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CYCLIC WEIGHTED SHIFT MATRIX WITH
REVERSIBLE WEIGHTS
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Abstract. We characterize a class of matrices that is unitarily similar to a
complex symmetric matrix via the discrete Fourier transform.

1. Introduction

The numerical range W (A) of an n× n matrix A is defined as

W (A) = {ξ∗Aξ : ξ ∈ Cn, ξ∗ξ = 1}.

Toeplitz introduced the compact set W (A), and Hausdorff proved its convexity.
Kippenhahn developed a birational algebraic-geometric method to study the set
W (A). He introduced a real ternary homogeneous form

FA(x, y, z) = det
(
x<(A) + y=(A) + zIn

)
,

where <(A) = (A + A∗)/2, =(A) = (A − A∗)/(2i) for the conjugate transpose
A∗ of A. He showed that the form FA completely determines the range W (A).
In particular, he showed that the convex hull of the points z = x0 + iy0 (with
(x0, y0) ∈ R2), for which the line x0x + y0y + 1 = 0 is a tangent of the real
affine curve FA(x, y, 1) = 0 at some point, coincides with the range W (A). The
real form FA(x, y, z) satisfies FA(0, 0, 1) = 1, and every solution of the equation
FA(x1, y1, z) = 0 in z is real for every (x1, y1) ∈ R2. Recently, Plaumann and
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Vinzant [13] proved that a ternary form F (x, y, z) possessing the above property
is expressed as

F (x, y, z) = det(xH1 + yH2 + zIn)

by using some real Hermitian matrices H1, H2. Their proof is rather elementary.
Lentzos and Pasley [11] proved that the matrices H1 + iH2 can be taken as a
cyclic weighted shift matrix if the hyperbolic form F is weakly circular invariant.
A strict assertion for an arbitrary hyperbolic form

F (x, y, z) = det(xS1 + yS2 + zIn)

has been proved by Helton and Vinnikov in [10]. Using the result in [10], Helton
and Spitkovsky [9] proved that the numerical range W (A) of an arbitrary n× n
matrix A has some n×n complex symmetric matrix S satisfying W (A) = W (S).
These results provide new motivation for considering the following question: What
matrix A is unitarily similar to a complex symmetric matrix? In particular, what
cyclic weighted shift matrix is unitarily similar to a symmetric matrix? In addi-
tion, complex symmetric matrices or operators have been widely studied over the
past decade (see [1], [6], [7]). Chien, Liu, Nakazato, and Tam [4] recently pro-
vided some unitary matrices which uniformly turn Toeplitz matrices into sym-
metric matrices. We wish to provide another class of matrices satisfying a similar
property.

An n×n matrix A = (aij)
n
i,j=1 with the entries a12 = w1, a23 = w2, . . . , an−1,n =

wn−1, an,1 = wn, aij = 0 for (i, j) other than (i, j) = (1, 2), . . . , (n− 1, n), (n, 1) is
called a weighted shift matrix. It is given by

w1

w2

0 w3

. . .
wn−1

wn 0

 , (1.1)

where the wj’s are called weights. Various interesting properties are known for
weighted shift matrices (see [8], [14]). As it was shown in [5], the weighted shift
matrix 0 8 0

0 0 6
0 0 0


is not unitarily similar to a complex symmetric matrix.

The characteristic polynomial of a weighted shift matrix is given by

λn − w1w2 · · ·wn.

Hence if none of the wj’s vanish, then the weighted shift matrix is similar to a
diagonal matrix

(w1w2 · · ·wn)
1/n diag(1, ω, ω2, . . . , ωn−1),
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by an invertible matrix g ∈ GL(n : C), where (w1w2 · · ·wn)
1/n is one of the nth

root of w1w2 · · ·wn in the field C and ω = exp(2π
√
−1/n). In the case where one

of the wj’s vanishes, the weighted shift matrix S is nilpotent. So various studies
of weighted shift matrices are usually based on the different methods according
to whether w1w2 · · ·wn 6= 0 or w1w2 · · ·wn = 0. However, the method used in this
article does not need the assumption w1w2 · · ·wn 6= 0. A weighted shift matrix
satisfying this condition is called cyclic. A weight sequence W = (w1, w2, . . . , wn)
is called reversible if wn−k+1 = wk for k = 1, 2, . . . , n. We mainly treat the matrix
(1.1) with reversible weights.

2. Main result

The Fourier transform Ã of an n× n matrix A is defined as U∗AU , where U is
the n× n unitary matrix defined by

U =
1√
n


1 1 1 1 · 1
1 ω ω2 ω3 · ωn−1

1 ω2 ω4 ω6 · ω2(n−1)

1 ω3 ω6 ω9 · ω3(n−1)

· · · · · ·
1 ωn−1 ω2(n−1) ω3(n−1) · ω(n−1)2

 ,

where ω = exp(2π
√
−1/n). The (k, `)-entry bk` of the Fourier transform B = Ã

of an n× n matrix A = (apq) is given by

b̃k` = nbk` =
n∑

p,q=1

ω−(k−1)(p−1)ω(`−1)(q−1)ap,q.

We present our main theorem.

Theorem 2.1. Let A = (apq) be an n × n complex matrix. Then the Fourier
transform B = U∗AU of A is a complex symmetric matrix if and only if a1,k+1 =
an−k+1,1 and a1+k,1+` = an+1−`,n+1−k for all k, ` = 1, 2, . . . , n− 1. That is,

A =


a11 a12 · · · a1n
a1n
... Ã
a12

 ,

where Ã is an (n− 1)× (n− 1) complex matrix which is symmetric with respect
to the main skew-diagonal line.

For the 5× 5 case, A is of the following form:

A =


a11 a12 a13 a14 a15
a15 a22 a23 a24 a25
a14 a32 a33 a34 a24
a13 a42 a43 a33 a23
a12 a52 a42 a32 a22

 .
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Proof. Suppose that B = U∗AU is a complex symmetric matrix. Note that A =
(apq) can be divided by the following:∑

q−p≡1
mod n

(apq) +
∑

q−p≡2
mod n

(apq) + · · ·+
∑

q−p≡n
mod n

(apq).

For instance, when n = 4, A can be divided by
0 a12 0 0
0 0 a23 0
0 0 0 a34
a41 0 0 0

+


0 0 a13 0
0 0 0 a24
a13 0 0 0
0 a24 0 0



+


0 0 0 a14
a21 0 0 0
0 a32 0 0
0 0 a43 0

+


a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

 .

Fixm = 1, . . . , n, and let b
(m)
ij be the (i, j)-entry of (apq) under the discrete Fourier

transform, where m satisfies q − p ≡ m (mod n). Therefore,

b
(m)
ij =

1

n
(U∗)i∗

×



a1,m+1

a2,m+2

. . .
an−m,n

an−m+1,1

an−m+2,2

. . .
an,m


× U∗j

=
ωm(j−1)

n
(a1,m+1 + a2,m+2ω

(j−i) + · · ·+ an−m,mω
(n−m+1)(j−i)

+ an−m+1,1ω
(n−m)(j−i) + an−m+2,2ω

(n−m−1)(j−i) + · · ·+ an−m,nω
(n−1)(j−i))

=


ωm(j−1)

n
U



a1,m+1

a2,m+2
...

an−m,m

an−m+1,1

an−m+2,2
...

an−m,n




j−i+1

,
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and we have the (j − i+ 1)th component of the above vector, where

(U∗)i∗ = [1, ω−(i−1), ω−2(i−1), . . . , ω−(n−1)(i−1)]

and

U∗j =


1

ωj−1

...
ω(n−1)(j−1)

 .

Similarly,

b
(m)
ji =

ωm(j−1)

n
(an−m+1,1 + an−m,nω

(j−i) + · · ·+ a2,m+2ω
(n−m+1)(j−i)

+ a1,m+1ω
(n−m)(j−i) + an,mω

(n−m−1)(j−i) + · · ·+ an−m+2,2ω
(n−1)(j−i))

=


ωm(j−1)

n
U



an−m+1,1

an−m,n
...

a2,m+2

a1,m+1

an,m
...

an−m+2,2




j−i+1

.

Let Am be the following column vector, and let Am(j) be the jth component of
this vector. We have

Am = U





a1,m+1

a2,m+2
...

an−m,m

an−m+1,1

an−m+2,2
...

an−m,n


−



an−m+1,1

an−m,n
...

a2,m+2

a1,m+1

an,m
...

an−m+2,2




= U



a1,m+1 − an−m+1,1

a2,m+2 − an−m,n
...

an−m,m − a2,m+2

an−m+1,1 − a1,m+1

an−m+2,2 − an,m
...

an−m,n − an−m+2,2


. (2.1)

Note that if j − i + 1 < 0, then we can choose j − i + 1 to be k, where k ∈
{1, 2, . . . , n} which satisfies j− i+1 ≡ k (mod n). Applying the above argument,
we have

bij − bji =
n∑

m=1

ωm(j−1)

n
Am(j − i+ 1). (2.2)

Hence, if a1,k+1 = an−k+1,1 and a1+k,1+` = an+1−`,n+1−k for all k, ` = 1, 2, . . . , n−1,
then Am(j) = 0 for all j,m = 1, 2, . . . , n. So bij − bji = 0, and this establishes the
“if” part.
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On the other hand, if B is a complex symmetric matrix, then, since ωj−1 6=
and n 6= 0, (2.2) becomes

0 =
n∑

m=1

ω(m−1)(j−1)

√
n

Am(j − i+ 1). (2.3)

We fix k ∈ {1, 2, . . . , n} with j− i+1 ≡ k (mod n) for all i, j = 1, 2, . . . , n. Using
both that j varies from 1 to n and (2.3), we have that

U


A1(k)
A2(k)

...
An(k)


is a zero vector. This implies that Am(k) = 0 for all k,m = 1, 2, . . . , n as U is
invertible. Again, using the invertibility of U in (2.1), we have that

a1,m+1

a2,m+2
...

an−m,m

an−m+1,1

an−m+2,2
...

an−m,n


−



an−m+1,1

an−m,n
...

a2,m+2

a1,m+1

an,m
...

an−m+2,2


is a zero vector for all k,m = 1, 2, . . . , n. So a1,k+1 = an−k+1,1 and a1+k,1+` =
an+1−`,n+1−k for all k, ` = 1, 2, . . . , n − 1. This establishes the “only if” part and
completes the proof. �

The following result can be deduced easily from Theorem 2.1.

Corollary 2.2. A weighted shift matrix with reversible weights is unitarily similar
to a complex symmetric matrix.

We provide some examples of the matrix A = (apq) satisfying Theorem 2.1,
where m satisfies q − p ≡ m (mod n).

Example 2.3. When n = 6, m = 2,

A =


0 0 w1 0 0 0
0 0 0 w2 0 0
0 0 0 0 w3 0
0 0 0 0 0 w2

w1 0 0 0 0 0
0 w4 0 0 0 0

 .
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Example 2.4. When n = 6, m = 3,

A =


0 0 0 w1 0 0
0 0 0 0 w2 0
0 0 0 0 0 w2

w1 0 0 0 0 0
0 w3 0 0 0 0
0 0 w3 0 0 0

 .

Example 2.5. When n = 6, m = 1,

A =


0 w1 0 0 0 0
0 0 w2 0 0 0
0 0 0 w3 0 0
0 0 0 0 w3 0
0 0 0 0 0 w2

w1 0 0 0 0 0

 .

Example 2.6. When n = 7, m = 1,

A =



0 w1 0 0 0 0 0
0 0 w2 0 0 0 0
0 0 0 w3 0 0 0
0 0 0 0 w4 0 0
0 0 0 0 0 w3 0
0 0 0 0 0 0 w2

w1 0 0 0 0 0 0


.

Example 2.7. When n = 5, m = 5,

A =


w1 0 0 0 0
0 w2 0 0 0
0 0 w3 0 0
0 0 0 w3 0
0 0 0 0 w2

 .

The authors wonder if weighted shift matrices are essentially determined by the
ternary form FW (x, y, z). Such a hypothesis is related with the inverse problem
of the construction of a matrix W from the FW (x, y, z). The formula obtained by
Helton and Vinnikov [10] and by Plaumann, Sturmfels, and Vinzant [12] provides
a strong tool to treat this subject (see also [3]). The following result would be the
first step of our study along this line.

Corollary 2.8. Let W be an n × n weighted cyclic shift matrix with reversible
weight ω1, ω2, . . . , ω2, ω1, and let n be odd. Suppose that the curve FW (x, y, z) = 0
has no singular points and that =(W ) has n distinct nonzero eigenvalues β1, β2,
. . . , βn. Then there exists a real symmetric matrix S1 satisfying

det
(
xS1 + y diag(β1, β2, . . . , βn) + zIn

)
= FW (x, y, z),

where S1 is provided by the Helton–Vinnikov theorem (see [10, Theorem 4]) and
S1 + i diag(β1, β2, . . . , βn) is unitarily similar to W .
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Proof. By Theorem 2.1, the matrix W is unitarily similar to a complex symmetric
matrix. Under this condition and the assumption that the curve FW (x, y, z) = 0
has no singular points, Theorem 7 of [12] guarantees that there is one pair of real
symmetric matrices S1 and S2 satisfying

det(xS1 + yS2 + zIn) = det
(
x<(W ) + y=(W ) + zIn

)
and that S1 + iS2 is unitarily similar to W . To apply this theorem, we assume
that one standard condition =(W ) has n distinct nonzero roots. �

Remark 2.9. The condition that “n be odd” in the above corollary is crucial. In
the case where n is even, the curve FW (x, y, z) has singular points provided that
the weights of W are reversible (see [2]).

Acknowledgments. Nakazato’s work was partially supported by Japan Society
for the Promotion of Science grant 15K04890.

References

1. L. Balayan and S. R. Garcia, Unitary equivalence to a complex symmetric matrix: Geometric
criteria, Oper. Matrices 4 (2010), no. 1, 53–76. Zbl 1194.15011. MR2655004. DOI 10.7153/
oam-04-02. 73

2. M. T. Chien and H. Nakazato, Singular points of cyclic weighted shift matrices, Lin-
ear Algebra Appl. 439 (2013), 4090–4100. Zbl 1283.15117. MR3133478. DOI 10.1016/
j.laa.2013.10.012. 79

3. M. T. Chien and H. Nakazato, Computing the determinantal representations of hyperbolic
forms, Czechoslovak Math. J. 66 (2016), no. 3, 633–651. Zbl 06644024. MR3556858. DOI
10.1007/s10587-016-0283-9. 78

4. M. T. Chien, J. Liu, H. Nakazato, and T. Y. Tam, Toeplitz matrices are unitarily sim-
ilar to symmetric matrices, Linear Multilinear Algebra 65 (2017), no. 10, 2131–2144.
Zbl 1387.15030. MR3733403. DOI 10.1080/03081087.2017.1330865. 73

5. M. T. Chien and H. Nakazato, Matrices unitarily similar to symmetric matri-
ces, preprint, http://www.wseas.us/e-library/conferences/2015/Budapest/AMATH/

AMATH-11.pdf (accessed 20 November 2018). 73
6. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer.

Math. Soc. 358, no. 3 (2006), 1285–1315. Zbl 1087.30031. MR2187654. DOI 10.1090/
S0002-9947-05-03742-6. 73

7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, II, Trans.
Amer. Math. Soc. 359, no. 8 (2007), 3913–3931. Zbl 1123.47030. MR2302518. DOI 10.1090/
S0002-9947-07-04213-4. 73

8. H. L. Gau, M. C. Tsai, and H. C. Wang, Weighted shift matrices: Unitary equivalence,
reducibility and numerical ranges, Linear Algebra Appl. 438 (2013), no. 1, 498–513.
Zbl 1261.15031. MR2993396. DOI 10.1016/j.laa.2012.08.018. 73

9. J. W. Helton and I. M. Spitkovsky, The possible shapes of numerical ranges, Oper. Matrices
6 (2012), no. 3, 607–611. Zbl 1270.15014. MR2987030. DOI 10.7153/oam-06-41. 73

10. J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm.
Pure Appl. Math. 60 (2007), no. 5, 654–674. Zbl 1116.15016. MR2292953. DOI 10.1002/
cpa.20155. 73, 78

11. K. Lentzos and L. F. Pasley, Determinantal representations of invariant hyperbolic plane
curves, Linear Algebra Appl. 556 (2018), 108–130. Zbl 06929126. MR3842575. DOI
10.1016/j.laa.2018.06.033. 73

http://www.emis.de/cgi-bin/MATH-item?1194.15011
http://www.ams.org/mathscinet-getitem?mr=2655004
https://doi.org/10.7153/oam-04-02
https://doi.org/10.7153/oam-04-02
http://www.emis.de/cgi-bin/MATH-item?1283.15117
http://www.ams.org/mathscinet-getitem?mr=3133478
https://doi.org/10.1016/j.laa.2013.10.012
https://doi.org/10.1016/j.laa.2013.10.012
http://www.emis.de/cgi-bin/MATH-item?06644024
http://www.ams.org/mathscinet-getitem?mr=3556858
https://doi.org/10.1007/s10587-016-0283-9
https://doi.org/10.1007/s10587-016-0283-9
http://www.emis.de/cgi-bin/MATH-item?1387.15030
http://www.ams.org/mathscinet-getitem?mr=3733403
https://doi.org/10.1080/03081087.2017.1330865
http://www.wseas.us/e-library/conferences/2015/Budapest/AMATH/AMATH-11.pdf
http://www.wseas.us/e-library/conferences/2015/Budapest/AMATH/AMATH-11.pdf
http://www.emis.de/cgi-bin/MATH-item?1087.30031
http://www.ams.org/mathscinet-getitem?mr=2187654
https://doi.org/10.1090/S0002-9947-05-03742-6
https://doi.org/10.1090/S0002-9947-05-03742-6
http://www.emis.de/cgi-bin/MATH-item?1123.47030
http://www.ams.org/mathscinet-getitem?mr=2302518
https://doi.org/10.1090/S0002-9947-07-04213-4
https://doi.org/10.1090/S0002-9947-07-04213-4
http://www.emis.de/cgi-bin/MATH-item?1261.15031
http://www.ams.org/mathscinet-getitem?mr=2993396
https://doi.org/10.1016/j.laa.2012.08.018
http://www.emis.de/cgi-bin/MATH-item?1270.15014
http://www.ams.org/mathscinet-getitem?mr=2987030
https://doi.org/10.7153/oam-06-41
http://www.emis.de/cgi-bin/MATH-item?1116.15016
http://www.ams.org/mathscinet-getitem?mr=2292953
https://doi.org/10.1002/cpa.20155
https://doi.org/10.1002/cpa.20155
http://www.emis.de/cgi-bin/MATH-item?06929126
http://www.ams.org/mathscinet-getitem?mr=3842575
https://doi.org/10.1016/j.laa.2018.06.033
https://doi.org/10.1016/j.laa.2018.06.033


80 P.-R. HUANG and H. NAKAZATO

12. D. Plaumann, B. Sturmfels, and C. Vinzant, “Computing linear matrix representations
of Helton-Vinnikov curves” in Mathematical Methods in Systems, Optimization, and Con-
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