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Abstract. Let G be a discrete group acting on a unital C∗-algebra A by
∗-automorphisms. We characterize (in terms of the dynamics) when the inclu-
sion A ⊆ A or G has a unique conditional expectation, and when it has a
unique pseudoexpectation in the sense of Pitts; we do likewise for the inclusion
A ⊆ A o G. As an application, we re-prove (and potentially extend) some
known C∗-simplicity results for Aor G.

1. Introduction

Let B be a unital C∗-algebra and let A ⊆ B be a unital C∗-subalgebra, with
1A = 1B. In short, let A ⊆ B be a C∗-inclusion. Recently we have been concerned
with characterizing when a C∗-inclusion admits a unique conditional expectation
and when it admits a unique pseudoexpectation in the sense of Pitts, because
significant structural consequences often ensue in both cases (see [14], [19]). The
present article continues the program, with B equal to the crossed product of A
by a discrete group G.

A conditional expectation for a C∗-inclusion A ⊆ B is a unital completely posi-
tive (UCP) map E : B → A such that E|A = idA. Conditional expectations are
automatically A-bimodular, so that E(ax) = aE(x) and E(xa) = E(x)a when-
ever x ∈ B and a ∈ A. Unfortunately, a C∗-inclusion often admits no conditional
expectations at all.
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In [13], Pitts introduced pseudoexpectations as a substitute for possibly non-
existent conditional expectations. A pseudoexpectation for a C∗-inclusion A ⊆ B
is a UCP map θ : B → I(A) such that θ|A = idA. Here I(A) is Hamana’s injec-
tive envelope of A (discussed in detail below). Every conditional expectation is a
pseudoexpectation, but the converse is false. Just like conditional expectations,
pseudoexpectations are A-bimodular. Unlike conditional expectations, pseudoex-
pectations need not be idempotent. Indeed, if θ : B → I(A) is a pseudoexpec-
tation for A ⊆ B, then the composition θ ◦ θ is typically undefined, since it is
rarely the case that I(A) ⊆ B. Furthermore, pseudoexpectations are difficult to
describe explicitly, since I(A) only admits a concrete description in exceptional
situations.

In spite of their drawbacks, pseudoexpectations enjoy two tremendous technical
advantages over conditional expectations, both related to the fact that I(A) is
injective. First, pseudoexpectations always exist for any C∗-inclusion A ⊆ B.
Indeed, the identity map idA : A → A always has a UCP extension θ : B → I(A),
by injectivity. Second, and more generally, pseudoexpectations always extend.
That is, if θ : B → I(A) is a pseudoexpectation for A ⊆ B, and if B ⊆ C, then
there is a pseudoexpectation θ̃ : C → I(A) for A ⊆ C such that θ̃|B = θ.

In our experience, for the reasons detailed above, it is easier to characterize
when a C∗-inclusion admits a unique pseudoexpectation than to characterize
when it admits a unique (or at most one) conditional expectation. Of course, if
a C∗-inclusion admits a unique pseudoexpectation, then it admits at most one
conditional expectation. So it can be profitable to consider pseudoexpectations,
even if one is ultimately interested in conditional expectations. Moreover, because
having a unique pseudoexpectation is a stronger condition than having at most
one conditional expectation, it usually imposes tougher structural constraints on
the inclusion.

In [14], Pitts and the present author investigated the unique pseudoexpec-
tation property for C∗-inclusions, pursuing two complementary directions. On
the one hand, we related the unique pseudoexpectation property to other struc-
tural properties of the inclusion. For example, we showed that if a C∗-inclusion
admits a unique pseudoexpectation which is faithful, then the inclusion is hered-
itarily essential (see [14, Theorem 3.5]). (A C∗-inclusion A ⊆ B is essential if
every nontrivial ideal J ⊆ B intersects A nontrivially. It is hereditarily essen-
tial if the C∗-inclusion A ⊆ B0 is essential, for every intermediate C∗-algebra
A ⊆ B0 ⊆ B.) On the other hand, in [14] we characterized when various spe-
cial classes of C∗-inclusions admit a unique pseudoexpectation, and in particular,
we showed that if (A, G, α) is a C∗-dynamical system with A Abelian and G
discrete, then the inclusion A ⊆ A or G (reduced crossed product) admits a
unique pseudoexpectation (necessarily a faithful conditional expectation) if and

only if the induced action of G on Â is topologically free (for more details, see
[14, Theorem 4.6]).

In the present paper, we substantially generalize that theorem. For C∗-
dynamical systems (A, G, α) with A arbitrary and G discrete, we characterize
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(in terms of the dynamics) when A ⊆ A or G admits a unique pseudoexpec-
tation, as well as when it admits a unique conditional expectation. There is a
unique pseudoexpectation if and only if the action of G is properly outer (The-
orem 3.5), and there is a unique conditional expectation if and only if G acts
freely (Theorem 3.2). The same statements hold for the inclusion A ⊆ A o G
(full crossed product). If the action of G is properly outer, then G acts freely,
but the converse is false. Thus we can systematically produce C∗-inclusions with
a unique conditional expectation, but multiple pseudoexpectations. (The first
such example appears in [19].) Additionally, by combining Theorem 3.5 with the
aforementioned [14, Theorem 3.5], we quickly re-prove (and potentially extend)
C∗-simplicity results for reduced crossed products, originally due to Kishimoto
[11] and Archbold–Spielberg [1].

Remark 1.1. Recently, Kennedy and Schafhauser have independently obtained
similar results in a slightly different context in [10]. In particular, they define and
analyze pseudoexpectations for discrete C∗-dynamical systems (A, G, α). These
are G-equivariant UCP maps φ : A or G → IG(A) such that φ|A = idA, where
IG(A) is Hamana’s G-injective envelope of A [9]. In contrast, we work with (ordi-
nary) pseudoexpectations for the C∗-inclusion A ⊆ AorG, which are UCP maps
θ : A or G → I(A) such that θ|A = idA. In general, I(A) ( IG(A), so that
a pseudoexpectation for (A, G, α) (in the sense of Kennedy–Schafhauser) need
not be a pseudoexpectation for A ⊆ A or G (in the sense of Pitts). Likewise, a
pseudoexpectation for A ⊆ Aor G is not G-equivariant in general, and therefore
need not be a pseudoexpectation for (A, G, α).

2. Preliminaries

2.1. Discrete crossed products. Let A be a unital C∗-algebra, let G be
a discrete group, and let α : G → Aut(A) be a homomorphism. Briefly, let
(A, G, α) be a discrete C∗-dynamical system. We denote by AorG (resp., AoG)
the reduced (resp., full) crossed product of A by G with respect to α. That
is, A or G is the completion of the α-twisted convolution algebra Cc(G,A)
with respect to the norm induced by the regular representation, while A o G
is the completion of Cc(G,A) with respect to the norm induced by the uni-
versal representation. Evidently, there exists a ∗-homomorphism λ : A o G →
A or G which fixes Cc(G,A). There is also a faithful conditional expectation
E : A or G → A such that E(e) = 1 and E(g) = 0 for all e 6= g ∈ G. This,

in turn, gives rise to a canonical conditional expectation Ẽ = E ◦ λ : A o
G → A.

2.2. Hamana’s injective envelope. For every unitalC∗-algebraA, there exists
a minimal injective operator system I(A) containing A, called the injective enve-
lope ofA (see [7]). That is, I(A) is an injective operator system containingA as an
operator subsystem, and if S is an injective operator system with A ⊆ S ⊆ I(A),
then S = I(A). The minimality of I(A) is equivalent to the rigidity of the inclu-
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sion A ⊆ I(A) (see [4, Theorem 6.2.1]). That is, if Φ : I(A) → I(A) is a UCP
map such that Φ|A = idA, then Φ = idI(A). Using rigidity, it is easy to see
that I(A) is uniquely determined up to a complete order isomorphism which
fixes A.

A priori, I(A) is just an operator system. However, it turns out that I(A)
has a wealth of algebraic and analytical structure. It is a monotonically complete
C∗-algebra (and thus an AW ∗-algebra) containing A as a unital C∗-subalgebra.
As such, it enjoys many of the nice features one normally associates with von
Neumann algebras (see [16, Chapters 2, 8]). In particular, the following apply.

• The projections in I(A) form a complete lattice.
• For every x ∈ I(A), there exists a smallest projection LP(x) ∈ I(A) such
that LP(x)x = x. Likewise, there exists a smallest projection RP(x) ∈
I(A) such that xRP(x) = x.

• For every x ∈ I(A), there exists a partial isometry v ∈ I(A) such that
x = v|x|, vv∗ = LP(x), and v∗v = RP(x).

It is not true in general that I(A) is a dual Banach space, and so weak-∗ con-
vergence does not make sense in I(A). On the other hand, there is a well-behaved
mode of convergence which often plays the same role (see [16, Chapter 2]). We say
that x ∈ I(A) is the order limit of a net {xj} ⊆ I(A), and we write x = LIMj xj,
provided there are increasing nets {aj}, {bj}, {cj}, {dj} ⊆ I(A)sa with suprema
a, b, c, d ∈ I(A)sa, respectively, such that xj = (aj − bj) + i(cj − dj) for all j and
x = (a − b) + i(c − d). (It can be shown that this definition is independent of
which increasing nets one uses.) From the basic properties of order convergence,
we will need the following:

• if LIMj xj = x and LIMj yj = y, then LIMj(xj + yj) = x+ y;
• if LIMj xj = x and s, t ∈ I(A), then LIMj sxjt = sxt;
• if LIMj xj = x, then LIMj x

∗
j = x∗;

• if LIMj xj = x and xj → y (in norm), then y = x;
• if {xj} ⊆ I(A)+ and LIMj xj = x, then x ∈ I(A)+;
• if {Xj} ⊆ Mn(I(A)), then LIMj Xj = X if and only if LIMj Xj(k, `) =
X(k, `) for all 1 ≤ k, ` ≤ n.

2.3. Dynamics. For a unital C∗-algebra A, we denote by Aut(A) the ∗-
automorphisms of A. We say that α ∈ Aut(A) is inner provided that α(a) =
uau∗, a ∈ A, where u ∈ A is unitary. Otherwise, we say that α is outer. A depen-
dent element for α ∈ Aut(A) is an element d ∈ A such that da = α(a)d, a ∈ A.
We say that α is freely acting if it has no nonzero dependent elements. Clearly, a
freely acting automorphism must be outer.

Every α ∈ Aut(A) has a unique extension α̃ ∈ Aut(I(A)) (see [7, Corol-
lary 4.2]). This allows one to rephrase dynamical properties of α in terms of
dynamical properties of α̃, where the situation is usually simpler. In particu-
lar, the definitions of quasi-innerness and proper outerness below are much more
tractable when stated for α̃ rather than α, as follows.
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• We say that α is quasi-inner if its Borchers spectrum is trivial (i.e., if
ΓBor(α) = {1} ⊆ T). Equivalently, α is quasi-inner if α̃ is inner (see [9,
Theorem 7.4]).

• We say that α is properly outer if there does not exist a nonzero α-invariant
ideal J ⊆ A such that α|J is quasi-inner. Equivalently, α is properly
outer if there does not exist a nonzero α̃-invariant central projection z ∈
Z(I(A)) such that α̃|I(A)z is inner (see [9, Remark 7.5]). Equivalently, α
is properly outer if α̃ is freely acting (see [8, Proposition 5.1]).

Remark 2.1. Our use of the term “properly outer” coincides with its use by
Hamana in [9], who in turn attributes it to Kishimoto. There is another definition
of proper outerness in the literature, due to Elliott [5, Definition 2.1]. Kishimoto’s
condition implies Elliott’s condition, and they agree if the C∗-algebra is separable
(see [9, p. 477]; see also [10, Section 2.5] and [12, Section 2]).

It follows from the discussion above that for automorphisms of I(A), proper
outerness and acting freely are equivalent. For automorphisms of A, proper outer-
ness is in general the stronger condition. Put another way, if α̃ acts freely, then so
does α. Indeed, as implied by the following technical lemma, dependent elements
for α are also dependent elements for α̃.

Lemma 2.2. Let A be a unital C∗-algebra, let α ∈ Aut(A), and let x ∈ I(A). If

xa = α(a)x, a ∈ A,

then

xt = α̃(t)x, t ∈ I(A).

Proof. We may assume that ‖x‖ ≤ 1. We claim that x∗x = xx∗ ∈ Z(I(A)).
Indeed, arguing as in the proof of [3, Lemma 1], we see that x∗x, xx∗ ∈ A′∩I(A).
By [7, Corollary 4.3], A′ ∩ I(A) = Z(I(A)), and so x∗x, xx∗ ∈ Z(I(A)). Then
the proof of [3, Lemma 2] shows that x∗x = xx∗. It follows immediately from
the claim that |x| ∈ Z(I(A)). Now let v ∈ I(A) be a partial isometry such that
x = v|x|, vv∗ = LP(x), and v∗v = RP(x). We have that LIMn |x|1/n = v∗v. For
all a ∈ A,

v|x|a = α(a)v|x| =⇒ v|x|na = α(a)v|x|n, n ∈ N
=⇒ v|x|1/na = α(a)v|x|1/n, n ∈ N
=⇒ vv∗va = α(a)vv∗v

=⇒ va = α(a)v.

Thus, as before,

v∗v = vv∗ ∈ Z
(
I(A)

)
.

Set p = v∗v, a projection in Z(I(A)), and define a UCP map θ : I(A) → I(A)
by the formula

θ(t) = v∗α̃(t)v + p⊥t, t ∈ I(A).

For all a ∈ A, we have

θ(a) = v∗α(a)v + p⊥a = v∗va+ p⊥a = pa+ p⊥a = a.
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By rigidity, θ = idI(A), and so

v∗vt = v∗α̃(t)v, t ∈ I(A).

Premultiplying by v yields

vt = vv∗α̃(t)v = α̃(t)v, t ∈ I(A).

It follows that

xt = α̃(t)x, t ∈ I(A),

as desired. �

Remark 2.3. We extend the definitions of “outer,” “freely acting,” and “properly
outer” from single automorphisms to actions of discrete groups by insisting that
the conditions hold pointwise. More precisely, for a discrete C∗-dynamical system
(A, G, α), we say that α is outer (resp., freely acting, properly outer) provided
that αg is outer (resp., freely acting, properly outer) for all e 6= g ∈ G.

3. Unique expectations

3.1. Unique conditional expectations. In this section we show that A ⊆
A or G admits a unique conditional expectation if and only if G acts freely
on A. We begin with a proposition of independent interest, which was inspired
by [17, Proposition 3.1.4].

Proposition 3.1. Let A ⊆ B be a C∗-inclusion. Assume that there exists a unique
conditional expectation E : B → A. Then E is multiplicative on Ac = A′ ∩B, the
relative commutant of A in B. If, in addition, E is faithful, then Ac = Z(A).

Proof. Since E is A-bimodular, E(Ac) = Z(A). Let x ∈ (Ac)sa, with ‖x‖ < 1.
Then 1 − x is a positive invertible element of Ac, and 1 − E(x) is a positive
invertible element of Z(A). Define a UCP map θ : B → A by the formula

θ(b) = E
(
(1− x)1/2b(1− x)1/2

)(
1− E(x)

)−1
, b ∈ B.

It is easy to see that θ(a) = a, a ∈ A, so that θ is a conditional expectation. By
assumption, θ = E, and so

E(x)
(
1− E(x)

)
= E

(
(1− x)1/2x(1− x)1/2

)
,

which implies that E(x2) = E(x)2. It follows that x is in the multiplicative domain
of E. Since the choice of x was arbitrary, E|Ac : Ac → Z(A) is a ∗-homomorphism.
If E is faithful, then E|Ac is injective. In that case, x = E(x) ∈ Z(A) for all
x ∈ Ac, since E(x− E(x)) = 0. �

Theorem 3.2. Let (A, G, α) be a discrete C∗-dynamical system. Then the fol-
lowing are equivalent:

i. A ⊆ Aor G admits a unique conditional expectation,
ii. Ac = Z(A),
iii. G acts freely on A.
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Proof. (i =⇒ ii) See Proposition 3.1.
(ii =⇒ iii) Suppose that Ac = Z(A). Let e 6= g ∈ G and d ∈ A, and assume

that da = αg(a)d for all a ∈ A. Then g−1d ∈ Ac, which implies that d = 0.
(iii =⇒ i) Suppose that G acts freely on A. Let θ : A or G → A be a

conditional expectation. Fix e 6= g ∈ G. For all a ∈ A,

θ(g)a = θ(ga) = θ
(
αg(a)g

)
= αg(a)θ(g).

It follows that θ(g) = 0. Since the choice of g was arbitrary, θ = E. �

Corollary 3.3. Let (A, G, α) be a discrete C∗-dynamical system. Then A ⊆ AoG
(full crossed product) admits a unique conditional expectation if and only if G acts
freely on A.

Proof. (⇒) Let θ : A or G → A be a conditional expectation. Then θ ◦ λ :
A o G → A is a conditional expectation, so that θ ◦ λ = E ◦ λ, by uniqueness.
Thus θ = E. By Theorem 3.2, G acts freely on A.

(⇐) Conversely, suppose that G acts freely on A. Let Θ : A o G → A be a
conditional expectation. Then repeating the proof of (iii =⇒ i) in Theorem 3.2
above, with θ replaced by Θ, we see that Θ(g) = 0 for all g 6= e. Hence, Θ =
E ◦ λ. �

3.2. Unique pseudoexpectations. In this section, we show that A ⊆ Aor G
(resp., A ⊆ AoG) admits a unique pseudoexpectation if and only if the action
of G on A is properly outer. We begin with a technical lemma, similar in spirit
to [4, Lemma 5.1.6].

Lemma 3.4. Let A ⊆ B be a C∗-inclusion and let θ : B → I(A) be a completely

positive A-bimodule map. Then there exists a UCP A-bimodule map θ̃ : B → I(A)

(i.e., a pseudoexpectation for A ⊆ B) such that θ(x) = θ(1)θ̃(x), x ∈ B.

Proof. Since

aθ(1) = θ(a) = θ(1)a, a ∈ A,

we see that θ(1) ∈ A′ ∩ I(A). By [7, Corollary 4.3], θ(1) ∈ Z(I(A)). We claim
that LIMn(θ(1) + 1/n)−1θ(x) exists for all x ∈ B. Indeed, for all x ∈ B+,
{(θ(1) + 1/n)−1θ(x)} ⊆ I(A)+ is an increasing sequence bounded above by ‖x‖.
In particular, LIMn(θ(1) + 1/n)−1θ(1) = p, where p = LP(θ(1)) = RP(θ(1)) ∈
Z(I(A)). Now define a unital positive linear map θ̃ : B → I(A) by the formula

θ̃(x) = LIMn

(
θ(1) + 1/n

)−1
θ(x) + p⊥Φ(x), x ∈ B,

where Φ : B → I(A) is any fixed UCP A-bimodule map (i.e., any pseudoexpec-

tation for A ⊆ B). In fact, θ̃ is completely positive, since

θ̃k(X) = LIMn

(
Ik ⊗

(
θ(1) + 1/n

)−1)
θk(X) + (Ik ⊗ p⊥)Φk(X), X ∈ Mk(B).

Because θ and Φ are A-bimodular, so is θ̃. Furthermore,

θ(1)θ̃(x) = pθ(x), x ∈ B.
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But pθ(x) = θ(x), x ∈ B. Indeed, for all x ∈ Bsa,

−‖x‖ ≤ x ≤ ‖x‖ =⇒ −‖x‖θ(1) ≤ θ(x) ≤ ‖x‖θ(1) =⇒ p⊥θ(x) = 0.

Thus

θ(1)θ̃(x) = θ(x), x ∈ B. �

Theorem 3.5. Let (A, G, α) be a discrete C∗-dynamical system. Then A ⊆ Aor

G admits a unique pseudoexpectation if and only if the action of G on A is
properly outer.

Proof. (⇒) Suppose that αg ∈ Aut(A) is not properly outer for some g 6= e. Then
α̃g ∈ Aut(I(A)) is not freely acting, and so there exists 0 6= v ∈ I(A) such that
vt = α̃g(t)v, t ∈ I(A). In particular, va = αg(a)v, a ∈ A. Define a completely
bounded map θ : Aor G → I(A) by the formula

θ(x) = E(xg−1)v, x ∈ Aor G,

where E : A or G → A is the canonical conditional expectation. Note that
θ(g) = v 6= 0. Obviously, θ is a left A-bimodule map, since E is. It is also a right
A-bimodule map, since for all x ∈ Aor G and all a ∈ A, we have

θ(xa) = E(xag−1)v = E(xg−1gag−1)v

= E
(
xg−1αg(a)

)
v = E(xg−1)αg(a)v

= E(xg−1)va = θ(x)a.

By [18, Satz 4.5], θ = (θ1 − θ2) + i(θ3 − θ4), where θj : A or G → I(A) is a
completely positive A-bimodule map, 1 ≤ j ≤ 4. Without loss of generality,
θ1(g) 6= 0. By Lemma 3.4, there exists a pseudoexpectation θ̃1 : Aor G → I(A)

for A ⊆ AorG such that θ1(x) = θ1(1)θ̃1(x), x ∈ AorG. In particular, θ̃1(g) 6= 0,

so that θ̃1 6= E.
(⇐) Conversely, suppose that αg ∈ Aut(A) is properly outer for all g 6= e.

Then α̃g ∈ Aut(I(A)) is freely acting for all g 6= e. Let θ : A or G → I(A) be a
pseudoexpectation for A ⊆ Aor G. For g ∈ G, we have

gag−1 = αg(a) =⇒ ga = αg(a)g =⇒ θ(g)a = αg(a)θ(g), a ∈ A.

By Lemma 2.2, we have

θ(g)t = α̃g(t)θ(g), t ∈ I(A).

Thus θ(g) = 0 for all g 6= e. Hence, θ = E. �

As pointed out to us by David Pitts, the proof of Theorem 3.5 can be repeated
verbatim with A or G replaced by A o G and E : A or G → A replaced by
Ẽ = E ◦ λ : AoG → A. Thus we have the following.

Corollary 3.6. Let (A, G, α) be a discrete C∗-dynamical system. Then A ⊆ AoG
(full crossed product) admits a unique pseudoexpectation if and only if the action
of G on A is properly outer.
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4. Applications

4.1. Special inclusions. In this section we specialize Theorems 3.2 and 3.5 and
their corollaries to particular cases, namely A Abelian and A simple. We begin
with the case A Abelian.

Remark 4.1. If A is unital Abelian C∗-algebra, then every α ∈ Aut(A) induces a

homeomorphism α̂ : Â → Â by the formula α̂(σ) = σ ◦ α−1, σ ∈ Â. In that case,
the following are equivalent:

i. α is properly outer,
ii. α is freely acting,
iii. α̂ is topologically free (i.e., fix(α̂)◦ = ∅).

Proof. (i =⇒ ii) This is true in general, not just the Abelian case.
(ii =⇒ i) Suppose that α is freely acting. Let J ⊆ A be an α-invariant ideal

such that α|J is quasi-inner. Then α̃|J is inner, therefore the identity map. Hence
α|J is the identity map. Now let h ∈ J . For all a ∈ A, we have

ha = α(ha) = α(h)α(a) = hα(a) = α(a)h.

Thus h = 0. Since the choice of h was arbitrary, J = 0 and α is properly outer.
(ii ⇐⇒ iii) [6, Theorem 1]. �

Corollary 4.2. Let (A, G, α) be a discrete C∗-dynamical system, with A Abelian.
Then the following are equivalent:

i. A ⊆ Aor G (or A ⊆ AoG) admits a unique pseudoexpectation,
ii. A ⊆ Aor G (or A ⊆ AoG) admits a unique conditional expectation,
iii. A ⊆ Aor G is a MASA,

iv. G acts topologically freely on Â (i.e., fix(α̂g)
◦ = ∅ for all e 6= g ∈ G).

(In particular, we recover [14, Theorem 4.6].)
Now we consider the case A simple.

Remark 4.3. IfA is a simple unital C∗-algebra and α ∈ Aut(A), then the following
are equivalent.

i. α is properly outer.
ii. α is freely acting.
iii. α is outer.

Proof. (i =⇒ ii) This is true in general, not just the simple case.
(ii =⇒ iii) This is true in general, not just the simple case.
(iii =⇒ i) Suppose that α is outer. By [15, Theorem 3.6], α̃ is outer. Now

I(A) is simple, and therefore a factor [7, Proposition 4.15]. Thus α̃ is properly
outer, and therefore α is as well. �

Corollary 4.4. Let (A, G, α) be a discrete C∗-dynamical system, with A simple.
Then the following are equivalent.

i. A ⊆ Aor G (or A ⊆ AoG) admits a unique pseudoexpectation,
ii. A ⊆ Aor G (or A ⊆ AoG) admits a unique conditional expectation,
iii. the action of G on A is outer.
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4.2. Simplicity of reduced crossed products. In this section, we use The-
orem 3.5 and Corollary 3.6 to quickly re-prove (and potentially extend) C∗-
simplicity results for reduced crossed products, due to Kishimoto and Archbold–
Spielberg.

In [11], Kishimoto proves that if a discrete group G acts on a simple unital
C∗-algebra A by outer automorphisms, then A or G is simple. It follows that
AorH is simple for any subgroupH ⊆ G. Recently, Cameron and Smith obtained
the beautiful result that every intermediate C∗-algebra A ⊆ B ⊆ Aor G has this
form (see [2, Theorem 3.5]). Combining these statements gives the following.

Theorem 4.5 ([11, Theorem 3.1], [2, Theorem 3.5]). Let G be a discrete group
acting on a simple unital C∗-algebra A by outer automorphisms. Then every
intermediate C∗-algebra A ⊆ B ⊆ Aor G is simple.

Proof. By Remark 4.3, the action of G on A is properly outer, and so by The-
orem 3.5 the inclusion A ⊆ A or G has a unique pseudoexpectation, which is
actually a faithful conditional expectation. By [14, Theorem 3.5], the inclusion
A ⊆ Aor G is hereditarily essential (see the Introduction for a reminder of what
this means). Now suppose that A ⊆ B ⊆ A or G is an intermediate C∗-algebra
and 0 6= J ⊆ B is an ideal. Then J ∩ A 6= 0, which implies that J ∩ A = A,
which in turn implies that 1 ∈ J . Hence J = B, and B is simple. �

In [1], Archbold and Spielberg prove that if a discrete group G acts topologi-
cally freely and minimally on a unital C∗-algebra A, then Aor G is simple. We
encountered the definition of topological freeness for actions of discrete groups on
Abelian C∗-algebras in the preceding section (see the statement of Corollary 4.2).
Archbold and Spielberg [1, Definition 1] generalized this definition to actions of
discrete groups on arbitrary (non-Abelian) C∗-algebras, as follows: G acts topo-
logically freely on A if for all finite sets F ⊆ G\{e},(⋃

g∈F

fix(α̂g)
)◦

= ∅,

where α̂g ∈ Homeo(Â) is the homeomorphism of the spectrum ofA induced by the
automorphism αg ∈ Aut(A). (Note that for non-Abelian C∗-algebras, topological
freeness is no longer a pointwise condition.) On the other hand, minimality of the
action means that A has no nonzero G-invariant ideals.

The aforementioned Archbold–Spielberg C∗-simplicity result is an easy corol-
lary of the following theorem, one of the main results of their paper [1].

Theorem 4.6 ([1, Theorem 1]). Let G be a discrete group acting topologically
freely on a unital C∗-algebra A. If J ⊆ AoG is an ideal such that J ∩ A = 0,
then J ⊆ ker(λ), where λ : AoG → Aor G is the canonical ∗-homomorphism.

We can economically prove Theorem 4.6 under the hypothesis that the action of
G on A is properly outer, instead of topologically free. Simplicity of AorG when
the action is properly outer and minimal then follows as in [1]. If A is separable,
then topological freeness and proper outerness coincide (see [12, Theorem 2.13,
Lemma 2.17]), and so we recover the Archbold–Spielberg results in that setting.
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In general, the relationship between topological freeness and proper outerness is
unclear, so that (potentially) we have extended the Archbold–Spielberg results in
the nonseparable case.

Proof of Theorem 4.6 for properly outer actions. Suppose that the action of G on
A is properly outer. Let J ⊆ A o G be an ideal such that J ∩ A = 0. Define a
unital ∗-homomorphism π : A + J → A : a + h 7→ a. By injectivity, π extends
to a pseudoexpectation θ : A o G → I(A) for A ⊆ A o G. By Corollary 3.6,
θ = E ◦ λ. Thus

h ∈ J =⇒ that E
(
λ(h)∗λ(h)

)
= E

(
λ(h∗h)

)
= θ(h∗h) = π(h∗h) = 0

=⇒ that λ(h) = 0.

Hence, J ⊆ ker(λ). �

4.3. Unique conditional expectation but multiple pseudoexpectations.
In [19, Example 4.4], we produce a C∗-inclusion A ⊆ B with a unique conditional
expectation, but infinitely many pseudoexpectations. In fact, B is Abelian in our
example. Unfortunately, the construction is a bit ad hoc. Also, the conditional
expectation is not faithful. Now we can produce many such examples systemati-
cally. Indeed, ifA is a unital C∗-algebra and G is a discrete group acting freely but
not properly outerly on A, then the C∗-inclusion A ⊆ A or G admits a unique
(faithful) conditional expectation, but infinitely many pseudoexpectations. For
example, let A = CI+K(`2(Z)) ⊆ B(`2(Z)), let G = Z, and let α : G → Aut(A)
be given by αk(T ) = SkTS−k, where S ∈ B(`2(Z)) is the bilateral shift.

Acknowledgment. We would like to thank the anonymous referees for numer-
ous valuable comments which improved the clarity of the paper.
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