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MOMENT PROBLEM
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Abstract. We present an alternative solution to nonsingular cubic moment
problems, using techniques that are expected to be useful for higher-degree
truncated moment problems. In particular, we apply the theory of recursively
determinate moment matrices to deal with a case of rank-increasing moment
matrix extensions.

1. Introduction

Given a doubly indexed finite sequence of real numbers β ≡ β(m) = {β00,
β10, β01, . . . , βm,0, βm−1,1, . . . , β1,m−1, β0,m} with β00 > 0, the truncated real
moment problem (TRMP) entails seeking necessary and sufficient conditions for
the existence of a positive Borel measure µ supported in the real plane R2 such
that

βij =

∫
xiyj dµ (i, j ∈ Z+, 0 ≤ i+ j ≤ m).

When such a measure exists, we say that µ is a representing measure for β and
that TRMP is soluble.

There is a parallel truncated complex moment problem (TCMP) for a finite
sequence of complex numbers γ ≡ γ(m) : γ00, γ01, γ10, . . ., γ0,m, γ1,m−1, . . . , γm−1,1,
γm,0, with γ00 > 0 and γji = γ̄ij. Here TCMP consists of finding a positive Borel
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measure µ supported in the complex plane C such that γij =
∫
z̄izj dµ (i, j ∈ Z+,

0 ≤ i + j ≤ m). It is well known that TRMP and TCMP are equivalent for an
even integer m (see [4, Proposition 1.12]), and hence any techniques developed
for TCMP are transferable to TRMP. Both problems are simply referred to as
the truncated moment problem (TMP).

In a series of articles, for the case when m = 2d, the first named author and
Fialkow found solutions for various truncated moment problems; for instance,
we obtained complete solutions for m = 2 and m = 4 (see [1], [4], [9], [8]).
Some solutions are based on matrix positivity and extension, combined with a
so-called functional calculus (which is discussed in Section 2) for the columns
of the associated moment matrix. This matrix is defined as follows. For a real
moment sequence β(2d) of even degree, the moment matrix M(d) ≡ M(d)(β(2d))
is given by

M(d)(β(2d)) := (β i+j) i,j∈Z2
+:|i|,|j|≤2d.

If we label the columns of M(d) with the degree lexicographical order, 1, X, Y ,
X2, XY, Y 2, . . . , Xd, . . . , Y d, we can then use the functional calculus for columns
of M(d), introduced in [1]. The moment matrix M(d) is Hankel by rectangular
blocks; for instance,

M(2) ≡



β00 | β10 β01 | β20 β11 β02

−− − −− −− − −− −− −−
β10 | β20 β11 | β30 β21 β12

β01 | β11 β02 | β21 β12 β03

−− − −− −− − −− −− −−
β20 | β30 β21 | β40 β31 β22

β11 | β21 β12 | β31 β22 β13

β02 | β12 β03 | β22 β13 β04


. (1.1)

When m = 2d + 1, a general solution to partial cases of TMP can be found
in [12] and [13] as well as a solution to the truncated matrix moment problem;
a solution to the cubic complex moment problem (when m = 3) was given in
[12]. Kimsey [10] obtained an existence proof of the cubic moment problem in the
complex case; the proof entails a considerably more involved case analysis than
what is presented below. At the same time, the analysis in [10] allows one to have
some control over at least one point in the support of the representing measure.
Related to this, in Remarks 3.2 and 3.4, we will establish a connection between
the support of the representing measure and the column relations associated with
the moment matrix extensions M(2) and M(3).

In [12], explicit examples of cubic bisequences β(3) were given such thatM(1) is
positive and invertible and yet β(3) does not have a 3-atomic representing measure.
For the case of β(3) with M(1) positive semidefinite (possibly noninvertible),
Kimsey [10, Theorems 3.1, 3.2] proved that β(3) always admits a representing
measure with at most four atoms. Finally, we mention that a full abstract solution
to the odd total degree moment problem in several variables was given by Kimsey
in [11].
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We know from [4, Proposition 1.12] that the complex and real truncated
moment problems are equivalent, in the sense that there exists a bridging map
that allows one to translate the hypotheses and conclusions for TCMP into sim-
ilar hypotheses and conclusions for TRMP, and vice versa. Our approach here,
however, focuses on the real cubic moment problem, and analyzes it in its own
right.

In this article, we consider cubic real moment problems and present an alter-
native solution to the “nonsingular” case (i.e., M(1) invertible; see Section 3 for
the formal definition). Our idea is to extend the initial data β(3) to an even-degree
β(4), for which the associated moment matrix M(2) has rank 3 or 4. We then
prove that M(2) (i) is a flat extension of M(1), that (ii) it is a flat extension
of a 4 × 4 submatrix, or that (iii) it admits a flat extension M(3). In all three
cases, we find a finitely atomic representing measure for β(3). In particular, we
identify the support of the minimal representing measure as the intersection of
three nondegenerate conics (in the rank 3 case) and of two nondegenerate conics
(in the rank 4 case).

We anticipate that the present work will contribute to our understanding of
higher-degree moment problems, beginning with the quintic moment problem.
We also expect that solutions to odd-degree moment problems will be applied to
solve the subnormal completion problem studied in [7].

2. Preliminaries

When we build a moment matrix M(2) out of a cubic finite sequence, the
lower right-hand 3 × 3 block will include all quartic moments, which will need
to remain undefined. To obtain our main results, we will choose appropriate
quartic moments and show that M(2) has a representing measure. In order to
describe this process in detail, we need to review basic TMP notation and results
pertaining to the even-degree case.

Necessary conditions. In order to discuss basic necessary conditions for the exis-
tence of a measure, let µ be a representing measure of the even-degree moment
sequence β ≡ β(2d). First, we recall that

0 ≤
∫ ∣∣p(x, y)∣∣2 dµ =

∑
i,j,k,l

aijakl

∫
xi+lyj+k dµ =

∑
i,j,k,l

aijaklβi+lβj+k

if and only if M(d) ≥ 0.
Let Pk denote the set of bivariate polynomials in R[x, y] whose degree is at

most k, and let CM(d) denote the column space of M(d). For k ≤ d, we now
define an assignment from Pk to CM(d); given a polynomial p(x, y) ≡

∑
ij aijx

iyj,

we let p(X,Y ) :=
∑

ij aijX
iY j (so that p(X,Y ) ∈ CM(d)), which defines the

above-mentioned functional calculus. We also let Z(p) denote the zero set of p,
and we define the algebraic variety of β by

V ≡ V(β) :=
⋂

p(x,y)=0,deg p≤dZ(p). (2.1)
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If p̂ denotes the column vector of coefficients of p, then we know that p(X,Y ) =
M(d)p̂; as a consequence, p(X,Y ) = 0 if and only if p̂ ∈ kerM(d). Another neces-
sary condition we will use is suppµ ⊆ V(β) and r := rankM(d) ≤ card suppµ ≤
v := cardV ; this condition is called the variety condition (see [1]). In addition,
if p is any polynomial of degree at most 2d such that p|V ≡ 0, then the Riesz
functional Λ must satisfy Λ(p) :=

∫
p dµ = 0, which is referred to as Consistency

of the moment sequence. The main results in [6] state that the above-mentioned
conditions together with Consistency are sufficient for solubility in the extremal
case (r = v). Moreover, Curto, Fialkow, and Möller [6] showed that Consistency
cannot be replaced by the weaker condition that M(d) is recursively generated,
(RG); that is, if p(X,Y ) = 0, then (pq)(X,Y ) = 0 for each polynomial q with
deg(pq) ≤ d.

In summary, positive semidefiniteness alone is sufficient to solve the quadratic
moment problem (d = 1) (see [1]). However, for d > 1, the solubility of TMP
requires more. For instance, the solution of the quartic moment problem (d = 2)
requires positive semidefiniteness, the variety condition, and the (RG) property
(this last property requires that the moment matrix be recursively generated; see
[1], [4], [9]).

Flat extensions. We recall that M(d) is said to be flat if rankM(d) =
rankM(d−1); that is, M(d) is a rank-preserving positive extension of M(d−1).
In this case, M(d) has a unique rankM(d)-atomic measure. Furthermore, it is
known that if M(d) has a positive extension M(d + k) for some k ∈ Z+, which
in turn admits a flat extension M(d+k+1), then β has a rankM(d+k)-atomic
measure (see [2, Theorem 1.5]). This result is referred to as the flat extension
theorem; it is probably the most efficient, concrete solution to TMP, even though
the construction of an extension is usually difficult for a high-degree TMP.

We will use the flat extension theorem in the proof of our main results; thus, we
need to briefly describe the process of building a flat extension. Since a moment

matrix extensionM(d+1) ofM(d) can be written asM(d+1) =
( M(d) B(d+1)
B(d+1)∗ C(d+1)

)
,

for some rectangular matrices B(d + 1) and C(d + 1), we can adapt a classical
result given by Šmul’jan in the search for a positive M(d+ 1).

Theorem 2.1 (Šmul’jan’s theorem [14, main theorem]). Let A, B, C be matrices
of complex numbers, with A and C square matrices. Then

Ã :=

(
A B
B∗ C

)
≥ 0 ⇐⇒


A ≥ 0,

B = AW (for some W ),

C ≥ W ∗AW.

Moreover, rank Ã = rankA ⇐⇒ C = W ∗AW .

Remark 2.2. When the extension Ã in Theorem 2.1 has the same rank as A, we
say that Ã is a flat extension of A. Besides satisfying this theorem, an extension
M(d+1) must maintain the moment matrix structure; that is, the C-block must
be Hankel. This condition makes generating flat extensions quite difficult in many
instances.
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We now discuss how we can find an explicit formula for a representing measure.
Suppose that M(d) admits a positive extension M(d + k) for some k ∈ Z+

that has a flat extension M(d + k + 1). Thus, β has a rankM(d + k)-atomic
measure µ; also, let r := rankM(d + k). The flat extension theorem says that
the algebraic variety V of M(d+ k+ 1) consists of exactly r points, and we may
write V = {(x1, y1), . . . , (xr, yr)}. Denote the Vandermonde matrix V as

V =

1 x1 y1 x2
1 x1y1 y21 · · · xd+k

1 · · · yd+k
1

...
...

...
...

...
...

...
...

...
...

1 xr yr x2
r xryr y2r · · · xd+k

r · · · yd+k
r

 . (2.2)

If B := {t1, . . . , tr} is the basis for the column space of M(d+ k) and if VB is the
submatrix of V with columns labeled as in B, then we can find the densities by
solving

V T
B
(
ρ1 ρ2 · · · ρr

)T
=

(
Λ(t1) Λ(t2) · · · Λ(tr)

)T
. (2.3)

Finally, we have µ =
∑r

k=1 ρkδ(xk,yk).

Degree 1 transformations. We briefly review a tool that will allow us to convert
the given moment problem into a simpler one; this tool is known as the invari-
ance of moment problems under degree 1 transformations. The complex version
is provided in [4]; we adapt the notation in [4] to obtain a real version.

For a, b, c, d, e, f ∈ R with bf 6= ce, let Ψ(x, y) ≡ (Ψ1(x, y),Ψ2(x, y)) := (a +
bx + cy, d + ex + fy) for x, y ∈ R. If Λβ denotes the Riesz functional associated
with β, then given β ≡ β(2d) we build a new (equivalent) moment sequence

β̃ ≡ β̃(2d) ≡ {β̃ij} given by β̃ij := Λβ(Ψ
i
1Ψ

j
2) (0 ≤ i + j ≤ 2d). We immediately

check that Λβ̃(p) = Λβ(p ◦Ψ) for every p ∈ Pd.

Proposition 2.3 (Invariance under degree 1 transformations; [4, Proposi-

tion 1.7]). Let M(d) and M̃(d) be the moment matrices associated with β and β̃,

respectively, and let Jp̂ := p̂ ◦Ψ (p ∈ Pd). The following statements hold:

(i) M̃(d) = JTM(d)J ;
(ii) J is invertible;
(iii) M̃(d) ≥ 0 ⇔ M(d) ≥ 0;
(iv) rankM̃(d) = rankM(d);
(v) the formula µ = µ̃◦Ψ establishes a one-to-one correspondence between the

sets of representing measures for β and β̃, which preserves measure class
and cardinality of the support; moreover, ϕ(suppµ) = supp µ̃;

(vi) M(d) admits a flat extension if and only if M̃(d) admits a flat extension.

We will now apply Proposition 2.3 to a cubic real binary moment sequence
β ≡ β(3) : {β00, β10, β01, β20, β11, β02, β30, β21, β12, β03} with β00 > 0. Our strategy
is to enlarge β(3) to β(4) by adding new undetermined moments of degree 4; this
extended finite sequence has an associated moment matrix M(2). As we will see
in the remainder of this article, it is enough to consider the case when M(2)
is “normalized”; that is, M(1) is the identity matrix. The case when M(1) is
singular can be dealt with easily using the results in [1] and [3]. We thus assume
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that β00 = 1 and that the principal 2 × 2 and 3 × 3 minors of M(1), d2 and d3,
respectively, are strictly positive. A calculation using Mathematica [15] reveals
that

d2 = −β2
10 + β20,

d3 = −β02β
2
10 + 2β01β10β11 − β2

11 − β2
01β20 + β02β20.

Consider now the degree 1 transformation

Ψ(x, y) ≡ (a+ bx+ cy, d+ ex+ fy),

where a := β01β20−β10β11√
d2d3

, b := β11−β01β10√
d2d3

, c := −
√

d2
d3
, d := − β10√

d2
, e := 1√

d2
, and

f := 0. Observe that

bf − ce = −
√

1

d3
6= 0.

Through this transformation, and using [4, Proposition 1.7], any positive semi-
definite M(2) with a nonsingular M(1) can be translated to

1 0 0 1 0 1

0 1 0 β̃30 β̃21 β̃12

0 0 1 β̃21 β̃12 β̃03

1 β̃30 β̃21 β̃40 β̃31 β̃22

0 β̃21 β̃12 β̃31 β̃22 β̃13

1 β̃12 β̃03 β̃22 β̃13 β̃04

 =: M[a0, a1, a2, a3], (2.4)

where ai := β̃3−i,i.

Recursively determinate moment problems. Our approach to the nonsingular cubic
moment problem will require a key result from the theory of recursively deter-
minate moment matrices (see [5, Theorems 2.3, 2.5, Corollary 2.4]), which we
now briefly describe. We first recall that a moment matrix M(d) is recursively
determinate if there are column dependence relations in M(d) of the form

Xn = p(X,Y ) (p ∈ Pn−1); (2.5)

Y m = q(X,Y ) (q ∈ Pm,m ≤ n, and q has no ym term). (2.6)

One of the main results in [5] follows.

Lemma 2.4 ([5, Corollary 2.4], with d = n = m = 2, so that d = n +m − 2).
Assume that M(2) is positive semidefinite which admits column relations of the
form (2.5) and (2.6), with n = m = 2. Then M(2) admits a flat extension M(3).

We recall that, in general, the solubility of a quartic moment problem requires
the variety condition. However, Lemma 2.4 says that the variety condition is
superfluous if a positive semidefinite M(2) with invertible M(1) has only two
column relations X2 = p(X,Y ) and Y 2 = q(X,Y ), where p and q are linear
polynomials. In such a case, M(2) has a flat extension M(3), and therefore a
4-atomic representing measure. It follows that the pair of equations x2 = p(x, y)
and y2 = q(x, y) has exactly four common real roots.
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3. Cubic binary moment problems

As we have indicated before, the nontrivial cases of the cubic binary moment
problem arise when the submatrixM(1) of β(3) is nonsingular. Moreover, as noted
in [10], the positive semidefiniteness of M(1) is always a necessary condition for
the existence of a representing measure. Thus, in the remainder of this article,
we focus on cubic binary moment problems with M(1) positive definite. When
this happens, we say that β(3) is a nonsingular cubic binary moment sequence.

Main results. Using the degree 1 transformation introduced in Section 2, if β(3)

is a nonsingular cubic binary moment sequence, then we may always assume,
without loss of generality, that β(3) : {1, 0, 0, 1, 0, 1, a0, a1, a2, a3} and we may
write

M(2) :=


1 0 0 1 0 1
0 1 0 a0 a1 a2
0 0 1 a1 a2 a3
1 a0 a1 β40 β31 β22

0 a1 a2 β31 β22 β13

1 a2 a3 β22 β13 β04

 , (3.1)

where β40, β31, β22, β13, and β04 are undetermined new moments. We will prove
that the extended β(4) obtained from β(3) by adding the quartic moments β40,
β31, β22, β13, and β04 admits a representing measure, for appropriate choices of
the new moments; as a result, β(3) also admits a representing measure µ. The
smallest cardinality of suppµ will be 3 in some cases, and 4 in others.

Using Theorem 2.1, we first determine under what conditions the extended
matrix M(2) will be a flat extension of M(1). First, to ensure the positive
semidefiniteness of M(2), and if we let W := B(2) (the upper right-hand 3 × 3
block of M(2)), we see that C(2) (the lower right-hand 3×3 block of M(2)) must
satisfy the inequality C(2) ≥ W TM(1)W , with equality characterizing flatness.
Now,

W T
(
M(1)

)−1
W =W TW

=

 1 + a20 + a21 a0a1 + a1a2 1 + a0a2 + a1a3
a0a1 + a1a2 a21 + a22 a1a2 + a2a3

1 + a0a2 + a1a3 a1a2 + a2a3 1 + a22 + a23

 . (3.2)

Consequently, M(2) is a flat extension of M(1) if and only if

β40 = 1 + a20 + a21, (3.3)

β31 = a0a1 + a1a2, (3.4)

β13 = a1a2 + a2a3, (3.5)

β04 = 1 + a22 + a23, and (3.6)

k := (1 + a0a2 + a1a3)− (a21 + a22) = 0. (3.7)

Condition (3.7) is equivalent to the commutativity of the matrices defined in [10].
We are now ready to prove our first result.
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Theorem 3.1. Let β(3) be a nonsingular cubic binary moment sequence, let k be
as in (3.7), and assume that k = 0. Then β(3) admits a 3-atomic representing
measure.

Proof. From the discussion preceding the statement of Theorem 3.1, the new
quartic moments β40, β31, β13, and β04 must be defined using (3.3)–(3.7), respec-
tively. As for β22, we must use 1 + a0a2 + a1a3, which in this case equals a21 + a22,
because k = 0. With these definitions, we easily conclude that M(2) is a flat
moment matrix extension of M(1), which gives the desired result. �

Remark 3.2. Observe that the proof of Theorem 3.1 shows that the three column
relations in M(2) are

X2 = 1 + a0X + a1Y,

XY = a1X + a2Y,

Y 2 = 1 + a2X + a3Y.

From this it follows that the support of the unique representing measure is the
3-point intersection of a vertical parabola, a nondegenerate hyperbola with a
horizontal asymptote and a vertical asymptote, and a horizontal parabola; all
three conics are completely determined by the initial data.

When k 6= 0, it is not possible to select new quartic moments so that M(2)
is a flat extension of M(1). Therefore, any positive semidefinite moment matrix
extension M(2) will satisfy rankM(2) ≥ 4. Nevertheless, the following theo-
rem shows that it is always possible to choose a set of quartic moments such
that rankM(2) = 4. Once those moments have been appropriately chosen, the
extended moment matrix M(2) will admit a flat extension M(3), and therefore
a 4-atomic representing measure for β(4), which is also a representing measure for
the initial data sequence β(3).

Theorem 3.3. Let β(3) be a nonsingular cubic binary moment sequence, let k be
as in (3.7), and assume that k 6= 0. Then β(3) admits a 4-atomic representing
measure.

Proof. We will divide the proof into two cases: k > 0 and k < 0.
Case 1 : (k > 0). As in the proof of Theorem 3.1, let β40, β31, β13, and β04

be given by (3.3)–(3.7), respectively. Since k > 0, the positivity of M(2) will be
preserved if we let β22 := 1 + a1a3 + a2a4. With this choice of β22, the proposed
extended matrix M(2) will be a positive semidefinite moment matrix, and such
that the block C(2) differs from W T (M(1))−1W in just the (2, 2)-entry. As a
result, rankM(2) = 4. A simple calculation now reveals that

X2 = 1 + a0X + a1Y,

Y 2 = 1 + a2X + a3Y.

We now know thatM(2) is positive semidefinite and recursively determinate, and
by Lemma 2.4, M(2) admits a 4-atomic representing measure; it follows that β(3)

also admits a 4-atomic representing measure.
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Case 2 : (k < 0). Here our strategy is to allow the rank to increase as we
transition from M(1) to the compression of M(2) to the first four rows and
columns. This requires making the columnX2 linearly independent of the columns
1, X, and Y in M(2). It is straightforward to observe that this can be easily
accomplished by letting

β40 := 2 + a21 + a22.

With this definition in hand, we now postulate that M(2) is a flat extension of its
compression to the first four rows and columns. A calculation using Mathematica
reveals that one can accomplish this by defining three of the remaining quartic
moments as follows:

β31 := a1a2 + a2a3,

β22 := a22 + a23,

β13 := a2a3 + a3a4.

Having chosen these moments, we now use Theorem 2.1 to determine the remain-
ing quartic moment, β04. Since we wish to makeM(2) a flat extension of its above-
mentioned compression, a calculation using Mathematica immediately yields

β04 = 2 + a41 + 2a0a2 + a20a
2
2 + 2a21a

2
2 + a42 + 2a1a3

+ 2a0a1a2a3 + a23 + a21a
2
3

− 2a21 − 2a0a
2
1a2 − a22 − 2a0a

3
2 − 2a31a3 − 2a1a

2
2a3. (3.8)

As a result, in M(2) we now have

XY = a1X + a2Y (3.9)

and

Y 2 = p11 + p2X + p3Y + p4X
2 (3.10)

for suitable real scalars p1, p2, p3, p4 (which depend upon a0, a1, a2, a3); moreover,
p4 = −k. We will now build a flat moment matrix extension M(3) of M(2). This
will prove that M(2) admits a 4-atomic representing measure; a fortiori, β(3) also
admits a 4-atomic representing measure, just as in Case 1 above.

To define M(3), we aim to preserve the (RG) property. First, we observe that
the columns 1, X, and Y in M(3) are obtained from those columns in M(2)
by adding suitable cubic and quartic moments. Moreover, the columns XY and
Y 2 are defined using (3.9) and (3.10), while the columns X2Y , XY 2, and Y 3 are
obtained, via the functional calculus, from (3.9) and (3.10). For instance,

X2Y := a1X
2 + a2XY = a1X

2 + a2(a1X + a2Y ) = a2a1X + a22Y + a1X
2

and

Y 3 := p1Y + p2XY + p3Y
2 + p4X

2Y

= p1Y + p2(a1X + a2Y ) + p3(p11 + p2X + p3Y + p4X
2)

+ p4(a2a1X + a22Y + a1X
2).

It follows that both X2Y and Y 3 are linear combinations of the columns 1, X, Y ,
and X2. Now, to define XY 2 one can use either (3.9) or (3.10). However, the (RG)
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property requires that both definitions of XY 2 be compatible. In other words,
the expressions

XY 2 ≡ a1XY + a2Y
2 = a2p11 + (a21 + a2p2)X + (a1a2 + a2p3)Y + a2p4X

2(
obtained using (3.9)

)
and

XY 2 ≡ p1X + p2X
2 + p3XY + p4X

3 = (p1 + a1p3)X + a2p3Y + p2X
2 + p4X

3(
obtained using (3.10)

)
must be identical. Since p4 = −k 6= 0, we immediately get

X3 =
1

p4

[
a2p11 + (a21 + a2p2 − p1 − a1p3)X + a1a2Y + (a2p4 − p2)X

2
]
, (3.11)

which we can then use to define the columnX3. Close examination of (3.11) at the
level of the fourth row inM(3) leads to a formula for the quintic moment β50. This
value must then be inserted in the seventh row of X2 to complete the definition
of X2 in M(3). As a result, in the new moment matrix M(3) we have exhibited
each cubic column as a linear combination of columns associated with monomials
of degree at most 2. This means that M(3) is a flat extension of M(2), as desired.
The proof is now complete. �

Remark 3.4. Observe that the proof of Theorem 3.3 shows that the two column
relations in M(2) are as follows. In Case 1, we have

X2 = 1 + a0X + a1Y,

Y 2 = 1 + a2X + a3Y.

From this we conclude that the support of the minimal representing measure
is the 4-point intersection of a vertical parabola and a horizontal parabola. In
Case 2, we have

XY = a1X + a2Y,

Y 2 = p11 + p2X + p3Y + p4X
2.

Keeping in mind that p4 = −k > 0, it follows that the support of the minimal
representing measure is the 4-point intersection of two nondegenerate hyperbolas,
one with horizontal and vertical asymptotes, and the other with oblique asymp-
totes.

As in Remark 3.2, both conics in Case 1 and both conics in Case 2 are com-
pletely determined by the initial data.

Remark 3.5. The quartic moment β04 defined by (3.8) is nonnegative, being a
diagonal entry of the positive semidefinite matrix M(2). One can say more, how-
ever, by appealing to the theory of semidefinite programming. As is well known,
a polynomial f ∈ P2d is a sum of squares if and only if f = zTQz for some square
matrix Q ≥ 0, where z is the vector of monomials of degree less than or equal
to d. If we let f ≡ f(a0, a1, a2, a3) := β04−1 and y := (1, a2, a3, a

2
1, a

2
2, a0a2, a1a3),
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a calculation using Mathematica reveals that f ≥ 0 if and only if yTRy ≥ 0,
where

R :=



1 0 0 −1 −1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
−1 0 0 1 1 −1 −1
−1 0 0 1 1 −1 −1
1 0 0 −1 −1 1 1
1 0 0 −1 −1 1 1


. (3.12)

Since R is a flat extension of its 3 × 3 compression to the first three rows and
columns, it is clear that R ≥ 0. It follows that β04 ≡ f + 1 ≥ 1 > 0.

Acknowledgments. The authors are deeply indebted to the referees for a
detailed reading of the first version of this article and for several helpful sug-
gestions which led to improvements in the presentation. Some of the proofs in
this paper were obtained using calculations with the software tool Mathematica
[15].

Curto’s work was partially supported by National Science Foundation grant
DMS-1302666. Yoo’s work was partially supported by the Basic Science Research
program through the National Research Foundation of Korea (NRF), funded by
the Ministry of Education (2016R1A6A3A11932349).

References

1. R. E. Curto and L. A. Fialkow, Solution of the truncated complex moment problem for
flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568. Zbl 0876.30033. MR1303090. DOI
10.1090/memo/0568. 526, 528, 529

2. R. E. Curto and L. A. Fialkow, Flat extensions of positive moment matrices: Recur-
sively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648. Zbl 0913.47016.
MR1445490. DOI 10.1090/memo/0648. 528

3. R. E. Curto and L. A. Fialkow, “Flat extensions of positive moment matrices: Rela-
tions in analytic or conjugate terms” in Nonselfadjoint Operator Algebras, Operator The-
ory, and Related Topics, Oper. Theory Adv. Appl. 104. Birkhäuser, Basel, 1998, 59–82.
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