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Abstract. It is known that if a Banach space Y is a u-ideal in its bidual
Y ∗∗ with respect to the canonical projection on the third dual Y ∗∗∗ , then Y ∗

contains “many” functionals admitting a unique norm-preserving extension
to Y ∗∗—the dual unit ball BY ∗ is the norm-closed convex hull of its weak∗

strongly exposed points by a result of Å. Lima from 1995. We show that if
Y is a strict u-ideal in a Banach space X with respect to an ideal projection
P on X∗ , and X/Y is separable, then BY ∗ is the τP -closed convex hull of
functionals admitting a unique norm-preserving extension to X, where τP is a
certain weak topology on Y ∗ defined by the ideal projection P .

1. Introduction

Throughout this article, all Banach spaces will be over the scalar field K where
K = R or K = C. For a Banach space X, its dual space, closed unit ball, and unit
sphere will be denoted, respectively, by X∗, BX , and SX . For a subset A of X, we
denote its convex hull by co(A) and its linear span by span(A). The symbol L(X)
will stand for the space of continuous linear operators from X to X.

Let X be a Banach space, and let Y be a closed subspace of X. According to
the terminology in [5], Y is said to be an ideal in X if there exists a continuous
linear projection P ∈ L(X∗) with kerP = Y ⊥ := {x∗ ∈ X∗ : x∗|Y = 0} and
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‖P‖ = 1. If ranP is norming for X in the sense that

‖x‖ = sup
x∗∈Bran P

∣∣x∗(x)
∣∣ for all x ∈ X,

then Y is called a strict ideal, and the ideal projection P is said to be strict.
It is straightforward to verify that if P is an ideal projection for Y in X, then,

for every x∗ ∈ X∗, the functional Px∗ ∈ X∗ is a norm-preserving extension of
the restriction x∗|Y ∈ Y ∗. It follows that the mapping JP : Y

∗ 3 y∗ 7→ Px∗ ∈ X∗,
where x∗ ∈ X∗ is any extension of y∗, is a linear isometry. In particular, ran JP =
ranP , and ranP is isometrically isomorphic to Y ∗.

Suppose that Y is an ideal in X with respect to an ideal projection P . Then
each x ∈ X induces a functional xP ∈ Y ∗∗ defined by xP (y

∗) = (JPy
∗)(x),

y∗ ∈ Y ∗. If P is strict, then the mapping x 7→ xP is an isometry and one can
identify X with the closed subspace XP = {xP ∈ Y ∗∗ : x ∈ X} of Y ∗∗. In such a
case, we will denote the weak topology σ(Y ∗, XP ) on Y ∗ by τP .

If an ideal projection P ∈ L(X∗) for Y in X satisfies ‖I − 2P‖ = 1, then it is
called a u-ideal projection, and Y is said to be a u-ideal in X with respect to P .
Our starting point is the following result of Lima and Lima.

Proposition 1.1 (cf. [7, Proposition 2.2]). Let Y be a strict u-ideal in a Banach
space X. Then every ideal projection for Y in X is strict.

In [7], Proposition 1.1 was obtained using knowledge about centers of symmetry
(see, e.g., [1, Proposition 2.2]). Denoting, wheneverE is a subspace ofX, by CE the
set of functionals in SY ∗ having a unique norm-preserving extension to span(Y ∪
E), we observe that the conclusion of Proposition 1.1 easily obtains under the
assumption that the set CE is big enough for every 1-dimensional subspace E
of X.

Proposition 1.2. Let Y be a strict ideal in a Banach space X, and suppose
that for every 1-dimensional subspace E of X there is a strict ideal projection
PE ∈ L(X∗) for Y in X such that BY ∗ = coτPE (CE). Then every ideal projection
for Y in X is strict.

Proof. Let P be any ideal projection for Y in X, and let x ∈ X and ε > 0 be
arbitrary. It suffices to find a y∗ ∈ BY ∗ such that∣∣xP (y

∗)
∣∣ = ∣∣(JPy∗)(x)∣∣ > ‖x‖ − ε. (1.1)

Set E := span({x}). Since PE is strict, there is v∗ ∈ BY ∗ such that |xPE
(v∗)| =

|(JPE
v∗)(x)| > ‖x‖ − ε. Since BY ∗ = coτPE (CE), there is y∗ ∈ co(CE) such that

|xPE
(y∗)| > ‖x‖ − ε. For every u∗ ∈ CE, the functionals JPu

∗ ∈ X∗ and JPE
u∗ ∈

X∗ are norm-preserving extensions of u∗, and thus their restrictions to span(Y ∪
E) are also norm-preserving extensions of u∗; hence xP (u

∗) = (JPu
∗)(x) =

(JPE
u∗)(x) = xPE

(u∗). Since y∗ ∈ co(CE), one has xP (y
∗) = xPE

(y∗), and (1.1)
follows. �

In the light of Propositions 1.1 and 1.2, it is natural to ask whether the assump-
tion of Proposition 1.2 holds if Y is a strict u-ideal in X with respect to a pro-
jection P ∈ L(X∗), and, moreover, whether in that case the projection P itself
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always fits in the role of PE. The objective of this article is to answer these
questions in the affirmative.

Theorem 1.3. Let Y be a strict u-ideal in a Banach space X with respect to an
ideal projection P ∈ L(X∗). Then, for every separable subspace E of X,

(a) BY ∗ = coτP (CE);
(b) if Y is separable, then BY ∗ = coτP (CE ∩ extBY ∗), where extBY ∗ is the set

of extreme points of BY ∗.

Remark 1.4. Every Banach space Y is a strict ideal in its bidual Y ∗∗ with
respect to the canonical projection π := jY ∗(jY )

∗, where jY : Y → Y ∗∗ and
jY ∗ : Y ∗ → Y ∗∗∗ are canonical embeddings. If π happens to be a u-ideal pro-
jection, then, by a result of Lima [6, Proposition 4.1], BY ∗ is the norm-closed
convex hull of its weak∗ strongly exposed points. Since the τπ-topology on BY ∗ is
the weak topology, and every weak∗ strongly exposed point of BY ∗ has a unique
norm-preserving extension to Y ∗∗, it follows that if Y is a u-ideal in its bidual
Y ∗∗ with respect to the canonical projection π, then the dual unit ball BY ∗ is the
τπ-closed convex hull of functionals admitting a unique norm-preserving extension
to Y ∗∗.

Let us recall the notion of a slice. Let C be a nonempty bounded subset of a
Banach space Z. Given z∗ ∈ Z∗ \ {0} and α > 0, the set

S(z∗, α, C) :=
{
z ∈ C : Re z∗(z) > supRe z∗(C)− α

}
is called a slice of C. If τ is a locally convex topology on Z weaker than the norm
topology, then slices of C whose defining functional comes from the topological
dual (Z, τ)′ (i.e., the linear space of all τ -continuous linear functionals on Z) are
called τ -slices. In particular, if Z happens to be a dual space, say, Z = E∗, then
slices of C whose defining functional comes from (the canonical image of) the
predual E of Z are called weak∗-slices.

In Section 2, letting τ1 and τ2 be two comparable locally convex topologies
in a Banach space X, we consider (τ1, τ2)-dentability and (τ1, τ2)-denting points
of bounded subsets of X. These concepts are a natural generalization due to
Fundo [3, p. 1118] of the “ordinary” dentability and denting points. We prove that
if Y is a strict u-ideal in X with respect to an ideal projection P ∈ L(X∗), then
every τP -slice of BY ∗ contains a weak∗-slice of BY ∗ , and every (τP , τP )-denting
point of BY ∗ is a (weak∗, τP )-denting point of BY ∗ (see Proposition 2.5).

From [4, Theorem 1, Proposition 1] it follows that, for a subspace E of a sep-
arable Banach space X, every nonempty bounded subset of the dual space X∗

is (σ(X∗, E), σ(X∗, E))-dentable. In Section 3, we prove this result without the
assumption on the separability of X (see Theorem 3.1). It follows that if Y is a
strict ideal in a Banach space X with respect to an ideal projection P ∈ L(X∗),
then every nonempty bounded subset of Y ∗ is (σ(Y ∗, EP ), σ(Y

∗, EP ))-dentable,
where EP := {xP ∈ Y ∗∗ : x ∈ E} (see Corollary 3.3). In particular, every
nonempty bounded subset of Y ∗ is (τP , τP )-dentable.

In Section 4, we prove that if Y is a strict u-ideal in a Banach space X with
respect to an ideal projection P ∈ L(X∗), and X/Y is separable, then BY ∗ is
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the τP -closed convex hull of its elements admitting a unique norm-preserving
extension to X. Moreover, if X itself is separable, then BY ∗ is the τP -closed
convex hull of its (weak∗, τP )-denting points (see Proposition 4.1). Since, by [9,
Proposition 2.2, (iii)⇒(i)], every (weak∗, τP )-denting point of BY ∗ is an extreme
point of BY ∗ admitting a unique norm-preserving extension to X, Theorem 1.3
follows (by courtesy of Proposition 2.5).

2. Dentability in spaces with two comparable locally convex
topologies

Let Z be a Banach space, and let τ be a locally convex topology on Z. Given
a z ∈ Z, a seminorm p on Z, and an ε > 0, we define

Up(z, ε) :=
{
w ∈ Z : p(w − z) < ε

}
.

Suppose that τ1 and τ2 are locally convex topologies on Z such that τ1 is weaker
than τ2 and τ2 is weaker than the norm topology. In this case, (Z, τ1)

′ ⊂ (Z, τ2)
′ ⊂

Z∗.

Definition 2.1 (cf. [3, Definitions 1, 3]). Let C be a nonempty bounded subset
of Z. We say that

• the set C is (τ1, τ2)-dentable if, whenever p is a τ2-continuous seminorm
on Z and ε > 0, there is x ∈ C such that

x /∈ coτ1
(
C \ Up(x, ε)

)
; (2.1)

• a point x ∈ C is a (τ1, τ2)-denting point of C if, whenever p is a τ2-continu-
ous seminorm on Z and ε > 0, one has (2.1).

Dentability in locally convex spaces with two comparable topologies has been
studied in [3] and [4].

Remark 2.2. If both τ1 and τ2 are the norm topology, then (τ1, τ2)-dentability
and (τ1, τ2)-denting points are, respectively, the ordinary dentability and ordinary
denting points. If Z is a dual space, say, Z = E∗, τ1 is the weak∗ topology on
Z = E∗, and τ2 is the norm topology, then (τ1, τ2)-dentability and (τ1, τ2)-denting
points are, respectively, weak∗-dentability and weak∗-denting points.

Let us introduce some more notation. For a finite family F of seminorms on
Z, we define a seminorm pF on Z by

pF(z) := max
p∈F

p(z), z ∈ Z,

and we write UF(z, ε) := UpF (z, ε). For a seminorm p on Z and a subset C of Z,
we define

diamp C := sup
z,w∈C

p(z − w).

Remark 2.3. In general, diampC need not be finite. However, if C is bounded and
p is norm-continuous (which is the case, e.g., whenever p is τ -continuous, where τ
is a locally convex topology on Z weaker than the norm topology), then diampC
is finite.
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If F is a finite family of seminorms on Z, then we write diamF instead of
diampF . Recall that a family S of seminorms on Z is said to induce the topology
τ if, for every z ∈ Z, the family

BS(z) :=
{
UF(z, ε) : F is a finite subfamily of S and ε > 0

}
is a basis of neighborhoods for z in τ , or, equivalently, the family BS(0) is a basis
of neighborhoods for 0 in τ .

The following proposition is an obvious generalization of a well-known char-
acterization of ordinary dentability and ordinary denting points. We include its
proof for the sake of completeness.

Proposition 2.4. Let Z be a Banach space, let τ1 and τ2 be locally convex topolo-
gies on Z such that τ1 is weaker than τ2 and τ2 is weaker than the norm topology,
let S be a family of seminorms on Z inducing τ2, and let C be a nonempty bounded
subset of Z.

(a) The following assertions are equivalent:
(i) C is (τ1, τ2)-dentable;
(i′) whenever F is a finite subfamily of S and ε > 0, there is x ∈ C such

that

x /∈ coτ1
(
C \ UF(x, ε)

)
; (2.2)

(ii) whenever p is a τ2-continuous seminorm on Z and ε > 0, there is a
τ1-slice S(z∗, α, C) such that

diamp S(z
∗, α, C) < ε; (2.3)

(ii′) whenever F is a finite subfamily of S and ε > 0, there is a τ1-slice
S(z∗, α, C) such that

diamF S(z∗, α, C) < ε. (2.4)

(b) Let x ∈ C. The following assertions are equivalent:
(i) x is a (τ1, τ2)-denting point of C;
(i′) whenever F is a finite subfamily of S and ε > 0, one has (2.2);
(ii) whenever p is a τ2-continuous seminorm on Z and ε > 0, there is a

τ1-slice S(z∗, α, C) containing x and satisfying (2.3);
(ii′) whenever F is a finite subfamily of S and ε > 0, there is a τ1-slice

S(z∗, α, C) containing x and satisfying (2.4).

Proof. In both (a) and (b), both (i)⇒(i′) and (ii)⇒(ii′) follow from the fact that
each p ∈ S is τ2-continuous (and thus also pF is τ2-continuous). Also, in both (a)
and (b), both (i′)⇒(i) and (ii′)⇒(ii) follow from the fact that, whenever p is a
τ2-continuous seminorm on Z, there is a finite subfamily F of S and a nonnegative
real number M such that p(z) ≤ MpF(z) for every z ∈ Z.

(a): (i)⇒(ii). Assume that C is (τ1, τ2)-dentable, let p be a τ2-continuous semi-
norm on Z, and let ε > 0. Since C is (τ1, τ2)-dentable, there is x ∈ C satisfying
(2.1) with ε replaced by ε/4. By the Hahn–Banach separation theorem (see, e.g.,
[10, Theorem 2.2.28, p. 180]), there are z∗ ∈ (Z, τ1)

′ and α > 0 such that

Re z∗(x)− α > supRe z∗
(
coτ1

(
C \ Up(x, ε/4)

))
.
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For every z ∈ S(z∗, α, C), one has

Re z∗(z) > supRe z∗(C)− α ≥ Re z∗(x)− α;

thus z /∈ C \ Up(x, ε/4), and it follows that S(z∗, α, C) ⊂ Up(x, ε/4). Thus, when-
ever z, w ∈ S(z∗, α, C), one has

p(z − w) ≤ p(z − x) + p(x− w) <
ε

4
+

ε

4
=

ε

2
,

and (2.3) follows.
(a): (ii)⇒(i). Assume that (ii) holds, let p be a τ2-continuous seminorm on Z,

and let ε > 0. By (ii), there is a τ1-slice S := S(z∗, α, C) satisfying (2.3). Pick an
arbitrary x ∈ S; then S ⊂ Up(x, ε), and thus

C \ Up(x, ε) ⊂ C \ S =
{
z ∈ C : Re z∗(z) ≤ supRe z∗(C)− α

}
⊂

{
z ∈ coτ1(C) : Re z∗(z) ≤ supRe z∗(C)− α

}
=: K.

Since K is convex and τ1-closed, one has coτ1(C \ Up(x, ε)) ⊂ K. Since x /∈ K,
(2.1) follows. We omit the proof of the equivalence (i)⇔(ii) in (b), which is not
too different from that in (a). �

Our special interest in (τ1, τ2)-denting points lies in the case when Y is a strict
ideal in a Banach space X with respect to an ideal projection P ∈ L(X∗),
Z = Y ∗, τ1 and τ2 are, respectively, the weak∗ topology and the τP -topology
(i.e. the σ(Y ∗, XP )-topology) on Y ∗ = Z, and C = BY ∗ . In [9, Proposition 2.2,
(iii)⇔(i)], we proved that y∗ is a (weak∗, τP )-denting point of BY ∗ if and only if
y∗ is an extreme point of BY ∗ having a unique norm-preserving extension to X.
We conclude the section by proving the following proposition.

Proposition 2.5. Let Y be a strict u-ideal in X with respect to an ideal projection
P ∈ L(X∗). Then

(a) every τP -slice of BY ∗ contains a weak∗-slice of BY ∗;
(b) every (τP , τP )-denting point of BY ∗ is a (weak∗, τP )-denting point.

For the proof of Proposition 2.5, it is convenient to state (and prove) the
following two lemmas which are, respectively, a partial case (with s = 1) of [8,
Lemma 4.3] and an obvious generalization of [8, Lemma 4.4]. We include their
proofs for the sake of completeness.

Lemma 2.6 (cf. [8, Lemma 4.3]). Suppose that x ∈ SX , y ∈ SY , and γ > 0 are
such that

‖x− 2y‖ < 1 + 2γ. (2.5)

Then, whenever α > γ and P is an ideal projection for Y in X,

S(y, α− γ,BY ∗) ⊂ S(xP , 2α,BY ∗). (2.6)

Proof. Let α > γ, and let P be an ideal projection for Y in X. Since, by (2.5),
for all y∗ ∈ BY ∗ ,

RexP (y
∗) > 2Re y∗(y)− 1− 2γ,
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and the inequality

2Re y∗(y)− 1− 2γ > 1− 2α

is equivalent to Re y∗(y) > 1− (α− γ), the inclusion (2.6) follows. �

Lemma 2.7 (cf. [8, Lemma 4.4]). Let C be a nonempty bounded convex subset of a
Banach space Z, let z∗ ∈ SZ∗, α > 0, and K ≥ 1, and let p be a (norm-)continuous
seminorm on Z. Then

diamp S(z
∗, Kα,C) ≤ K diamp S(z

∗, α, C).

Proof. Set d := diamp S(z
∗, α, C), and let z1, z2 ∈ S(z∗, Kα,C). It suffices to

show that p(z1 − z2) ≤ Kd. To this end, set M := supRe z∗(C) and pick a
z0 ∈ S(z∗, α, C) such that(

1− 1

K

)(
M − Re z∗(z0)

)
<

1

K

(
Re z∗(zj)− (M −Kα)

)
= α− 1

K

(
M − Re z∗(zj)

)
, j = 1, 2.

Now put

uj =
(
1− 1

K

)
z0 +

1

K
zj, j = 1, 2.

Since

M − Re z∗(uj) =
(
1− 1

K

)(
M − Re z∗(z0)

)
+

1

K

(
M − Re z∗(zj)

)
< α,

one has uj ∈ S(z∗, α, C), j = 1, 2, and thus

p(z1 − z2) = p
(
K(u1 − u2)

)
= Kp(u1 − u2) ≤ Kd,

as desired. �

In the proof of Proposition 2.5, we also use the following theorem which is the
partial case (with K = {2}, a = 1) of [5, Lemma 2.2].

Theorem 2.8 (cf. [5, Lemma 2.2]). Let Y be an ideal in X with respect to a
projection P ∈ L(X∗). The following assertions are equivalent:

(i) P is a u-ideal projection;
(ii) whenever x ∈ SX , there is a net (yα) in BY converging to x in the

σ(X, ranP )-topology such that

lim sup
α

‖x− 2yα‖ ≤ 1.

Remark 2.9. Suppose that, in Theorem 2.8, P is a strict ideal projection. Then,
in the assertion (ii), limα ‖yα‖ = 1, because, letting, for each n ∈ N, an element
x∗
n ∈ ranP , ‖x∗

n‖ ≤ 1, be such that |x∗
n(x)| > 1 − 1/n, one has lim infα ‖yα‖ ≥

lim infα |x∗
n(yα)| > 1− 1/n.
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Proof of Proposition 2.5. (a). Let S(xP , α, BY ∗) be a τP -slice of BY ∗ . We may
assume that ‖x‖ = 1. Letting 0 < γ < α/2, by Theorem 2.8 and Remark 2.9,
there is y ∈ SY such that ‖x−2y‖ < 1+2γ. By Lemma 2.6, S(y, α/2−γ,BY ∗) ⊂
S(xP , α, BY ∗).

(b). Let y∗ be a (τP , τP )-denting point ofBY ∗ , let p be a τP -continuous seminorm
on Y ∗, let ε > 0, and let x ∈ SX and α > 0 be such that y∗ ∈ S(xP , α, BY ∗)
and diamp S(xP , α, BY ∗) < ε/2. By Proposition 2.4 and Lemma 2.7, it suffices to
show that there are y ∈ SY and β > 0 with y∗ ∈ S(y, β, BY ∗) ⊂ S(xP , 2α,BY ∗).
To this end, choose γ ∈ (0, α) such that y∗ ∈ S(xP , α− γ,BY ∗). By Theorem 2.8
and Remark 2.9, there is y ∈ SY with

y∗ ∈ S(y, α− γ,BY ∗) and ‖x− 2y‖ < 1 + 2γ.

By Lemma 2.6, S(y, α− γ,BY ∗) ⊂ S(xP , 2α,BY ∗). �

3. Bounded sets in a dual Banach space X∗ are
(σ(X∗, E), σ(X∗, E))-dentable for every subspace E of X

In this section, we prove the following theorem.

Theorem 3.1. Let X be a Banach space, and let E be a subspace of X. Then
every nonempty bounded subset of the dual space X∗ is (σ(X∗, E), σ(X∗, E))-
dentable.

Remark 3.2. If, in Theorem 3.1, the space X is separable, then the assertion
follows from [4, Theorem 1, Proposition 1], because, under that assumption,
every weak∗ compact convex subset of the dual space X∗ is separable in the
(σ(X∗, E), σ(X∗, E))-topology.

Our interest in Theorem 3.1 lies in the following corollary.

Corollary 3.3. Let Y be a strict ideal in a Banach space X with respect to
an ideal projection P ∈ L(X∗), and let E be a subspace of X. Set EP :=
{xP ∈ Y ∗∗ : x ∈ E}, and denote by σE the weak topology σ(Y ∗, EP ) on Y ∗.
Then every nonempty bounded subset of Y ∗ is (σE, σE)-dentable. In particular,
every nonempty bounded subset of Y ∗ is (τP , τP )-dentable.

Proof. Letting D be a nonempty bounded subset of Y ∗, it suffices to observe
that D is (σE, σE)-dentable if and only if JP (D) is (σ(X∗, E), σ(X∗, E))-dentable
(in X∗), and that τP = σE for E = X. �

Proof of Theorem 3.1. Our proof is an adaption of the proof that a Banach space,
which contains a bounded non-dentable subset, does not have the Radon–Niko-
dým property [2, Theorem 4, p. 133].

Suppose for contradiction that X∗ contains a nonempty bounded subset D
which is not (σ(X∗, E), σ(X∗, E))-dentable. Then, by Proposition 2.4(a), there
are ε > 0 and a finite subset F of SE such that, for every x∗ ∈ D, one has
x∗ ∈ coσ(X

∗,E)(D \ Up(x
∗, ε)), where the seminorm p on X∗ is defined by p(x∗) =

maxx∈F |x∗(x)| for x∗ ∈ X∗. In other words,
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(]) whenever x∗ ∈ D, δ > 0, and G is a finite subset of E, there are N ∈ N,
real numbers α1[x

∗], . . . , αN [x
∗] > 0 with

∑N
j=1 αj[x

∗] = 1, and elements

x∗
1[x

∗], . . . , x∗
N [x

∗] ∈ D \ Up(x
∗, ε) such that∣∣∣(x∗ −

N∑
j=1

αj[x
∗]x∗

j [x
∗]
)
(x)

∣∣∣ < δ for all x ∈ G.

It suffices to construct partitions πn := {In1 , . . . , InKn
} (Kn ∈ N) of the half-open

interval [0, 1) into half-open intervals In1 , . . . , I
n
Kn

and functions fn : [0, 1) → X∗,
n ∈ N, such that

(1) each fn is of the form fn =
∑Kn

k=1 χInk
x∗
n,k, where x∗

n,1, . . . , x
∗
n,Kn

∈ D;
(2) πn+1 refines πn in the sense that each interval in πn is a finite union of

intervals in πn+1;
(3) maxx∈F |x(fn(t)− fn+1(t))| ≥ ε for all n ∈ N and all t ∈ [0, 1);
(4) |

∫
I
x(fn − fm) dµ| < µ(I)/2n for all n ∈ N, all m > n, all x ∈ F , and all

I ∈ πn (here µ is the Lebesgue measure).

Indeed, assume that functions fn and partitions πn, n ∈ N, satisfying conditions
(1)–(4) have been constructed. Define, for every I ∈

⋃∞
n=1 πn, a functional F [I]

on span(F) =: X0 by

F [I](x) = lim
n

∫
I

xfn dµ, x ∈ X0

(note that (4) guarantees, for every x ∈ X0, the sequence (
∫
I
xfn dµ) to be

Cauchy); then F [I] can easily be seen to be linear and bounded with ‖F [I]‖ ≤
Mµ(I), where the real number M ≥ 0 is such that ‖x∗‖ ≤ M for every x∗ ∈ D;
thus F [I] ∈ X∗

0 . For every n ∈ N, let Bn be the σ-algebra of subsets of [0, 1)
generated by πn = {In1 , . . . , InKn

}, and define a function

gn :=
Kn∑
k=1

χInk

F [Ink ]

µ(Ink )
: [0, 1) → X∗

0 ;

then (gn,Bn) is a martingale in L1([0, 1), X
∗
0 ). Indeed, let m,n ∈ N, m > n, and

let gm =
∑Kn

k=1

∑Nk

j=1 χIn,k
j

F [In,k
j ]

µ(In,k
j )

, where Ink =
⋃Nk

j=1 I
n,k
j with In,kj ∈ πm for every

k ∈ {1, . . . , Kn}; if k ∈ {1, . . . , Kn}, then∫
Ink

gm dµ =

∫
Ink

Nk∑
j=1

χIn,k
j

F [In,kj ]

µ(In,kj )
dµ =

Nk∑
j=1

∫
In,k
j

F [In,kj ]

µ(In,kj )
dµ

=

Nk∑
j=1

F [In,kj ] = F [Ink ] =

∫
Ink

gn dµ.

For every I ∈
⋃∞

n=1 πn, one has∥∥∥F [I]

µ(I)

∥∥∥ ≤ Mµ(I)

µ(I)
= M.
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Thus the martingale (gn,Bn) is, in fact, L∞-bounded. From (3) it follows that,
for some x ∈ F , the sequence (xfn) is not Cauchy in L1([0, 1),K). From (4) it
follows that∫

[0,1)

|xfn − xgn| dµ =

∫
[0,1)

∣∣∣ Kn∑
k=1

χInk

(
x∗
n,k(x)−

F [Ink ](x)

µ(Ink )

)∣∣∣ dµ
=

Kn∑
k=1

∫
Ink

∣∣∣x∗
n,k(x)−

F [Ink ](x)

µ(Ink )

∣∣∣ dµ
=

Kn∑
k=1

∣∣∣x∗
n,k(x)−

F [Ink ](x)

µ(Ink )

∣∣∣µ(Ink )
=

Kn∑
k=1

∣∣x∗
n,k(x)µ(I

n
k )− F [Ink ](x)

∣∣
=

Kn∑
k=1

∣∣∣∫
Ink

xfn dµ− lim
m

∫
Ink

xfm dµ
∣∣∣

= lim
m

Kn∑
k=1

∣∣∣∫
Ink

x(fn − fm) dµ
∣∣∣

≤
Kn∑
k=1

µ(Ink )

2n
=

1

2n
µ
(
[0, 1)

)
=

1

2n
;

thus also the sequence (xgn) is not Cauchy in L1([0, 1),K). On the other hand,
since (xgn,Bn) is an L∞-bounded martingale in L1([0, 1),K), the sequence (xgn)
must converge in L1([0, 1),K) (see, e.g., [2, Corollary 4, p. 126]), which is a con-
tradiction.

To complete the proof, it remains to construct the functions fn : [0, 1) → X∗

and partitions πn of [0, 1), n ∈ N, satisfying (1)–(4). Picking an arbitrary x∗ ∈ D,
define f1 := χ[0,1)x

∗ and π1 := {[0, 1)}. Next suppose that, for some n ∈ N, the
function fn =

∑Kn

k=1 χInk
x∗
n,k, where Kn ∈ N, x∗

n,1, . . . , x
∗
n,Kn

∈ D, and In1 , . . . , I
n
Kn

are pairwise disjoint half-open intervals with
⋃Kn

k=1 I
n
k = [0, 1), and the partition

πn := {In1 , . . . , InKn
} have been defined. By (]), for every k ∈ {1, . . . , Kn}, there

are Nk ∈ N, real numbers α1[x
∗
n,k], . . . , αNk

[x∗
n,k] > 0 with

∑Nk

j=1 αj[x
∗
n,k] = 1, and

elements x∗
1[x

∗
n,k], . . . , x

∗
Nk
[x∗

n,k] ∈ D \ Up(x
∗
n,k, ε) such that∣∣∣(x∗

n,k −
Nk∑
j=1

αj[x
∗
n,k]x

∗
j [x

∗
n,k]

)
(x)

∣∣∣ < 1

2n+1
for all x ∈ F . (3.1)

Now, if k ∈ {1, . . . , Kn} and Ink = [a, b), then, setting α0[x
∗
n,k] := 0, define half-

open intervals

In,kj :=
[
a+ (b− a)

j−1∑
i=0

αi[x
∗
n,k], a+ (b− a)

j∑
i=0

αi[x
∗
n,k]

)
, j = 1, . . . , Nk,
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partitions πn+1 := {In,kj : k ∈ {1, . . . , Kn}, j ∈ {1, . . . , Nk}}, and functions

fn+1 :=
∑Kn

k=1

∑Nk

j=1 χIn,k
j

x∗
j [x

∗
n,k]. The functions fn, n ∈ N, defined as above sat-

isfy (1) and (3), and the partitions πn, n ∈ N, satisfy (2). To prove (4), let n ∈ N
and k ∈ {1, . . . , Kn} be arbitrary. For every x ∈ F , by (3.1),∣∣∣∫

Ink

x(fn − fn+1) dµ
∣∣∣ = ∣∣∣µ(Ink )x∗

n,k(x)−
Nk∑
j=1

µ(In,kj )x∗
j [x

∗
n,k](x)

∣∣∣
=

∣∣∣x∗
n,k(x)−

Nk∑
j=1

µ(In,kj )

µ(Ink )
x∗
j [x

∗
n,k](x)

∣∣∣µ(Ink )
=

∣∣∣x∗
n,k(x)−

Nk∑
j=1

αj[x
∗
n,k]x

∗
j [x

∗
n,k](x)

∣∣∣µ(Ink )
<

µ(Ink )

2n+1
.

This establishes (4). �

4. Existence of functionals in the dual unit ball of strict u-ideals,
which admit a unique norm-preserving extension

Theorem 1.3 follows quickly from the following proposition, Proposition 2.5,
and [9, Proposition 2.2].

Proposition 4.1. Let Y be a strict u-ideal in a Banach space X with respect to
an ideal projection P ∈ L(X∗).

(a) If X/Y is separable, then BY ∗ = coτP (CX), where CX is the set of func-
tionals in SY ∗ having a unique norm-preserving extension to X.

(b) If X is separable, then BY ∗ is the τP -closed convex hull of its (weak∗, τP )-
denting points.

Proof of Theorem 1.3. Let E be a separable subspace ofX. Set Z := span(Y ∪ E),
and define an operator P0 : Z

∗ 3 u∗ 7→ Px∗|Z ∈ Z∗, where x∗ ∈ X∗ is any
extension of u∗. One immediately verifies that P0 is a strict u-ideal projection for
Y in Z.

(a) Observing that Z/Y is separable, by Propositions 4.1(a) and 2.5(a),

BY ∗ = coτP0 (CE) ⊂ coweak∗(CE) ⊂ coτP (CE) ⊂ BY ∗ .

(b) Assume that Y is separable. Then also Z is separable, and thus BY ∗ is the
τP0-closed convex hull of its (weak∗, τP0)-denting points by Proposition 4.1(b).
As in the proof of (a), from Proposition 2.5(a), it follows that BY ∗ is, in fact,
the τP -closed convex hull of its (weak∗, τP0)-denting points. It remains to observe
that, by [9, Proposition 2.2, (iii)⇒(i)], every (weak∗, τP0)-denting point of BY ∗ is
an extreme point of BY ∗ having a unique norm-preserving extension to Z. �

Remark 4.2. Sufficient conditions in order that a convex set in a linear space
with two locally convex topologies τ1 and τ2 were the closed convex hull of its
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(τ1, τ2)-denting points, have been studied in [3, Section 4]. Proposition 4.1(b)
cannot be derived directly from these results because the τP -topology on Y ∗ is
not quasimetrizable (and neither is the weak∗ topology).

Proposition 4.1 is a quick consequence of the following proposition and the
Hahn–Banach separation theorem.

Proposition 4.3. Let Y , X, and CX be as in Proposition 4.1.

(a) If X/Y is separable, then every τP -slice of BY ∗ contains a point in CX .
(b) If X is separable, then every τP -slice of BY ∗ contains a (weak∗, τP )-denting

point of BY ∗.

Proof of Proposition 4.1. We only prove (a). The proof of (b) is similar with some
obvious changes.

Assume that X/Y is separable, and suppose for contradiction that there is
y∗ ∈ BY ∗ \ coτP (CX). Then, by the Hahn–Banach separation theorem (see, e.g.,
[10, page 180, Theorem 2.2.28]), there are x ∈ X and a real number β > 0 such
that

RexP (y
∗)− β > supRe xP

(
coτP (CX)

)
,

and thus CX∩S(xP , β, BY ∗) = ∅. This is a contradiction to Proposition 4.3(a). �

Proposition 4.3 follows from the following lemma.

Lemma 4.4. Let Y and X be as in Proposition 4.1, and let E be a subspace of X.
Set EP := {xP ∈ Y ∗∗ : x ∈ E}, and denote by σE the weak topology σ(Y ∗, EP ) on
Y ∗. Then, whenever S(zP , α, BY ∗) is a σE-slice with z ∈ SE, p is a σE-continuous
seminorm on Y ∗, and ε > 0, there is a σE-slice S(xP , β, BY ∗) with x ∈ SE such
that

(1) S(xP , β, BY ∗) ⊂ S(zP , α, BY ∗);
(2) diamp S(xP , β, BY ∗) < ε.

Proof of Proposition 4.3. Let S(x0P , β0, BY ∗) with x0 ∈ SX be a τP -slice of BY ∗ .
(a) Assume that X/Y is separable. Then there is a separable subspace E0 of X

such that X = span(Y ∪E0). Set Z1 := span(E0 ∪ {x0}), and proceed as follows.
Given n ∈ N and a separable subspace Zn of X, let An be a countable dense
subset of SZn . For every x ∈ An and every k ∈ N, by Proposition 2.5(a), there
are yxn,k ∈ SY and αx

n,k > 0 such that S(yxn,k, α
x
n,k, BY ∗) ⊂ S(xP , 1/k,BY ∗). Set

Bn := {yxn,k : x ∈ An, k ∈ N} and Zn+1 := span(An ∪Bn).

Set E :=
⋃∞

n=1 Zn. Since E is separable, there are finite subsets F1 ⊂ F2 ⊂ · · ·
of SE such that the union

⋃∞
n=1Fn is dense in SE. For every n ∈ N, define a

seminorm pn : Y
∗ 3 y∗ 7→ maxx∈Fn |xP (y

∗)|. By Lemma 4.4 and our construction,
we can inductively find weak∗-slices S(yn, γn, BY ∗) and σE-slices S(xnP , βn, BY ∗)
with yn ∈ SY ∩E and xn ∈ SE such that, for every n ∈ N,

(I) S(xnP , βn, BY ∗) ⊂ {y∗ ∈ BY ∗ : Re y∗(yn) ≥ 1− γn/2} ⊂ S(yn, γn, BY ∗) ⊂
S(xn−1P , βn−1, BY ∗);

(II) diampn S(xnP , βn, BY ∗) < 1/n.
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There exists y∗ ∈
⋂∞

n=1 S(yn, γn, BY ∗) =
⋂∞

n=1 S(xnP , βn, BY ∗), because BY ∗ is
weak∗ compact. One can immediately verify that this y∗ is a weak∗-to-σE point
of continuity of the identity operator on BY ∗ , and thus a weak∗-to-σ(Y ∗, XP )
point of continuity. From [9, Proposition 2.1] it now follows that y∗ ∈ CX .

(b) If X is separable, then set E = X and follow the proof of (a) starting
with picking the finite subsets F1 ⊂ F2 ⊂ · · · of SE. The resulting y∗ is now a
(weak∗, τP )-denting point of BY ∗ . �

The proof of Lemma 4.4 makes use of the following lemma.

Lemma 4.5 (cf. [3, Lemma 1], [2, Lemma 2, p. 200]). Let Z be a Banach space, let
τ be a locally convex topology on Z weaker than the norm topology, let x∗ ∈ (Z, τ)′

with ‖x∗‖ = 1, and let K be a nonempty closed bounded convex subset of Z such
that K ⊂ {x ∈ Z : Re x∗(x) ≥ 0} and K ∩ {x ∈ Z : Re x∗(x) > 0} 6= ∅. Suppose
that every nonempty bounded subset of Z is (τ, τ)-dentable. Then, whenever p
is a τ -continuous seminorm on Z and ε > 0, there is a τ -slice S(y∗, β,K) with
‖y∗‖ = 1 such that

(1) S(y∗, β,K) ⊂ {x ∈ K : Rex∗(x) > 0};
(2) diamp S(y

∗, β,K) < ε.

Proof. The lemma follows from [3, Lemma 1]. �

Proof of Lemma 4.4. Let S(zP , α, BY ∗) be a σE-slice with z ∈ SE, let p be a
σE-continuous seminorm on Y ∗, and let ε > 0. Pick v∗ ∈ Y ∗ so that zP (v

∗) = α−1,
and let C := v∗ + BY ∗ . Then supRe zP (C) = α and thus S(zP , α, C) = {y∗ ∈
C : Re zP (y

∗) > 0}. Set K := {y∗ ∈ C : Re zP (y
∗) ≥ 0}. Since, by Corollary 3.3,

every nonempty bounded subset of Y ∗ is (σE, σE)-dentable, by Lemma 4.5, there
is a σE-slice S(xP , β,K) with x ∈ SE such that

(I) S(xP , β,K) ⊂ {y∗ ∈ K : Re zP (y
∗) > 0} = S(zP , α, C);

(II) diamp S(xP , β,K) < ε.

It now suffices to show that

S(xP , β, C) ⊂ K, (4.1)

because, in this case,

S(xP , β, C) ⊂ S(xP , β,K) ⊂ S(zP , α, C),

and therefore, since C = v∗ +BY ∗ , one has S(xP , β, BY ∗) ⊂ S(zP , α, BY ∗) and

diamp S(xP , β, BY ∗) = diamp S(xP , β, C) ≤ diamp S(xP , β,K) < ε.

Suppose for contradiction that (4.1) fails; that is, let y∗ ∈ S(xP , β, C)\K, that
is, y∗ ∈ C with

RexP (y
∗) > supRe xP (C)− β ≥ supRe xP (K)− β

and Re zP (y
∗) < 0. Letting u∗ ∈ S(xP , β,K) be arbitrary, one has u∗ ∈ K ⊂ C

and Re xP (u
∗) > supRe xP (K)−β. Since Re zP (u

∗) > 0 by (I), there is λ ∈ (0, 1)
such that, for w∗ := (1 − λ)y∗ + λu∗ ∈ C, one has Re zP (w

∗) = 0; thus w∗ ∈ K.
Since Re xP (w

∗) > supRe xP (K) − β, that is, w∗ ∈ S(xP , β,K), one must have
Re zP (w

∗) > 0 by (I), which is a contradiction. �
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