{m(j-1)}}{n} U\left[\begin{array}{c}
a_{1, m+1} \\
a_{2, m+2} \\
\vdots \\
a_{n-m, m} \\
a_{n-m+1,1} \\
a_{n-m+2,2} \\
\vdots \\
a_{n-m, n}
\end{array}\right]\right)_{j-i+1},
\end{aligned}
$$

and we have the $(j-i+1)$ th component of the above vector, where

$$
\left(U^{*}\right)_{i *}=\left[1, \omega^{-(i-1)}, \omega^{-2(i-1)}, \ldots, \omega^{-(n-1)(i-1)}\right]
$$

and

$$
U_{* j}=\left[\begin{array}{c}
1 \\
\omega^{j-1} \\
\vdots \\
\omega^{(n-1)(j-1)}
\end{array}\right] .
$$

Similarly,

$$
\begin{aligned}
b_{j i}^{(m)}= & \frac{\omega^{m(j-1)}}{n}\left(a_{n-m+1,1}+a_{n-m, n} \omega^{(j-i)}+\cdots+a_{2, m+2} \omega^{(n-m+1)(j-i)}\right. \\
& \left.+a_{1, m+1} \omega^{(n-m)(j-i)}+a_{n, m} \omega^{(n-m-1)(j-i)}+\cdots+a_{n-m+2,2} \omega^{(n-1)(j-i)}\right) \\
= & \left.\left(\begin{array}{c}
a_{n-m+1,1} \\
a_{n-m, n} \\
\vdots \\
a_{2, m+2} \\
a_{1, m+1} \\
a_{n, m} \\
\vdots \\
a_{n-m+2,2}
\end{array}\right]\right)_{j-i+1}
\end{aligned}
$$

Let $A_{m}$ be the following column vector, and let $A_{m}(j)$ be the $j$ th component of this vector. We have

$$
A_{m}=U\left(\left[\begin{array}{c}
a_{1, m+1}  \tag{2.1}\\
a_{2, m+2} \\
\vdots \\
a_{n-m, m} \\
a_{n-m+1,1} \\
a_{n-m+2,2} \\
\vdots \\
a_{n-m, n}
\end{array}\right]-\left[\begin{array}{c}
a_{n-m+1,1} \\
a_{n-m, n} \\
\vdots \\
a_{2, m+2} \\
a_{1, m+1} \\
a_{n, m} \\
\vdots \\
a_{n-m+2,2}
\end{array}\right]\right)=U\left[\begin{array}{c}
a_{1, m+1}-a_{n-m+1,1} \\
a_{2, m+2}-a_{n-m, n} \\
\vdots \\
a_{n-m, m}-a_{2, m+2} \\
a_{n-m+1,1}-a_{1, m+1} \\
a_{n-m+2,2}-a_{n, m} \\
\vdots \\
a_{n-m, n}-a_{n-m+2,2}
\end{array}\right] .
$$

Note that if $j-i+1<0$, then we can choose $j-i+1$ to be $k$, where $k \in$ $\{1,2, \ldots, n\}$ which satisfies $j-i+1 \equiv k(\bmod n)$. Applying the above argument, we have

$$
\begin{equation*}
b_{i j}-b_{j i}=\sum_{m=1}^{n} \frac{\omega^{m(j-1)}}{n} A_{m}(j-i+1) . \tag{2.2}
\end{equation*}
$$

Hence, if $a_{1, k+1}=a_{n-k+1,1}$ and $a_{1+k, 1+\ell}=a_{n+1-\ell, n+1-k}$ for all $k, \ell=1,2, \ldots, n-1$, then $A_{m}(j)=0$ for all $j, m=1,2, \ldots, n$. So $b_{i j}-b_{j i}=0$, and this establishes the "if" part.

On the other hand, if $B$ is a complex symmetric matrix, then, since $\omega^{j-1} \neq$ and $n \neq 0$, (2.2) becomes

$$
\begin{equation*}
0=\sum_{m=1}^{n} \frac{\omega^{(m-1)(j-1)}}{\sqrt{n}} A_{m}(j-i+1) \tag{2.3}
\end{equation*}
$$

We fix $k \in\{1,2, \ldots, n\}$ with $j-i+1 \equiv k(\bmod n)$ for all $i, j=1,2, \ldots, n$. Using both that $j$ varies from 1 to $n$ and (2.3), we have that

$$
U\left[\begin{array}{c}
A_{1}(k) \\
A_{2}(k) \\
\vdots \\
A_{n}(k)
\end{array}\right]
$$

is a zero vector. This implies that $A_{m}(k)=0$ for all $k, m=1,2, \ldots, n$ as $U$ is invertible. Again, using the invertibility of $U$ in (2.1), we have that

$$
\left[\begin{array}{c}
a_{1, m+1} \\
a_{2, m+2} \\
\vdots \\
a_{n-m, m} \\
a_{n-m+1,1} \\
a_{n-m+2,2} \\
\vdots \\
a_{n-m, n}
\end{array}\right]-\left[\begin{array}{c}
a_{n-m+1,1} \\
a_{n-m, n} \\
\vdots \\
a_{2, m+2} \\
a_{1, m+1} \\
a_{n, m} \\
\vdots \\
a_{n-m+2,2}
\end{array}\right]
$$

is a zero vector for all $k, m=1,2, \ldots, n$. So $a_{1, k+1}=a_{n-k+1,1}$ and $a_{1+k, 1+\ell}=$ $a_{n+1-\ell, n+1-k}$ for all $k, \ell=1,2, \ldots, n-1$. This establishes the "only if" part and completes the proof.

The following result can be deduced easily from Theorem 2.1.
Corollary 2.2. A weighted shift matrix with reversible weights is unitarily similar to a complex symmetric matrix.

We provide some examples of the matrix $A=\left(a_{p q}\right)$ satisfying Theorem 2.1, where $m$ satisfies $q-p \equiv m(\bmod n)$.

Example 2.3. When $n=6, m=2$,

$$
A=\left[\begin{array}{cccccc}
0 & 0 & w_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & w_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & w_{2} \\
w_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & w_{4} & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example 2.4. When $n=6, m=3$,

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & w_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & w_{2} \\
w_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & w_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & w_{3} & 0 & 0 & 0
\end{array}\right]
$$

Example 2.5. When $n=6, m=1$,

$$
A=\left[\begin{array}{cccccc}
0 & w_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & w_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & w_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & w_{2} \\
w_{1} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example 2.6. When $n=7, m=1$,

$$
A=\left[\begin{array}{ccccccc}
0 & w_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & w_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & w_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & w_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & w_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & w_{2} \\
w_{1} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example 2.7. When $n=5, m=5$,

$$
A=\left[\begin{array}{ccccc}
w_{1} & 0 & 0 & 0 & 0 \\
0 & w_{2} & 0 & 0 & 0 \\
0 & 0 & w_{3} & 0 & 0 \\
0 & 0 & 0 & w_{3} & 0 \\
0 & 0 & 0 & 0 & w_{2}
\end{array}\right]
$$

The authors wonder if weighted shift matrices are essentially determined by the ternary form $F_{W}(x, y, z)$. Such a hypothesis is related with the inverse problem of the construction of a matrix $W$ from the $F_{W}(x, y, z)$. The formula obtained by Helton and Vinnikov [10] and by Plaumann, Sturmfels, and Vinzant [12] provides a strong tool to treat this subject (see also [3]). The following result would be the first step of our study along this line.

Corollary 2.8. Let $W$ be an $n \times n$ weighted cyclic shift matrix with reversible weight $\omega_{1}, \omega_{2}, \ldots, \omega_{2}, \omega_{1}$, and let $n$ be odd. Suppose that the curve $F_{W}(x, y, z)=0$ has no singular points and that $\Im(W)$ has $n$ distinct nonzero eigenvalues $\beta_{1}, \beta_{2}$, $\ldots, \beta_{n}$. Then there exists a real symmetric matrix $S_{1}$ satisfying

$$
\operatorname{det}\left(x S_{1}+y \operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)+z I_{n}\right)=F_{W}(x, y, z)
$$

where $S_{1}$ is provided by the Helton-Vinnikov theorem (see [10, Theorem 4]) and $S_{1}+i \operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ is unitarily similar to $W$.

Proof. By Theorem 2.1, the matrix $W$ is unitarily similar to a complex symmetric matrix. Under this condition and the assumption that the curve $F_{W}(x, y, z)=0$ has no singular points, Theorem 7 of [12] guarantees that there is one pair of real symmetric matrices $S_{1}$ and $S_{2}$ satisfying

$$
\operatorname{det}\left(x S_{1}+y S_{2}+z I_{n}\right)=\operatorname{det}\left(x \Re(W)+y \Im(W)+z I_{n}\right)
$$

and that $S_{1}+i S_{2}$ is unitarily similar to $W$. To apply this theorem, we assume that one standard condition $\Im(W)$ has $n$ distinct nonzero roots.

Remark 2.9. The condition that " $n$ be odd" in the above corollary is crucial. In the case where $n$ is even, the curve $F_{W}(x, y, z)$ has singular points provided that the weights of $W$ are reversible (see [2]).

Acknowledgments. Nakazato's work was partially supported by Japan Society for the Promotion of Science grant 15K04890.

## References

1. L. Balayan and S. R. Garcia, Unitary equivalence to a complex symmetric matrix: Geometric criteria, Oper. Matrices 4 (2010), no. 1, 53-76. Zbl 1194.15011. MR2655004. DOI 10.7153/ oam-04-02. 73
2. M. T. Chien and H. Nakazato, Singular points of cyclic weighted shift matrices, Linear Algebra Appl. 439 (2013), 4090-4100. Zbl 1283.15117. MR3133478. DOI 10.1016/ j.laa.2013.10.012. 79
3. M. T. Chien and H. Nakazato, Computing the determinantal representations of hyperbolic forms, Czechoslovak Math. J. 66 (2016), no. 3, 633-651. Zbl 06644024. MR3556858. DOI 10.1007/s10587-016-0283-9. 78
4. M. T. Chien, J. Liu, H. Nakazato, and T. Y. Tam, Toeplitz matrices are unitarily similar to symmetric matrices, Linear Multilinear Algebra 65 (2017), no. 10, 2131-2144. Zbl 1387.15030. MR3733403. DOI 10.1080/03081087.2017.1330865. 73
5. M. T. Chien and H. Nakazato, Matrices unitarily similar to symmetric matrices, preprint, http://www.wseas.us/e-library/conferences/2015/Budapest/AMATH/ AMATH-11.pdf (accessed 20 November 2018). 73
6. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358, no. 3 (2006), 1285-1315. Zbl 1087.30031. MR2187654. DOI 10.1090/ S0002-9947-05-03742-6. 73
7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, II, Trans. Amer. Math. Soc. 359, no. 8 (2007), 3913-3931. Zbl 1123.47030. MR2302518. DOI 10.1090/ S0002-9947-07-04213-4. 73
8. H. L. Gau, M. C. Tsai, and H. C. Wang, Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges, Linear Algebra Appl. 438 (2013), no. 1, 498-513. Zbl 1261.15031. MR2993396. DOI 10.1016/j.laa.2012.08.018. 73
9. J. W. Helton and I. M. Spitkovsky, The possible shapes of numerical ranges, Oper. Matrices 6 (2012), no. 3, 607-611. Zbl 1270.15014. MR2987030. DOI 10.7153/oam-06-41. 73
10. J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007), no. 5, 654-674. Zbl 1116.15016. MR2292953. DOI 10.1002/ сра.20155. 73, 78
11. K. Lentzos and L. F. Pasley, Determinantal representations of invariant hyperbolic plane curves, Linear Algebra Appl. 556 (2018), 108-130. Zbl 06929126. MR3842575. DOI 10.1016/j.laa.2018.06.033. 73
12. D. Plaumann, B. Sturmfels, and C. Vinzant, "Computing linear matrix representations of Helton-Vinnikov curves" in Mathematical Methods in Systems, Optimization, and Control, Oper. Theory Adv. Appl. 222, Birkhäuser, Basel, 2012, 259-277. Zbl 1328.14093. MR2962788. DOI 10.1007/978-3-0348-0411-0_19. 78, 79
13. D. Plaumann and C. Vinzant, Determinantal representations of hyperbolic plane curves: An elementary approach, J. Symbolic Comput. 57 (2013), 48-60. Zbl 1284.14066. MR3066450. DOI 10.1016/j.jsc.2013.05.004. 73
14. M. C. Tsai and P. Y. Wu, Numerical ranges of weighted shift matrices, Linear Algebra Appl. 435 (2011), no. 2, 243-254. Zbl 1214.15015. MR2782777. DOI 10.1016/j.laa.2011.01.025. 73
${ }^{1}$ Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

E-mail address: h16ds202@hirosaki-u.ac.jp
${ }^{2}$ Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

E-mail address: nakahr@hirosaki-u.ac.jp


[^0]:    Copyright 2019 by the Tusi Mathematical Research Group.
    Received Nov. 14, 2017; Accepted Apr. 6, 2018.
    First published online Jan. 3, 2019.
    *Corresponding author.
    2010 Mathematics Subject Classification. Primary 47A12; Secondary 47B25, 15B57.
    Keywords. discrete Fourier transform, cyclic weighted shift matrix, complex symmetry.

