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Abstract. Let L = −∆+ µ be the generalized Schrödinger operator on Rn,
n ≥ 3, where ∆ is the Laplacian and µ 6≡ 0 is a nonnegative Radon measure on
Rn. In this article, we give a characterization of BMOL in terms of Carleson
measures, where BMOL is the BMO-type space associated with the generalized
Schrödinger operator.

1. Introduction and preliminaries

Let L = −∆+µ be the generalized Schrödinger operator on Rn, n ≥ 3, where ∆
is the Laplacian and µ 6≡ 0 is a nonnegative Radon measure on Rn. We note that
only a handful of authors have studied the harmonic analysis problems related
to the generalized Schrödinger operator. Research of the generalized Schrödinger
operator was motivated by Christ [1]. After that, Shen [5] established the bounds
for the fundamental solution of −∆ + µ in Rn and studied the boundedness of
the corresponding Riesz transform ∇(−∆ + µ)−1/2 on Lp(Rn). Sun [7] proved a
uniform Harnack inequality for nonnegative solutions of −∆Gu + µu = 0, where
−∆G is a sub-Laplacian on the stratified Lie group. Moreover, Wu and Yan [8]
recently studied the Hardy space H1

L by means of a maximal function associated
with the heat semigroup e−tL generated by L, and they obtained its character-
izations via atomic decomposition and Riesz transforms. They also investigated
the BMOL space, which is the dual space of H1

L. As a continuation of [8], we
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will characterize BMOL in terms of Carleson measures. This problem has been
investigated in [2] and [4] for the case of the Schrödinger operator.

As in [5] and [8], we will assume throughout this article that µ satisfies the
following conditions. There exist positive constants C0, C1, and δ such that

µ
(
B(x, r)

)
≤ C0

( r

R

)n−2+δ

µ
(
B(x,R)

)
(1.1)

and

µ
(
B(x, r)

)
≤ C1

{
µ
(
B(x, r)

)
+ rn−2

}
(1.2)

for all x ∈ Rn and 0 < r < R, where B(x, r) denotes the (open) ball centered
at x with radius r. Shen [5] has proved that condition (1.1) is equivalent to the
condition ∫

B(x,R)

dµ(y)

|y − x|n−2
≤ C

µ(B(x,R))

Rn−2
.

Condition (1.1) may be regarded as the scale-invariant Kato condition, and con-
dition (1.2) says that the measure µ is doubling on balls satisfying µ(B(x, r)) ≥
crn−2. As pointed out in [5], when dµ = V (x) dx and V (x) ≥ 0 is in the reverse
Hölder class (RH)n/2, that is,( 1

|B(x, r)|

∫
B(x,r)

V (y)n/2 dy
)2/n

≤ C
( 1

|B(x, r)|

∫
B(x,r)

V (y) dy
)
,

then µ satisfies conditions (1.1) and (1.2) for some δ > 0. However, in gen-
eral, measures which satisfy (1.1) and (1.2) need not be absolutely continuous
with respect to the Lebesgue measure on Rn. For instance, if dµ = dσ(x1,
x2) dx3 · · · dxn, where σ is a doubling measure on R2, then µ satisfies (1.1) and
(1.2) for some δ > 0.

To state our results, we recall the following definition of the auxiliary function
m(x, µ) (see [5, p. 522]):

1

m(x, µ)
= sup

{
r > 0 :

µ(B(x, r))

rn−2
≤ C1

}
,

where C1 is the constant in (1.2). With the modified Agmon metric

ds2 = m(x, µ){dx2
1 + · · ·+ dxn

1},
we define the distance function

d(x, y, µ) = inf
γ

∫ 1

0

m
(
γ(t), µ

)∣∣γ′(t)
∣∣ dt,

where γ : [0, 1] → Rn is absolutely continuous and γ(0) = x, γ(1) = y.
We next recall some basic facts regarding Hardy and BMO spaces associated

with the generalized Schrödinger operator L, which has been studied by Wu
and Yan [8]. The Hardy space was introduced in [3], where dµ = V (x) dx and
V ∈ (RH)n/2. Since µ is nonnegative on Rn, the Feynman–Kac formula implies
that the kernel Kt(x, y) of the semigroup

TL
t f(x) = e−tLf(x) =

∫
Rn

Kt(x, y)f(y) dy
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has a Gaussian upper bound. We will use the notational conventions

MLf(x) = sup
t>0

∣∣TL
t f(x)

∣∣,
sQf(x) =

(∫ ∞

0

∣∣Qtf(x)
∣∣2dt

t

) 1
2
,

which correspond to the Hardy–Littlewood maximal function and the L-square
function, respectively.

Definition 1.1. A function f ∈ L1(Rn) is said to be in H1
L if the maximal function

MLf belongs to L1(Rn). The norm of such a function is defined by ‖f‖H1
L(Rn) =

‖MLf‖L1(Rn).

Definition 1.2. Let 1 ≤ q ≤ ∞. A function a ∈ Lq(Rn) is called an H1
L-atom if

r < 4
m(x0,µ)

and the following conditions hold:

(1) supp a ⊂ B(x0, r);

(2) ‖a‖Lq(Rn) ≤ |B(x0, r)|
1
q
−1;

(3) if r < 1
m(x0,µ)

, then
∫
B(x0,r)

a(x) dx = 0.

Wu and Yan [8, Theorem 1.2] gave the following atomic decomposition for the
space H1

L(Rn).

Proposition 1.3. Let µ be a nonnegative Radon measure in Rn, n ≥ 3. Assume
that µ satisfies conditions (1.1) and (1.2) for some δ > 0. Then f ∈ H1

L(Rn) if
and only if f can be written as f =

∑
j λjaj, where the aj’s are H1,∞

L (Rn)-atoms,∑
j |λj| < ∞, and the sum converges in the H1

L(Rn) quasinorm. Moreover,

‖f‖H1
L(Rn) ∼ inf

{∑
j

|λj|
}
,

where the infimum is taken over all atomic decompositions of f into H1,∞
L -atoms.

The dual space of H1
L(Rn) is the BMO-type space BMOL(Rn) (cf. [8]). Let f

be a locally integrable function on Rn, and let B = B(x, r) be a ball. Set

fB =
1

|B(x, r)|

∫
B(x,r)

f(y) dy

and

f(B, µ) =

{
fB if r < m(x, µ)−1,

0 if r ≥ m(x, µ)−1.

Definition 1.4. Let f be a locally integrable function on Rn. We say that f ∈
BMOL(Rn) if

‖f‖BMOL , sup
B

1

|B|

∫
B

∣∣f(y)− f(B, µ)
∣∣ dy < ∞.

Remark 1.5. We can easily get the fact that L∞(Rn) ⊂ BMOL(Rn) ⊂ BMO(Rn)
and ‖f‖BMO ≤ C‖f‖BMOL . By a simple deduction, we obtain
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sup
B

( 1

|B|

∫
B

∣∣f(y)− f(B, µ)
∣∣p dy) 1

p ≤ C‖f‖BMOL .

Definition 1.6. A positive measure µ on Rn+1
+ = Rn × (0,∞) is said to be a

Carleson measure if

‖µ‖ , sup
x∈Rn,r>0

µ(B(x, r)× (0, r))

|B(x, r)|
< ∞.

Let (Qtf)(x) = t2(dT
L
s

ds
|s=t2f)(x), (x, t) ∈ Rn+1

+ . Then our result is given as
follows.

Theorem 1.7. Suppose that µ satisfies (1.1) and (1.2) for some δ > 0. Then we
have the following.

(1) If f ∈ BMOL, then dµf (x, t) , |Qtf(x)|2 dx dt/t is a Carleson measure.
(2) Conversely, if f ∈ L1((1+ |x|)−(n+1) dx) and dµf (x, t) is a Carleson mea-

sure, then f ∈ BMOL.

Moreover, in either case, there exists C > 0 such that

1

C
‖f‖2BMOC

≤ ‖dµf‖ ≤ C‖f‖2BMOL
.

Throughout the article, the letters c and C denote (possibly different) constants
that are independent of the essential variables. By A ∼ B, we mean that there
exists a positive constant C such that 1

C
≤ A

B
≤ C. By U . V, we mean that

there is a constant C > 0 such that U ≤ CV. Given a ball B, we denote by B∗

the ball with same center and twice the radius.

2. Estimates for kernels

We begin by recalling some basic properties of the semigroup kernel Kt(x, y)
associated with TL

t = e−tL. From the Feynman–Kac formula, it is well known
that the kernel Kt(x, y) satisfies the estimates

0 ≤ Kt(x, y) ≤ ht(x− y) , (4πt)−
n
2 e−

|x−y|2
4t . (2.1)

Denote by Γµ(x, y) the fundamental solution of −∆ + µ. Then we have the fol-
lowing estimate for the fundamental solution (cf. [5, Theorem 0.8]).

Proposition 2.1. Let µ be a nonnegative Radon measure in Rn, n ≥ 3. Assume
that µ satisfies conditions (1.1) and (1.2) for some δ > 0. Then

ce−ε2d(x,y,µ)

|x− y|n−2
≤ Γµ(x, y) ≤

Ce−ε1d(x,y,µ)

|x− y|n−2
,

where ε1, ε2, C, and c are positive constants depending only on n and constants
C0, C1, δ in (1.1) and (1.2).

We can obtain the following proposition by using (2.1), Theorem 1.1 in [8], and
the symmetry of Kt(x, y), which can be deduced from the symmetry of Γµ(x, y).

Proposition 2.2. For every N , there is a constant CN such that

0 ≤ Kt(x, y) ≤ CN t
−n

2 e−
c|x−y|2

t

{
1 +

√
tm(x, µ) +

√
tm(y, µ)

}−N
.
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By using Proposition 2.2 and arguments similar to those in the proof of Lem-
ma 3.8 in [8], we obtain the following estimate for the integral kernels of the
operators Qt:

Qt(x, y) = t2
∂Ks(x, y)

∂s

∣∣∣
s=t2

.

Proposition 2.3. The kernel Qt(x, y) satisfies the following estimates.

(1) For every N ∈ Z+, there is a constant CN such that∣∣Qt(x, y)
∣∣ ≤ CN t

−ne−
c|x−y|2

t

{
1 + tm(x, µ) + tm(y, µ)

}−N
.

(2) For every 0 < δ′ < min{1, δ}, there exists a constant c > 0 such that for
all |h| ≤

√
t, we have∣∣Qt(x+ h, y)−Qt(x, y)

∣∣
≤ CN

( |h|
t

)δ′

t−ne−
c|x−y|2

t

{
1 + tm(x, µ) + tm(y, µ)

}−N
.

(3) We have |
∫
Rn Qt(x, y) dy| ≤ CN

(tm(x,µ))δ

(1+tm(x,µ))N
.

From Lemmas 2.1 and 2.7 in [8], we obtain the following.

Proposition 2.4. There exists a sequence of points {xk}∞k=1 in Rn such that the

family B = {Bk | Bk , B(xk,m(xk, µ)
−1), k = 1, 2, . . .} satisfies the following

conditions:

(1)
⋃

k Bk = Rn,
(2) there exists N = N(δ) such that card{j | B∗∗

j ∩ B∗∗
k 6= ∅} ≤ N for all

k ≥ 1.

Moreover, we have ∣∣B(x,R)
∣∣ ≤ ∑

Bk∩B(x,R)6=∅

|Bk| ≤ c
∣∣B(x,R)

∣∣,
where c = c(δ) and R > m(x, µ)−1.

By the proof of Theorem 1.2 in [8] and the proof of Theorem 4 in [2], we can
easily obtain the following lemma.

Lemma 2.5. The correspondence

BMOL 3 f 7→ Φf ∈ (H1
L)

∗

is a linear isomorphism of Banach spaces.

Similar to [2, Lemma 2], the following lemma is also valid for the case of the
generalized Schrödinger operator.

Lemma 2.6. There exists c > 0 such that for all f ∈ BMOL and B = B(x, r)
with r < m(x, µ)−1, we have

|fB∗ | ≤ c
(
1 + log

(
rm(x, µ)

)−1)‖f‖BMOL .
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3. Proofs of main results

In this section, we prove Theorem 1.7.

Lemma 3.1. For all f ∈ L2(Rn), we have ‖sQf‖2 = 1√
8
‖f‖2. Moreover, we have,

in L2(Rn),

f(x) = 8 lim
ε→0,N→∞

∫ N

ε

Q2
tf(x)

dt

t
.

We can prove the above lemma by using spectral techniques and the method
of the proof of Lemma 3 in [2]. We omit the details.

3.1. Proof of Theorem 1.7(1). Noting the kernel decay in Proposition 2.3
and the integrability of (1 + |y|)−n−1|f(y)| (see [6, p. 141]), we can conclude that

Qtf(x) =

∫
Rn

Qt(x, y)f(y) dy

is a well-defined absolutely convergent integral for all (x, t) ∈ Rn+1
+ . Let B =

B(x0, r). We wish to show that

1

|B|

∫ r

0

∫
B

∣∣Qtf(x)
∣∣2dx dt

t
≤ C‖f‖2BMOL

. (3.1)

To do this, we write

f = (f − fB∗)χB∗ + (f − fB∗)χ(B∗)c + fB∗

= f1 + f2 + fB∗ .

For f1, using Lemma 3.1 we have

1

|B|

∫ r

0

∫
B

∣∣Qtf1(x)
∣∣2dx dt

t
≤ C

|B|

∫
B

∣∣sQf1(x)∣∣2 dx
≤ C

|B|
‖f1‖22 =

C

|B|

∫
B∗

|f − fB∗|2 dx

≤ C‖f‖2BMOL
,

where we have used Remark 1.5 in the last step.
Let x ∈ B(x0, r) and t < r. Then via Proposition 2.3(1), we get∣∣Qtf2(x)

∣∣ . ∫
Rn

∣∣f2(y)∣∣ t−n

(1 + |x−y|
t

)n+1
dy

.
∫
(B∗)c

∣∣f(y)− fB∗
∣∣ t

|x0 − y|n+1
dy

.
∞∑
k=1

t

(2kr)n+1

[∫
2kr≤|y−x0|<2k+1r

∣∣f(y)− fB
2k+1r

∣∣ dy
+ (2k+1r)n|fB

2k+1r
− fB∗ |

]
.

t

r

∞∑
k=1

2−k
[
‖f‖BMO + k‖f‖BMO

]
.

t

r
‖f‖BMO.
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Thus, by integrating over B × (0, r), we obtain

1

|B|

∫ r

0

∫
B

∣∣Qtf2(x)
∣∣2dx dt

t
.

∫ r

0

t2

r2
dt

t
‖f‖2BMO

=
C

2
‖f‖2BMO . ‖f‖2BMOL

.

It remains to estimate the third term. At first, we assume that r < m(x0, µ)
−1.

Using m(x, µ)−1 ∼ m(x0, µ)
−1 for x ∈ B (cf. [5, Proposition 1.8]), we have

1

|B|

∫ r

0

∫
B

∣∣Qt(fB∗)(x)
∣∣2dx dt

t
=

|fB∗|2

|B|

∫ r

0

∫
B

∣∣∣∫
Rn

Qt(x, y) dy
∣∣∣2dx dt

t

.
|fB∗|2

|B|

∫ r

0

∫
B

(
tm(x, µ)

)2δ dx dt
t

. |fB∗|2
(
rm(x0, µ)

)2δ
. ‖f‖2BMOL

(
1 + log

(
rm(x0, µ)

)−1)2(
rm(x0, µ)

)2δ
. ‖f‖2BMOL

,

where the second line follows from Proposition 2.3(3), and we have used Lem-
ma 2.6 in the last step.

Finally, suppose that r ≥ m(x0, µ)
−1, and choose from Proposition 2.4 a finite

family of critical balls {Bk} such that B ⊂ ∪Bk and
∑

|Bk| . |B|. Via Proposi-
tion 2.3 and the fact that |fB∗| ≤ ‖f‖BMOL , we have

1

|B|

∫ r

0

∫
B

∣∣Qt(fB∗)(x)
∣∣2dx dt

t

=
|fB∗ |2

|B|

∫ r

0

∫
B

∣∣∣∫
Rn

Qt(x, y) dy
∣∣∣2dx dt

t

.
‖f‖2BMOL

|B|
∑
k

(∫ m(xk,µ)
−1

0

∫
Bk

(
tm(xk, µ)

)2δ dx dt
t

+

∫ ∞

m(xk,µ)−1

∫
Bk

dx

(1 + rm(x0, µ))2N−2δ

dt

t

)
. ‖f‖2BMOL

|B|−1
∑

|Bk|

. ‖f‖2BMOL
.

The above argument implies that (3.1) holds. This establishes the first part of
Theorem 1.7.

3.2. Proof of Theorem 1.7(2). Let us fix f ∈ L1((1 + |x|)−n−1 dx) such that
µf , |Qtf(x)|2 dx dt/t is a Carleson measure. In what follows, we show that
such f must belong to BMOL. By Lemma 2.5, it suffices to show that the linear
functional

H1
L 3 g 7→ Φf (g) ,

∫
Rn

f(x)g(x) dx,
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defined at least over finite linear combinations of H1
L-atoms, satisfies the estimate∣∣Φf (g)

∣∣ ≤ c‖µf‖
1
2‖g‖H1

L
. (3.2)

We list some notation as follows:

F (x, t) , Qtf(x), (x, t) ∈ Rn+1
+ ,

G(x, t) , Qtg(x), (x, t) ∈ Rn+1
+ ,

SQg(x) ,
(∫ ∞

0

∫
|x−y|<t

∣∣Qtg(y)
∣∣2dy dt
tn+1

) 1
2
, x ∈ Rn.

From [6] we obtain the following.

Lemma 3.2 ([6, p. 162]). Let F (x, t) and G(x, t) be measurable functions on
Rn+1

+ satisfying

I(F )(x) , sup
x∈B

( 1

|B|

∫ r(B)

0

∫
B

∣∣F (y, t)
∣∣2dy dt

t

) 1
2 ∈ L∞(Rn),

G(G)(x) ,
(∫ ∫

Γ(x)

∣∣G(y, t)
∣∣2dy dt
tn+1

) 1
2 ∈ L1(Rn),

where r(B) denotes the radius of B and Γ(x) = {(y, t) ∈ Rn+1
+ : |y − x| < t}.

Then there exists a constant c > 0 such that∫
Rn+1
+

∣∣F (y, t)G(y, t)
∣∣dy dt

t
≤ c

∫
Rn

I(F )(x)G(G)(x) dx

≤ c
∥∥I(F )

∥∥
L∞

∥∥G(G)
∥∥
L1 .

We temporarily assume that the following two lemmas are true.

Lemma 3.3. Suppose that f ∈ L1((1 + |x|)−(n+1) dx), and let g be an H1
L-atom.

Then
1

8

∫
Rn

f(x)g(x) dx =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t
. (3.3)

Lemma 3.4. If g is a finite linear combination of H1
L-atoms, then there exists

c > 0 such that ‖SQg‖L1 ≤ c‖g‖H1
L
.

Noting that ‖µf‖ = ‖I(F )‖2L∞ and G(G)(x) = SQg(x), then by the above three
lemmas we obtain ∣∣Φf (g)

∣∣ ≤ ∫
Rn

∣∣f(x)g(x)∣∣ dx
≤ c

∫
Rn+1
+

∣∣F (x, t)G(x, t)
∣∣dx dt

t

≤ c
∥∥I(F )

∥∥
L∞

∥∥G(G)
∥∥
L1

≤ c‖µf‖
1
2‖g‖H1

L
,

which establishes (3.2). To complete the proof of Theorem 1.7, it only remains to
prove Lemmas 3.3 and 3.4.
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Proof of Lemma 3.4. By Proposition 1.3 and Definition 1.2, it suffices to consider
sums of atoms associated to balls B(x0, r) with r . m(x0, µ)

−1. Suppose that g(x)
is an H1

L-atom associated with a ball B = B(x0, r). Then we have

‖SQg‖2L2(Rn) =

∫
Rn

[∫
Rn+1
+

∣∣Qtg(y)
∣∣2χΓ(x)(y, t)

dy dt

tn+1

]
dx

=

∫
Rn+1
+

∣∣Qtg(y)
∣∣2∣∣B(y, t)

∣∣dy dt
tn+1

= Cn

∫
Rn+1
+

∣∣Qtg(y)
∣∣2dy dt

t

= Cn‖sQg‖2L2(Rn) =
Cn

8
‖g‖2L2(Rn),

where we have used Lemma 3.1 in the last step. Thus, by Hölder’s inequality we
obtain ∫

B∗∗∗
SQg(x) dx ≤ |B∗∗∗|

1
2

(∫
B∗∗∗

SQg(x)
2 dx

) 1
2

. |B|
1
2‖g‖L2 . 1.

In order to complete the proof of Lemma 3.4, it remains to find a uniform bound
for

I =

∫
(B∗∗∗)c

SQg(x) dx.

We first assume that r < m(x0, µ)
−1. Then by the moment condition on g, we

have

SQg(x) =
[∫ ∞

0

∫
|x−y|<t

(∫
Rn

(
Qt(y, x

′)−Qt(y, x0)
)
g(x′) dx′

)2dy dt

tn+1

] 1
2

≤
[∫ |x−x0|

2

0

∫
|x−y|<t

(∫
B

∣∣Qt(y, x
′)−Qt(y, x0)

∣∣dx′

|B|

)2dy dt

tn+1

] 1
2

+
[∫ ∞

|x−x0|
2

∫
|x−y|<t

(∫
B

∣∣Qt(y, x
′)−Qt(y, x0)

∣∣dx′

|B|

)2dy dt

tn+1

] 1
2

= W1(x) +W2(x).

For W1, it is obvious that |y− x′| ∼ |y− x0| ∼ |x− x0| and |x′ − x0| < |y− x0|/4
and we will get the following estimate from the smoothness of Qt(x, y) = Qt(y, x)
established in Proposition 2.3:

W1(x)

.
[∫ |x−x0|

2

0

∫
|x−y|<t

(∫
B

( |x′ − x0|
t

)δ′

t−n
(
1 +

|y − x0|
t

)−(n+1) dx′

|B|

)2dy dt

tn+1

] 1
2

.
[∫ |x−x0|

2

0

∫
|x−y|<t

(r
t

)2δ′

t−2n
(
1 +

|y − x0|
t

)−2(n+1)dy dt

tn+1

] 1
2
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.
[∫ |x−x0|

2

0

(r
t

)2δ′

t−2n
( t

|x− x0|

)2(n+1)dt

t

] 1
2

= C
rδ

′

|x− x0|n+1

[∫ |x−x0|
2

0

t2−2δ′ dt

t

] 1
2

= C
rδ

′

|x− x0|n+δ′
.

For W2, we have |x′ − x0| ≤ r < |x− x0|/2 ≤ t. Applying Proposition 2.3 gives∣∣Qt(y, x
′)−Qt(y, x0)

∣∣ . ( |x′ − x0|
t

)δ′

t−n.

Thus, for x ∈ (B∗∗∗)c a similar argument to the above deduction leads to

W2(x) .
[∫ ∞

|x−x0|
2

∫
|x−y|<t

(∫
B

( |x′ − x0|
t

)δ′

t−n dx
′

|B|

)2dy dt

tn+1

] 1
2

.
[∫ ∞

|x−x0|
2

∫
|x−y|<t

(r
t

)2δ′

t−2ndy dt

tn+1

] 1
2

= Crδ
[∫ ∞

|x−x0|
2

dt

t2n+2δ′+1

] 1
2

= C
rδ

′

|x− x0|n+δ′
.

Then integrating SQg(x) over (B
∗∗∗)c gives∫

(B∗∗∗)c
SQg(x) dx ≤

∫
(B∗∗∗)c

W1(x) +W2(x) dx

.
∫
|x−x0|>8r

rδ
′

|x− x0|n+δ′
dx . 1.

We next estimate
∫
(B∗∗∗)c

SQg(x) dx with the condition that r is comparable to

m(x0, µ)
−1. Similar to the argument before, we will obtain the pointwise estimate

of SQg(x) for each x ∈ (B∗∗∗)c. To do this, we split the integral in t > 0 defining
SQg(x) into three parts:

SQg(x) =
[∫ ∞

0

∫
|x−y|<t

(∫
Rn

Qt(y, x
′)g(x′) dx′

)2dy dt

tn+1

] 1
2

≤
[∫ r

2

0

∫
|x−y|<t

(∫
Rn

Qt(y, x
′)g(x′) dx′

)2dy dt

tn+1

] 1
2

+
[∫ |x−x0|

4

r
2

∫
|x−y|<t

(∫
Rn

Qt(y, x
′)g(x′) dx′

)2dy dt

tn+1

] 1
2

+
[∫ ∞

|x−x0|
4

∫
|x−y|<t

(∫
Rn

Qt(y, x
′)g(x′) dx′

)2dy dt

tn+1

] 1
2

= E1(x) + E2(x) + E3(x).
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For E1, we have |x′ − y| ∼ |x− x0|. Applying Proposition 2.3(1), we obtain

E1(x) .
[∫ r

2

0

∫
|x−y|<t

(∫
B

t−n
(
1 +

|y − x′|
t

)−(n+1) dx′

|B|

)2dy dt

tn+1

] 1
2

.
[∫ r

2

0

∫
|x−y|<t

t−2n
(
1 +

|x− x0|
t

)−2(n+1)dy dt

tn+1

] 1
2

.
[∫ r

2

0

t−2n
( t

|x− x0|

)2(n+1)dt

t

] 1
2

.
r

|x− x0|n+1
.

For the second term, by using Proposition 2.3(1) together with |x′− y| ∼ |x−x0|
and m(x′, µ)−1 ∼ m(x0, µ)

−1 ∼ r, we obtain

E2(x) .
[∫ |x−x0|

4

r
2

∫
|x−y|<t

(∫
B

t−n(1 + |y − x′|/t)−(n+N+1)

(1 + tm(x0, µ))N
dx′

|B|

)2dy dt

tn+1

] 1
2

.
[∫ |x−x0|

4

r
2

t−2n
( t

|x− x0|

)2(n+N+1)( 1

tm(x0, µ)

)2N dt

t

] 1
2

= C
[ r2(N+1)

|x− x0|2(n+N+1)

∫ 2|x−x0|
r

1

t dt
] 1

2

= C
rN

|x− x0|n+N
.

Finally, for the last term the extra decay just gives

E3(x) .
[∫ ∞

|x−x0|
4

∫
|x−y|<t

(∫
B

t−n
(
1 + tm(x0, µ)

)−N dx′

|B|

)2dy dt

tn+1

] 1
2

.
[∫ ∞

|x−x0|
4

t−2n
( 1

tm(x0, µ)

)2N dt

t

] 1
2

= C
rN

|x− x0|n+N
.

Thus, by integrating SQg(x) over (B
∗∗∗)c, we also have∫

(B∗∗∗)c
SQg(x) dx ≤

∫
(B∗∗∗)c

E1(x) + E2(x) + E3(x) dx

.
∫
|x−x0|>8r

rN

|x− x0|n+N
dx . 1.

This completes the proof of Lemma 3.4. �

We observe that (3.3) is clearly valid when f, g ∈ L2(Rn), while we must justify
the convergence of the integrals in the case when f ∈ L1((1 + |x|)−(n+1) dx) and
g is an H1

L-atom.
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Proof of Lemma 3.3. It should be noted that, by Lemmas 3.2 and 3.4 and the
dominated convergence theorem, the following integral is absolutely convergent
and satisfies

J =

∫
Rn+1
+

F (x, t)G(x, t)
dx dt

t

= lim
ε→0
N→∞

∫ N

ε

∫
Rn

Qtf(x)Qtg(x)
dx dt

t
.

Then, for each t > 0, via Fubini’s theorem we get∫
Rn

Qtf(x)Qtg(x) dx =

∫
Rn

∫
Rn

Qt(x, y)f(y)Qtg(x) dy dx

=

∫
Rn

f(y)Q2
tg(y) dy,

and then

J = lim
ε→0
N→∞

∫ N

ε

[∫
Rn

f(y)Q2
tg(y) dy

]dt
t

= lim
ε→0
N→∞

∫
Rn

f(y)
[∫ N

ε

Q2
tg(y)

dt

t

]
dy. (3.4)

It is easy to prove the absolute integrability in these steps. We can obtain the
following lemma by combining the hypothesis f ∈ L1((1 + |x|)−(n+1) dx), the
kernel decay |Qt(x, y)| . t−n(1+ |x− y|/t)−N , and the following general estimate
on H1

L-atoms.

Lemma 3.5. Let Vt(x, y) be a function satisfying∣∣Vt(x, y)
∣∣ ≤ CN t

−n
(
1 +

|x− y|
t

)−N(
1 + tm(x, µ) + tm(y, µ)

)−N
. (3.5)

Then there exists Cy0,r > 0 such that for each H1
L-atom g supported by B(y0, r),

we have

ΨV g(x) , sup
t>0

∣∣∣∫
Rn

Vt(x, y)g(y) dy
∣∣∣ ≤ Cy0,r

(
1 + |x|

)−(n+1)
, x ∈ Rn. (3.6)

Proof. By Definition 1.2, we know that r < 4m(y0, µ)
−1. We use (3.5) to obtain∣∣∣∫

Rn

Vt(x, y)g(y) dy
∣∣∣ ≤ ∣∣∣∫

Rn

Vt(x, y)g(y) dy
∣∣∣ ≤ C‖g‖L∞ ≤ Cr−n. (3.7)

If x ∈ B(y0, 2r), it is easy to see that 1 ≤ 1+ |x| ≤ 1+ |y0|+2r. Combining with
(3.7), we obtain∣∣∣∫

Rn

Vt(x, y)g(y) dy
∣∣∣ ≤ Cr−n (1 + |y0|+ 2r)n+1

(1 + |x|)n+1
≤ Cy0,r

(
1 + |x|

)−(n+1)
,

where Cy0,r = Cr−n(1 + |y0|+ 2r)n+1.
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If x /∈ B(y0, 2r), then for y ∈ B(y0, r) we have |x − y| ∼ |x − y0|,m(y0, µ) ∼
m(y, µ). Therefore, via (3.5) we obtain∣∣∣∫

Rn

Vt(x, y)g(y) dy
∣∣∣ ≤ CN‖g‖L1t−n

(
1 +

|x− y0|
t

)−N(
1 + tm(y0, µ)

)−N

≤ CN |x− y0|−n−Nm(y0, µ)
−N . (3.8)

Denote by I the integral |
∫
Rn Vt(x, y)g(y) dy|. Applying (3.7) and (3.8) and choos-

ing N = 1 in (3.8), we can easily obtain, for |x| ≥ 2|y0|,(
1 + |y0|

)
I

1
n+1 ≤ Cr−

n
n+1

(
1 + |y0|

)
and (

|x| − |y0|
)
I

1
n+1 ≤ CNm(y0, µ)

− 1
n+1 .

Then

I ≤
(
Cr−

n
n+1

(
1 + |y0|

)
+ CNm(y0, µ)

− 1
n+1

)n+1(
1 + |x|

)−n−1
.

Therefore, we conclude that (3.6) holds true by letting Cy0,r = (Cr−
n

n+1 (1+|y0|)+
CNm(y0, µ)

− 1
n+1 )n+1. For |x| < 2|y0|, we have

I ≤ Cr−n
(
1 + 2|y0|

)n+1(
1 + |x|

)−n−1
.

We also conclude that (3.6) holds true by letting Cy0,r = Cr−n(1 + 2|y0|)n+1. �

Finally, to complete the proof of Lemma 3.3, it remains to prove the estimate

sup
ε,N>0

∣∣∣∫ N

ε

Q2
tg(y)

dt

t

∣∣∣ ≤ Cy0,r

(
1 + |y|

)−(n+1)
, y ∈ Rn. (3.9)

Thus, we define a new kernel Dε(x, y) associated to the operator
∫∞
ε

Q2
tg(y)

dt
t
.

Then∣∣∣∫ N

ε

Q2
tg(y)

dt

t

∣∣∣ = ∣∣∣∫ ∞

ε

Q2
tg(y)

dt

t
−

∫ ∞

N

Q2
tg(y)

dt

t

∣∣∣
=

∣∣∣∫
Rn

Dε(x, y)g(y) dy −
∫
Rn

DN(x, y)g(y) dy
∣∣∣

≤ sup
ε>0

∣∣∣∫
Rn

Dε(x, y)g(y) dy
∣∣∣+ sup

N>0

∣∣∣∫
Rn

DN(x, y)g(y) dy
∣∣∣.

By using spectral techniques, we can easily conclude that

Dε(x, y) =
1

8

(
K2ε2(x, y)−Q√

2ε(x, y)
)
.

So the kernel Dε(x, y) satisfies the condition of Lemma 3.5. Thus, (3.9) holds.
Indeed, (3.9) allows passing the limit inside the integral in (3.4). Applying

Lemma 3.1, we conclude that

J =
1

8

∫
Rn

f(y)g(y) dy.

This completes the proof of Theorem 1.7. �
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