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Abstract. For ε > 0 and a bounded linear operator T acting on some Hilbert
space, the ε-pseudospectrum of T is σε(T ) = {z ∈ C : ‖(zI−T )−1‖ > 1/ε} and
the ε-pseudospectral radius of T is rε(T ) = sup{|z| : z ∈ σε(T )}. In this article,
we provide a characterization of those operators T satisfying rε(T ) = r(T ) + ε
for all ε > 0. Here r(T ) denotes the spectral radius of T .

1. Introduction and preliminaries

As usual, we let N,C denote, respectively, the set of positive integers and the
set of complex numbers, and H will always denote a complex separable infinitely
dimensional Hilbert space endowed with the inner product 〈·, ·〉. Denote by B(H)
the Banach algebra of all bounded linear operators on H.

The spectrum of an operator T ∈ B(H), defined as

σ(T ) =
{
z ∈ C : zI − T is not invertible in B(H)

}
,

is an important invariant which provides much information about the operator.
In general, the operation T 7→ σ(T ) is not continuous, which makes it difficult to
determine the spectrum of an operator. To estimate spectra of operators, some
have proposed the study of pseudospectra of operators. Given T ∈ B(H) and
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ε > 0, the ε-pseudospectrum of T is defined as

σε(T ) =
{
z ∈ C :

∥∥(zI − T )−1
∥∥ > ε−1

}
.

Conventionally, it is assumed that ‖(zI − T )−1‖ = ∞ if z ∈ σ(T ). (See [8] for
other equivalent definitions of the ε-pseudospectrum. Pseudospectra can also be
defined for elements in a Banach algebra; see [7].)

The properties of pseudospectra differ substantially from those of the spectrum.
It is trivial to see that the ε-pseudospectrum of T is always open and that⋂

ε>0

σε(T ) = σ(T ).

Moreover, it is known that the map (ε, T ) 7→ σε(T ) is continuous (see, e.g., [3,
Proposition 2.7]). Thus, by examining the ε-pseudospectrum of T , one may give
better estimates of its spectrum. Various nice properties of the ε-pseudospectrum,
including those mentioned above, make it an effective tool in both matrix analysis
and operator theory. Among other things, we mention that the ε-pseudospectrum
can be used to give concrete characterizations of special operators, such as nilpo-
tent operators and self-adjoint operators (see [2], [3]).

For T ∈ B(H) and ε > 0, it is known that

σ(T ) +B(0, ε) ⊂ σε(T ),

where the converse inclusion in general does not hold. Here B(0, ε) denotes the
set {z ∈ C : |z| < ε}. For example, if an operator A ∈ B(H) is nilpotent of order

2, then σε(A) = B(0,
√

ε2 + ‖A‖ε) (see [3, Proposition 2.4]), and

σ(A) +B(0, ε) = B(0, ε) ( σε(A).

In this article, we are interested in the relation between the spectral radius and
the pseudospectral radii of a Hilbert space operator. Let T ∈ B(H). The spectral
radius of T is r(T ) = sup{|z| : z ∈ σ(T )}. For ε > 0, the ε-pseudospectral radius
of T is rε(T ) = sup{|z| : z ∈ σε(T )}. Then, by the discussion in the preceding
paragraph, we have rε(T ) ≥ r(T ) + ε for ε > 0, and the inequality is often strict.
Thus a natural question arises.

Question 1.1. When does an operator T satisfy

rε(T ) = r(T ) + ε for all ε > 0? (1.1)

We note that each normaloid operator T satisfies (1.1). Recall that T is said to
be normaloid if ‖T‖ = r(T ). In fact, for any ε > 0, we have σε(T ) ⊂ B(0, ‖T‖+ε).
Hence rε(T ) ≤ ‖T‖+ ε = r(T ) + ε. It follows that rε(T ) = r(T ) + ε. Thus many
special classes of operators, including normal operators, hyponormal operators,
and Toeplitz operators, satisfy (1.1). For convenience, we say that an operator T
is pseudo-normaloid if rε(T ) = r(T ) + ε for all ε > 0. Thus a normaloid operator
is always pseudonormaloid.

In this article, we explore and characterize the structure of pseudonormaloid
operators on Hilbert spaces. Our result depends on an intensive analysis of normal
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approximate eigenvalues. A complex number λ is called a normal approximate
eigenvalue (see [5]) of A ∈ B(H) if there exists a sequence {xn}n≥1 of unit vectors
such that ∥∥(A− λ)xn

∥∥+
∥∥(A− λ)∗xn

∥∥ → 0.

We will prove that a pseudonormaloid operator has at least one normal approxi-
mate eigenvalue.

To state our main result, we need an extra definition. Two operators A and B
are said to be approximately unitarily equivalent (write A ∼=a B) if there exists
a sequence of unitary operators Un such that limn U

∗
nAUn = B. If A ∼=a B, then

it is easy to see that σε(A) = σε(B) for all ε > 0. Our main result here is the
following theorem, which gives an answer to Question 1.1.

Theorem 1.2. An operator T is pseudonormaloid if and only if T is approxi-
mately unitarily equivalent to an operator of form N ⊕A, where N is normal and
rε(A) ≤ r(N) + ε for all ε > 0. In particular, it can be additionally required that
σ(N) = {z ∈ σ(T ) : |z| = r(T )}.

By the above result, if T is pseudonormaloid, then T “has” a normal part N
satisfying

rε(T ) = rε(N), ∀ε > 0;

in particular, r(T ) = r(N). This shows that pseudonormaloid operators possess
a weakened normality. Using Theorem 1.2, one can construct various examples of
pseudonormaloid operators. We will provide an example to show that our result
is sharp (see Example 2.10). This example also shows that the set of normaloid
operators is a proper subset of the set of pseudonormaloid operators.

In the rest of this section, we fix some notation and terminology which will be
used later. Let T ∈ B(H). We denote by kerT and ranT the kernel of T and the
range of T , respectively. If ranT is closed and either kerT or kerT ∗ is of finite
dimension, then T is called a semi-Fredholm operator. The following set

σlre(T ) = {λ ∈ C : T − λ is not semi-Fredholm}

is called the Wolf spectrum of T . Denote by σ0(T ) the set of normal eigenvalues
of T , that is,

σ0(T ) =
{
λ ∈ C : λ is an isolated point of σ(T ) and λ /∈ σlre(T )

}
.

(The reader is referred to [1, p. 210] or [6, p. 5] for more details about normal
eigenvalues.)

For T ∈ B(H), we let σπ(T ) denote the approximate point spectrum of T , that
is,

σπ(T ) = {λ ∈ C : λI − T is not bounded below}.

2. Proof of Theorem 1.2

Proof of sufficiency for Theorem 1.2. For ε > 0, note that

σε(T ) = σε(N ⊕ A) = σε(N) ∪ σε(A).
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Thus

rε(T ) = max
{
rε(N), rε(A)

}
= rε(N) = r(N) + ε ≤ r(T ) + ε.

It follows that rε(T ) = r(T ) + ε. �

To give the proof of necessity for Theorem 1.2, we need several auxiliary results.

Lemma 2.1 ([3, Lemma 2.1]). Let T ∈ B(H) and let λ ∈ σp(T ). If ker(λ − T )
is not a reducing subspace of T , then there exists r > ε > 0 such that B(λ, r) ⊂
σε(T ); in particular, rε(T ) > |λ|+ ε.

Corollary 2.2. Let T ∈ B(H) be pseudonormaloid, and let λ ∈ σ(T ) with |λ| =
r(T ). If ker(T −λ)∪ker(T −λ)∗ 6= {0}, then ker(T −λ) = ker(T −λ)∗ reduces T .

Proof. Assume that ker(T − λ) 6= {0}. If ker(T − λ) does not reduce T , then,
by Lemma 2.1, rε(T ) > |λ| + ε = r(T ) + ε. This contradicts the fact that T
is pseudonormaloid. Thus ker(T − λ) reduces T and ker(T − λ) ⊂ ker(T − λ)∗.
So ker(T − λ)∗ 6= {0}. Note that T ∗ is also pseudonormaloid. Using a similar
argument as above, one obtains ker(T − λ)∗ ⊂ ker(T − λ).

When ker(T − λ)∗ 6= {0}, the proof follows similar lines. �

For e, f ∈ H, we let e⊗ f denote the rank 1 operator on H: x 7→ 〈x, f〉e.

Lemma 2.3. Let T ∈ B(H) and let λ ∈ σπ(T ). If λ is not a normal approximate
eigenvalue of T , then there exists δ > 0 such that, given ε > 0, there exists
K ∈ B(H) with ‖K‖ < ε such that T +K can be written as

T +K =

(
λ e⊗ f
0 A

)
Ce

(Ce)⊥,

where e ∈ H is a unit vector, f ∈ (Ce)⊥ with ‖f‖ ≥ δ, and A acts on (Ce)⊥.

Proof. Since λ ∈ σπ(T ), there exist unit vectors {ei}∞i=1 such that ‖(T−λ)ei‖ → 0.
Note that λ is not a normal approximate eigenvalue of T . Thus ‖(T −λ)∗ei‖ 9 0.
Then there exists δ > 0 such that lim supi ‖(T − λ)∗ei‖ > δ. For any ε > 0, we
can choose n such that ‖(T − λ)en‖ < ε and ‖(T − λ)∗en‖ ≥ δ. Set e = en, set
f = (T − λ)∗en, and set h = (T − λ)en. Thus ‖h‖ < ε, ‖f‖ ≥ δ, and

T =

(
λ e⊗ f

h⊗ e A

)
Ce

(Ce)⊥.

Set

K = −
(

0 0
h⊗ e 0

)
Ce

(Ce)⊥.

Then K is compact with ‖K‖ < ε and

T +K =

(
λ e⊗ f
0 A

)
Ce

(Ce)⊥.

So K satisfies all requirements. �

Proposition 2.4. Let T ∈ B(H) and let λ ∈ σπ(T ). If λ is not a normal approx-
imate eigenvalue of T , then, given ε ∈ (0, 1), there exists r > ε > 0 such that
B(λ, r) ⊂ σε(T ); in particular, rε(T ) > |λ|+ ε.
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Proof. Set

δ1 = sup
{
‖z − T‖+ 1 : |z| ≤ ‖T‖+ 2

}
.

By Lemma 2.3, there exists δ2 > 0 such that, given ε1 ∈ (0, 1), there exists
K ∈ B(H) with ‖K‖ < ε1 such that T +K can be written as

T +K =

(
λ e⊗ f
0 A

)
Ce

(Ce)⊥,

where e ∈ H is a unit vector, f ∈ (Ce)⊥ with ‖f‖ ≥ δ2, and A acts on (Ce)⊥.
Thus

(z − T −K)−1 =

(
(z − λ)−1 (z − λ)−1(e⊗ f)(z − A)−1

0 (z − A)−1

)
and ∥∥(z − T −K)−1

∥∥ ≥
∥∥∥∥((z − λ)−1 (z − λ)−1(e⊗ f)(z − A)−1

0 0

)∥∥∥∥
= |z − λ|−1

√
1 +

∥∥(z − A)∗−1f
∥∥2
.

Set δ̃ = min{3/2,
√
1 + (δ2/δ1)2}.

For any ε ∈ (0, 1), choose δ ∈ (1, δ̃) and set ε̃ = δε/δ̃. Then ε̃ < ε < 1 and

σε̃(T +K) ⊂
{
z ∈ C : |z| ≤ ‖T‖+ 2

}
.

If z ∈ C \ σ(T + K) and |z| ≤ ‖T‖ + 2, then z − T − K and z − A are both
invertible, and ∥∥(z − A)∗−1f

∥∥ ≥ ‖f‖
‖(z − A)∗‖

=
‖f‖

‖z − A‖

≥ ‖f‖
‖z − T −K‖

≥ ‖f‖
δ1

≥ δ2
δ1

and ∥∥(z − T −K)−1
∥∥ ≥ |z − λ|−1

√
1 + (δ2/δ1)2 ≥ |z − λ|−1δ̃. (2.1)

Note that

σε̃(T +K) =
{
z ∈ C :

∥∥(z − T −K)−1
∥∥ > 1/ε̃

}
=

{
z ∈ B

(
0, ‖T‖+ 2

)
:
∥∥(z − T −K)−1

∥∥ > 1/ε̃
}
.

By (2.1), we have

σε̃(T +K) ⊃ σ(T +K) ∪
{
z ∈ B

(
0, ‖T‖+ 2

)
\ σ(T +K) : |z − λ|−1δ̃ > 1/ε̃

}
⊃

{
z ∈ B

(
0, ‖T‖+ 2

)
: |z − λ|−1δ̃ > 1/ε̃

}
=

{
z ∈ B

(
0, ‖T‖+ 2

)
: |z − λ| < δ̃ε̃

}
=

{
z ∈ C : |z − λ| < δ̃ε̃

}
(since δ̃ ≤ 3/2)

= B(λ, δ̃ε̃).
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Thus if |z−λ| < δ̃ε̃, then ‖(z−T −K)−1‖ > 1/ε̃. Since ‖K‖ < ε1 and ε1 ∈ (0, 1)
could be chosen arbitrarily, we deduce that ‖(z − T )−1‖ ≥ 1/ε̃. Note also that

δε = δ̃ε̃ and that ε > ε̃. By the preceding discussion, if |z − λ| < δε, then
‖(z − T )−1‖ > 1/ε. Thus B(λ, δε) ⊂ σε(T ). Set r = δε. Thus the proof is
complete. �

Corollary 2.5. Let T ∈ B(H) be pseudonormaloid. If λ ∈ σ(T ) with |λ| = r(T ),
then λ is a normal approximate eigenvalue of T .

Proof. Obviously, λ lies in the boundary of σ(T ). So λ ∈ σπ(T ). If λ is not a
normal approximate eigenvalue of T , then, by Lemma 2.4, there exists ε > 0 such
that rε(T ) > |λ|+ ε = r(T ) + ε, which is a contradiction. �

Lemma 2.6. Let T ∈ B(H) with kerT = {0} = kerT ∗. If 0 is a normal approx-
imate eigenvalue of T , then there exists an orthonormal sequence {fn}n≥1 in H
such that

lim
n

(
‖Tfn‖+

∥∥T ∗fn
∥∥) = 0.

Proof. Since 0 is a normal approximate eigenvalue of T , we can find unit vectors
{en} such that

lim
n

(
‖Ten‖+

∥∥T ∗en
∥∥) = 0. (2.2)

Assume that T = UP is the polar decomposition of T , where P = |T |. Denote by
E(·) the projection-valued spectral measure corresponding to P . Since kerT =
{0} = kerT ∗, one can check that U is unitary and E({0}) = 0. Thus, given ε > 0
and x ∈ H, there exists δ > 0 such that∥∥E(

[0, δ)
)
x
∥∥+

∥∥E(
[0, δ)

)
U∗x

∥∥ < ε. (2.3)

Claim. Given δ > 0 and ε > 0, there exists N large enough such that∥∥E([
δ, ‖T‖

])
eN

∥∥+
∥∥E([

δ, ‖T‖
])
U∗eN

∥∥ < ε.

In fact, we note that

‖Ten‖ = ‖Pen‖ ≥
∥∥E([

δ, ‖T‖
])
Pen

∥∥ =
∥∥PE

([
δ, ‖T‖

])
en
∥∥ ≥ δ

∥∥E([
δ, ‖T‖

])
en
∥∥

and that

‖T ∗en‖ = ‖PU∗en‖ ≥
∥∥PE

([
δ, ‖T‖

])
U∗en

∥∥−
∥∥PE

(
[0, δ)

)
U∗en

∥∥
≥ δ

∥∥E([
δ, ‖T‖

])
U∗en

∥∥−
∥∥E(

[0, δ)
)
PU∗en

∥∥
≥ δ

∥∥E([
δ, ‖T‖

])
U∗en

∥∥−
∥∥PU∗en

∥∥.
In view of (2.2), one can see that the claim holds.

Set s1 = 1. By the claim, there exists n1 such that∥∥E([
1/s1, ‖T‖

])
en1

∥∥+
∥∥E([

1/s1, ‖T‖
])
U∗en1

∥∥ < 1/22.

In view of (2.3), we can find t1 > s1 such that∥∥E(
[0, 1/t1)

)
en1

∥∥+
∥∥E(

[0, 1/t1)
)
U∗en1

∥∥ < 1/22.
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Set s2 = t1 + 1. By the claim, there exists n2 > n1 such that∥∥E([
1/s2, ‖T‖

])
en2

∥∥+
∥∥E([

1/s2, ‖T‖
])
U∗en2

∥∥ < 1/23.

In view of (2.3), we can find t2 > s2 such that∥∥E(
[0, 1/t2)

)
en2

∥∥+
∥∥E(

[0, 1/t2)
)
U∗en2

∥∥ < 1/23.

Then, proceeding by recursion, there exist {ni : i ≥ 1} and {si, ti : i ≥ 1} such
that si < ti < si+1,∥∥E([

1/si, ‖T‖
])
eni

∥∥+
∥∥E([

1/si, ‖T‖
])
U∗eni

∥∥ < 1/2i+1,

and ∥∥E(
[0, 1/ti)

)
eni

∥∥+
∥∥E(

[0, 1/ti)
)
U∗eni

∥∥ < 1/2i+1.

For each i ≥ 1, we have∥∥E(
[1/ti, 1/si)

)
eni

∥∥ =
∥∥eni

− E
([
1/si, ‖T‖

])
eni

− E
(
[0, 1/ti)

)
eni

∥∥
≥ 1−

∥∥E([
1/si, ‖T‖

])
eni

∥∥−
∥∥E(

[0, 1/ti)
)
eni

∥∥ > 1− 1/2i.

Similarly, ∥∥E(
[1/ti, 1/si)

)
U∗eni

∥∥ > 1− 1/2i.

That is,

min
{∥∥E(

[1/ti, 1/si)
)
eni

∥∥,∥∥E(
[1/ti, 1/si)

)
U∗eni

∥∥} > 1− 1/2i, ∀i ≥ 1. (2.4)

For each i ≥ 1, set

fi =
E([1/ti, 1/si))eni

‖E([1/ti, 1/si))eni
‖
.

Thus {fi} is an orthonormal sequence, since {[1/ti, 1/si) : i ≥ 1} are pairwise
disjoint. In view of (2.4), we compute to see that

‖Tfi‖ ≤ ‖TE([1/ti, 1/si))eni
‖

1− 1/2i
=

‖PE([1/ti, 1/si))eni
‖

1− 1/2i

=
‖E([1/ti, 1/si))Peni

‖
1− 1/2i

≤ ‖Peni
‖

1− 1/2i
→ 0

and ∥∥T ∗fi
∥∥ ≤ ‖PU∗E([1/ti, 1/si))eni

‖
1− 1/2i

≤ ‖PU∗eni
‖

1− 1/2i
+

‖PU∗(E([1/ti, 1/si))eni
− eni

)‖
1− 1/2i

≤ ‖PU∗eni
‖

1− 1/2i
+

(1/2i)‖T‖
1− 1/2i

→ 0.

Thus the proof is complete. �

We let K(H) denote the ideal of compact operators on H.

Lemma 2.7. Let T ∈ B(H), and let λ be a normal approximate eigenvalue of T .
If ker(λI − T ) = {0} = ker(λI − T )∗, then T ∼=a T ⊕ λI.
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Proof. By Lemma 2.6, we can find an orthonormal sequence {en}n≥1 in H such
that

lim
n

(∥∥(T − λ)en
∥∥+

∥∥(T − λ)∗en
∥∥) = 0.

Denote by C∗(T ) the unital C∗-subalgebra of B(H) generated by T and the
identity I. Given a polynomial p(z, w) with two free variables z, w, it is easy
to verify that limn〈p(T ∗, T )en, en〉 = p(λ, λ). Hence limn〈Xen, en〉 exists for all
X ∈ C∗(T ). Define φ(X) = limn〈Xen, en〉 for X ∈ C∗(T ). Then this defines a
complex ∗-homomorphism of C∗(T ) and φ(T ) = λ. Since {en} is orthonormal, it
is easy to see that

φ(K) = lim
n
〈Ken, en〉 = 0, ∀K ∈ C∗(T ) ∩ K(H).

Using Voiculescu’s theorem (see [9, Theorem 1.3] or [4, Corollary II.5.5]), we
obtain T ∼=a λI ⊕ T . �

Theorem 2.8. Let T ∈ B(H) be pseudonormaloid. If N is a normal operator on
some Hilbert space with σ(N) ⊆ {z ∈ σlre(T ) : |z| = r(T )}, then T ∼=a T ⊕N .

Proof. Denote Γ = {z ∈ σlre(T ) : |z| = r(T )}. By Corollary 2.5, each λ ∈ Γ is a
normal approximate eigenvalue of T .

Claim 1 : T ∼=a T ⊕ λI for any λ ∈ Γ, where I is the identity operator on H.
Let λ ∈ Γ. If ker(T − λ) = {0}, then, by Corollary 2.2, ker(T − λ)∗ = {0}. Since
λ ∈ Γ is a normal approximate eigenvalue of T , it follows from Lemma 2.7 that
T ∼=a T ⊕ λI.

If 0 < dimker(T−λI) < ∞, then, by Corollary 2.2, T = λI1⊕T̃ , where I1 is the

identity on ker(T − λI) and T̃ = T |ker(T−λI)⊥ . Hence ker(T̃ − λ) = ker(T̃ − λ)∗ =

{0}. Still, T̃ is pseudonormaloid, λ ∈ σlre(T̃ ), and |λ| = r(T̃ ). By the discussion

in the preceding paragraph, we have T̃ ∼=a T̃ ⊕ λI2, where I2 is the identity on
ker(T − λI)⊥. Thus

T = λI1 ⊕ T̃ ∼=a λI1 ⊕ T̃ ⊕ λI2 = T ⊕ λI2 ∼= T ⊕ λI.

If dim ker(T − λI) = ∞, then, by Corollary 2.2, T = λI1 ⊕ T̃ , where I1 is the

identity on ker(T − λI) and T̃ = T |ker(T−λI)⊥ . Since dimker(T − λI) = ∞, it
follows that

T = λI1 ⊕ T̃ ∼= λI ⊕ λI1 ⊕ T̃ = λI ⊕ T.

This proves Claim 1.
Without loss of generality, we may assume that {λi : i = 1, 2, . . .} is a dense

subset of Γ. Then, by Claim 1, we have

T ∼=a T ⊕ λ1I ∼=a T ⊕ λ2I ⊕ λ1I ∼=a · · · ∼=a T ⊕
( n⊕

i=1

λiI
)

for each n ≥ 1. Using an argument similar to that used in the proof of [10,
Theorem 3.1], one can prove that T ∼=a T ⊕N . For the reader’s convenience, we
repeat the argument from [10, Theorem 3.1].
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Claim 2 : T ∼=a T ⊕ (
⊕∞

i=1 λiI). Given ε > 0, note that {B(λi, ε)}∞i=1 is an open
cover of Γ. Then there exists k ≥ 1 such that {B(λi, ε)}ki=1 is an open cover of Γ.
Then there exists an operator Y on

⊕∞
i=1 H with ‖Y ‖ < ε such that

T ⊕
( ∞⊕

i=1

λiI
)
+ Y ∼= T ⊕

( k⊕
i=1

λiI
)
∼=a T.

It follows that T ⊕ (
⊕∞

i=1 λiI) ∼=a T . This proves Claim 2.
Since

σ
( ∞⊕

i=1

λiI
)
= σlre

( ∞⊕
i=1

λiI
)
= Γ

and N is normal with σ(N) ⊆ Γ, by [4, Theorem II.4.4], we have

N ⊕
( ∞⊕

i=1

λiI
)
∼=a

∞⊕
i=1

λiI.

Therefore, we conclude that

T ⊕N ∼=a

(
T ⊕

( ∞⊕
i=1

λiI
))

⊕N

∼=a T ⊕
(( ∞⊕

i=1

λiI
)
⊕N

)
∼=a T ⊕

( ∞⊕
i=1

λiI
)
∼=a T.

Now the proof is complete. �

Lemma 2.9 ([1, p. 366]). Let T ∈ B(H). Then ∂σ(T ) ⊆ [σ0(T ) ∪ σlre(T )].

Now we are ready to complete the proof of Theorem 1.2.

Proof of necessity for Theorem 1.2. Denote Γ = {z ∈ σ(T ) : |z| = r(T )}, Γ1 =
{z ∈ σlre(T ) : |z| = r(T )}, and Γ0 = Γ\Γ1. Note that Γ0 ⊂ ∂σ(T )\σlre(T ). Then,
by Lemma 2.9, Γ0 ⊂ σ0(T ). Obviously, σ0(T ) is at most countable. Without
loss of generality, we assume that Γ0 = {λi : i = 1, 2, 3, . . .}. In view of [1,
Proposition XI.6.9], each λ ∈ Γ0 is an eigenvalue of T . By Corollary 2.2, T has
a reducing subspace M such that T |M is a diagonal operator with eigenvalues
{λi : i = 1, 2, 3, . . .}. Denote N0 = T |M .

On the other hand, choose a normal operator N1 with σ(N) = Γ1. Then, by
Theorem 2.8, T ∼=a T ⊕N1. Set N = N0 ⊕N1. Then σ(N) = Γ0 ∪ Γ1 = Γ and

T ∼=a T ⊕N1 = T |M⊥ ⊕N0 ⊕N1 = T |M⊥ ⊕N.

Set A = T |M⊥ . Thus

rε(A) ≤ rε(T ) = r(T ) + ε = r(N) + ε = rε(N), ∀ε > 0.

Therefore the proof is complete. �
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Example 2.10. Let S be the unilateral shift on l2(N) defined by

(α1, α2, α3, . . .) 7→ (0, α1, α2, α3, . . .).

Since S is subnormal (and hence normaloid), we have rε(S) = r(S) + ε = 1 + ε.
Let R ∈ B(C2) be the operator on C2 determined by the matrix(

0 2
0 0

)
.

Then, by [3, Proposition 2.4], rε(R) =
√
ε2 + 2ε ≤ 1 + ε = rε(S).

Set T = S ⊕R. Then ‖T‖ = 2 > 1 = r(T ). So T is not normaloid. However, T
is pseudonormaloid, since

rε(T ) = max
{
rε(S), rε(R)

}
= rε(S) = 1 + ε = r(T ) + ε

for ε > 0.

Remark 2.11.

(i) The preceding example shows that the equivalence relation “approximate
unitary equivalence” in Theorem 1.2 cannot be replaced by “unitary equiv-
alence,” since the operator T in Example 2.10 is abnormal; that is, T
admits no nonzero reducing subspace M such that T |M is normal.

(ii) Let T be the pseudonormaloid operator in Example 2.10. By Theorem 1.2,
there exists a normal operator N such that T ∼=a N ⊕ A. We claim that
σ(N) ⊂ {z ∈ σ(T ) : |z| = r(T )}. In fact, since T is essentially normal
(i.e., T ∗T − TT ∗ is compact), by [6, Proposition 4.27], we have

σ(N) ⊂ σlre(T ) =
{
z ∈ C : |z| = 1

}
=

{
z ∈ σ(T ) : |z| = r(T )

}
.

This shows that the spectrum of the normal operator N in Theorem 1.2
in general cannot exceed the set {z ∈ σ(T ) : |z| = r(T )}.

We conclude this section with the following observation.

Proposition 2.12. The set of pseudonormaloid operators is norm-closed.

Proof. Assume that {An} are pseudonormaloid operators and that An → A. For
any ε > 0, by the continuity of the ε-pseudospectrum, we have rε(An) → rε(A)
(see [3, Proposition 2.7]). By the upper semicontinuity of the spectrum, we have
lim supn r(An) ≤ r(A). Thus

rε(A) = lim
n

rε(An) = lim
n

(
r(An) + ε

)
≤ r(A) + ε.

It follows that rε(A) = r(A) + ε. �

Acknowledgments. The authors thank the anonymous referees for helpful sug-
gestions leading to improvements in the presentation of this article.

Jia’s and Feng’s work was partially supported by National Natural Science
Foundation of China grant 11601181, National Social Science Foundation of China
grant 16BTJ020, and Jilin University of Finance and Economics grant 2016Q31.



484 B. JIA and Y. FENG

References

1. J. B. Conway, A Course in Functional Analysis, 2nd ed., Grad. Texts in Math. 96, Springer,
New York, 1990. Zbl 0706.46003. MR1070713. 476, 482

2. J. Cui, V. Forstall, C.-K. Li, and V. Yannello, Properties and preservers of the pseudospec-
trum, Linear Algebra Appl. 436 (2012), no. 2, 316–325. Zbl 1245.15028. MR2854873. DOI
10.1016/j.laa.2011.03.044. 475

3. J. Cui, C.-K. Li, and Y.-T. Poon, Pseudospectra of special operators and pseudospectrum
preservers, J. Math. Anal. Appl. 419 (2014), no. 2, 1261–1273. Zbl 1357.47007. MR3225433.
DOI 10.1016/j.jmaa.2014.05.041. 475, 477, 483

4. K. R. Davidson, C∗-Algebras by Example, Fields Inst. Monogr. 6, Amer. Math. Soc., Prov-
idence, 1996. Zbl 0958.46029. MR1402012. DOI 10.1090/fim/006. 481, 482

5. M. Fujii, T. Furuta, and Y. Seo, An inequality for some nonnormal operators—Extension
to normal approximate eigenvalues, Proc. Amer. Math. Soc. 118 (1993), no. 3, 899–902.
Zbl 0783.47027. MR1152981. DOI 10.2307/2160139. 476

6. D. A. Herrero, Approximation of Hilbert Space Operators, I, 2nd ed., Pitman Res. Notes
Math. Ser. 224, Longman Scientific and Technical, Harlow, 1989. Zbl 0694.47001.
MR1088255. 476, 483

7. A. Krishnan and S. H. Kulkarni, Pseudospectra of elements of reduced Banach algebras,
Adv. Oper. Theory 2 (2017), no. 4, 475–493. Zbl 06804223. MR3730042. DOI 10.22034/
aot.1702-1112. 475

8. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnor-
mal Matrices and Operators, Princeton Univ. Press, Princeton, 2005. Zbl 1085.15009.
MR2155029. 475

9. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math.
Pures Appl. 21 (1976), no. 1, 97–113. Zbl 0335.46039. MR0415338. 481

10. S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math.
Anal. 9 (2015), no. 3, 173–193. Zbl 06430452. MR3296133. DOI 10.15352/bjma/09-3-13.
481

1School of Statistics, Jilin University of Finance and Economics, Changchun
130117, People’s Republic of China.

E-mail address: botingjia@163.com

2School of Management Science and Information Engineering, Jilin University
of Finance and Economics, Changchun 130117, People’s Republic of China.

E-mail address: fengyouling79@163.com

http://www.emis.de/cgi-bin/MATH-item?0706.46003
http://www.ams.org/mathscinet-getitem?mr=1070713
http://www.emis.de/cgi-bin/MATH-item?1245.15028
http://www.ams.org/mathscinet-getitem?mr=2854873
https://doi.org/10.1016/j.laa.2011.03.044
https://doi.org/10.1016/j.laa.2011.03.044
http://www.emis.de/cgi-bin/MATH-item?1357.47007
http://www.ams.org/mathscinet-getitem?mr=3225433
https://doi.org/10.1016/j.jmaa.2014.05.041
http://www.emis.de/cgi-bin/MATH-item?0958.46029
http://www.ams.org/mathscinet-getitem?mr=1402012
https://doi.org/10.1090/fim/006
http://www.emis.de/cgi-bin/MATH-item?0783.47027
http://www.ams.org/mathscinet-getitem?mr=1152981
https://doi.org/10.2307/2160139
http://www.emis.de/cgi-bin/MATH-item?0694.47001
http://www.ams.org/mathscinet-getitem?mr=1088255
http://www.emis.de/cgi-bin/MATH-item?06804223
http://www.ams.org/mathscinet-getitem?mr=3730042
https://doi.org/10.22034/aot.1702-1112
https://doi.org/10.22034/aot.1702-1112
http://www.emis.de/cgi-bin/MATH-item?1085.15009
http://www.ams.org/mathscinet-getitem?mr=2155029
http://www.emis.de/cgi-bin/MATH-item?0335.46039
http://www.ams.org/mathscinet-getitem?mr=0415338
http://www.emis.de/cgi-bin/MATH-item?06430452
http://www.ams.org/mathscinet-getitem?mr=3296133
https://doi.org/10.15352/bjma/09-3-13
mailto:botingjia@163.com
mailto:fengyouling79@163.com

	1 Introduction and preliminaries
	2 Proof of Theorem 1.2
	Acknowledgments
	References
	Author's addresses

