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Abstract. We present some results on the nuclearity (or trace class) of
integral operators acting on L2(X, ν) under specific conditions. These results
improve and adapt a number of methods found in references on this subject.
Our discussions take place within the context of special subsets (and man-
ifolds) of the Euclidean space (endowed with weighted Lebesgue measure),
second-countable spaces, and Lusin and Souslin spaces (endowed with σ-finite
Borel measure).

1. Introduction

Nuclearity and trace formulas frequently arise in a great variety of problems
in several branches of mathematics like the asymptotic behavior of eigenvalues,
regularity of pseudodifferential operators, Fredholm determinants, and learning
theory. (For recent research on and applications of this subject, see, e.g., [4], [8],
[11], and their references; for examples of classical authors and results on this
subject, see [9] and [12].)

To clarify what we mean by nuclearity, we start with the basic setting of this
article. Let H1 and H2 be Hilbert spaces, and let T : H1 → H2 be a linear
and compact operator with adjoint T ∗ : H2 → H1. The well-known singular
value decomposition theorem implies the existence of (countable) orthonormal
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sets {φj} ⊂ H1 and {ψj} ⊂ H2 and singular values sj ≥ sj+1 ≥ 0 such that

T (f) =
∑
j

sj〈f, φj〉ψj, f ∈ H1, (1.1)

where 〈·, ·〉 denotes the inner product of H1, T (φj) = sjψj, T
∗(ψj) = sjφj, and

T ∗T (φj) = s2jφj. Note that

f =
∑
j

〈f, φj〉φj + u, u ⊥ φj, and T (u) = 0, f ∈ H1.

Now, for each p > 0, we say that T is in the Schatten class Sp when

‖T‖pp =
∑
j

spj <∞.

If p ≥ 1, then Sp is a Banach space (see [9], [12, p. 12]).
The class S1 is the nuclear (or trace) class, and the class S2 is the Hilbert–

Schmidt class. If T is in the trace class and H = H1 = H2, then we can define its
trace as

tr(T ) =
∑
φ∈B

〈
T (φ), φ

〉
,

for one (and any) orthonormal basis B of H. It follows that tr : S1 → C is a
bounded linear functional with norm 1. In particular, if T ∈ Sp, then

tr
(
|T |p

)
= ‖T‖pp =

∑
φ∈B

〈
|T |p(φ), φ

〉
,

where B is an orthonormal basis for H, and |T | = (T ∗T )1/2 is the only positive
square root of T (see Theorem 3.1 in [12, p. 31]). Note that S1 ⊂ S2, and if
T ∈ S2, then it is in S1 if and only if the Fredholm determinant

det
(
I + |T |

)
=

∏
j

(1 + sj)

is convergent (see [1] for discussions on evaluation of Fredholm determinants).
In this article, we analyze the trace class operators when H = L2(X, ν) (see

[7] for some measure theory). As such, in view of Lemma 2.4 below, we simply
need to work with integral operators. Let (X,A, ν) be a measure space, and
let k : X × X → C be a measurable kernel for which the integral operator
K : L2(X, ν) → L2(X, ν), given by

K(f)(x) =

∫
X

k(x, y)f(y) dν(y), f ∈ L2(X, ν), (1.2)

is well defined. Under conditions which we will state (as needed) throughout the
paper, our plan is to show that if K is in the trace class, then

tr(K) =

∫
X

k(x, x) dν(x). (1.3)

(Readers are directed, e.g., to expressions (4.7) and (6.6) in [8] for details on the
study of trace formulas like (1.3).)
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This kind of result was motivated by the many versions of Mercer’s theorem
for positive definite kernels (see [5]), which is one of the basic tools for proving
the results established in [6]. Recently, Jefferies [10] gave conditions to ensure the
nuclearity of positive integral operators without the use of Mercer’s theorem but
using instead a perfect combination of procedures from [2], [3], and [6].

In this article, we extend or refine some of these results to ensure the nuclearity
of integral operators. In Section 2, we present some basic results. Section 3 is
devoted to providing technical results. Section 4 is the main section, where we
give conditions to ensure the nuclearity of an integral operator and calculate
their trace. Finally, in Section 5 we present our concluding remarks regarding the
special contexts.

2. Auxiliary results

In this section, we present some technical results that we will use as the main
tools of this work. Lemma 2.1 and Mercer’s theorem are well known and were
the basic tools used to prove the results of [6]. We provide an idea of the proof
of this lemma for the sake of completeness.

Lemma 2.1. Let {Rn} and {Sn} be sequences of bounded operators in H such
that Rn(f) → R(f) and Sn(f) → S(f) for any f ∈ H. If p ≥ 1 and T is in Sp,
then for some p ≥ 1,

lim
n→∞

‖RnTS
∗
n −RTS∗‖p = 0.

Proof. If Tj(f) = sj〈f, φj〉ψj, where φj, ψj, and sj come from (1.1), then direct
calculation shows that

‖RnTjS
∗
n −RTjS

∗‖p ≤
∥∥RnTj(S

∗
n − S∗)

∥∥
p
+
∥∥(R−Rn)TjS

∗∥∥
p

≤ sj
(∥∥(Sn − S)∗(φj)

∥∥∥∥Rn(ψj)
∥∥

+
∥∥S∗(φj)

∥∥∥∥(R−Rn)(ψj)
∥∥)

converges to zero as n → ∞. This argument may be repeated to prove the same
result for finite-rank operators. It follows from (1.1) that the set of finite-rank
operators is dense in the compact operator class (and in the class Sp). The proof
follows from an ε approximation procedure. �

We consider the next lemma as the main functional analytic tool in this text.
If H is separable, one can use another result like that used in [10, Proposition 3.1]
as one of its main tools. Our version has a very simple proof.

Lemma 2.2. Let H be a Hilbert space and let there be a sequence Tn ∈ Sp, with
C = supn ‖Tn‖p < ∞, for some p > 0. If |Tn|p(f) converges to |T |p(f) for any
f ∈ H and some bounded operator T : H → H, then T ∈ Sp and ‖T‖p ≤ C.

Proof. Since

‖Tn‖pp =
∑
f∈B

〈
|Tn|p(φ), φ

〉
≤ Cp <∞
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for all n ∈ N and any orthonormal basis B of H, it is easy to see that
m∑
j=1

〈
|T |p(φj), φj

〉
= lim

n→∞

m∑
j=1

〈
|Tn|p(φj), φj

〉
≤ Cp <∞

for each m ∈ N and any φ1, φ2, . . . , φm ∈ B. Hence,

‖T‖p ≤ sup
D

∑
φ∈D

〈
|T |p(φ), φ

〉
≤ Cp <∞,

where the supremum is taken over all finite sets D ⊂ B. It then follows that T is
in Sp. �

Remark 2.3. Note that the preceding lemmas still hold when n is replaced with
u, where u is in a metric space V and u→ α.

The next lemma gives a series representation for kernels of Hilbert–Schmidt
operators.

Lemma 2.4. Let T : L2(X, ν) → L2(X, ν) be a Hilbert–Schmidt operator. Then
it is an integral operator with kernel

k(x, y) =
∑
j

sjηj(x)ξj(y), x, y ∈ X (a.e.),

where {ξj} and {ηj} are orthonormal sets and sj are singular values of T .

Proof. Let {ξj}, {ηj}, and sj be given by the singular value decomposition theo-

rem applied to T . It follows that {ηj⊗ξj} is an orthonormal set in L2(X×X, ν⊗ν),
where ηj ⊗ ξj(x, y) = ηj(x)ξj(y), x, y ∈ X. Now take

k =
∑
j

sjηj ⊗ ξj,

which is in L2(X ×X, ν ⊗ ν). A direct calculation shows that

‖k‖2 =
∑

s2j <∞

and that k is the kernel of T . �

If T is a (self-adjoint) positive definite operator, that is, if〈
T (f), f

〉
≥ 0, f ∈ L2(X, ν), (2.1)

then a quite general version of Mercer’s theorem along the lines of those proved
in [5] may hold for T . Precisely, T has spectral representation

T (f) =
∞∑
n=1

λn〈f, φn〉φn, f ∈ L2(X, ν),

where {φn} is orthonormal in L2(X, ν) and λn ≥ λn+1 ≥ 0 are the eigenvalues
of T . Also, if Mercer’s theorem holds true, then

k(x, y) =
∞∑
n=1

λnφn(x)φn(y), x, y ∈ X,
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with at least absolute convergence on X. It is now clear that one simply needs to
put x = y in this series and integrate it to obtain the trace of T as in (1.3).

3. Filters and approximations

We begin the discussion in this section as generally as possible, gradually adding
hypotheses and providing examples as needed (given the context). (Readers are
directed to [2], [3], [6], and [10] for a number of special and more general contexts
in which the conditions that we will be adding hold.)

Let (X,A, ν) be a measure space. We say that a (countable) family F =
{F1, F2, . . .} of sub-σ-algebras of A is a filter when Fn ⊂ Fn+1 and each Fn

is generated by a (countable) partition PF
n of Xn ⊂ X, with elements (of finite

and positive measure) in A.

Definition 3.1. Let F be a filter. The conditional expectation operator Pn :
L2(X, ν) → L2(X, ν) is given by

Pn(f) = E(f |Fn) =
∑
U∈PF

n

χU

ν(U)

∫
U

f dν, f ∈ L2(X, ν), (3.1)

where χU is the characteristic function of U .

Note that if x is in some Un(x) ∈ PF
n , then

Pn(f)(x) =
1

ν(Un(x))

∫
Un(x)

f dν.

Definition 3.2. Let k be a kernel with finite integral in U × V for each U, V in
PF

n and each n = 1, 2, . . ..̇ The conditional expectation E(k|Fn × Fn) is given by

kn = E(k|Fn × Fn) =
∑

U,V ∈PF
n

χU×V

ν(U × V )

∫
U×V

k d(ν × ν). (3.2)

Again, if x is in some Un(x) and y is in some Un(y), both in PF
n , then

kn(x, y) =
1

ν(Un(x))ν(Un(y))

∫
Un(x)

∫
Un(y)

k(s, t) dν(s) dν(t).

An important tool related to the boundedness and convergence analysis of Pn

is the maximal operator given by

HF (f)(x) = sup
n∈N

Pn

(
|f |

)
(x), x ∈ X.

We also use the notation

HF 2(k)(x, y) = sup
n∈N

E
(
|k||Fn × Fn

)
(x, y), x, y ∈ X.

Remark 3.3. In [6], concepts are used similar to (3.1) and (3.2), with the notation
Dt and k

t, respectively, where t > 0, but they are not exactly the same. In par-
ticular, Dt did not come from a partition in that work; nevertheless, the concepts
we discuss here make sense there.

The conditional expectation has the following important properties.
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Lemma 3.4. We have that Pn is an orthogonal projector from L2(X, ν) to Wn,
where Wn = span{χU , U ∈ PF

n }. Also, Pn is an integral operator with (positive
definite) kernel

en(x, y) =
∑
U∈PF

n

χU(x)χU(y)

ν(U)
, x, y ∈ X.

Proof. It suffices to show that P 2
n = Pn = P ∗

n . In fact, it follows from (3.1) that

Pn(αχU) = αχU , U ∈ PF
n , α ∈ C,

and that { χU√
ν(U)

, U ∈ PF
n } is an orthonormal basis for Wn. Also, if we write

PF
n = {Unj} and ξj =

χUnj√
ν(Unj)

, we can see that

Pn(f) =
∑
j

〈f, ξj〉ξj, f ∈ L2(X, ν). (3.3)

Hence, Pn = P 2
n is self-adjoint and positive definite, with ‖Pn‖ = 1. Since∫
X

en(x, y)f(y) dν(y) =

∫
X

∑
U∈PF

n

χU(x)χU(y)

ν(U)
f(y) dν(y)

=
∑
U∈PF

n

χU(x)

ν(U)

∫
U

f dν(y)

= Pn(f)(x), x ∈ X,

it follows that Pn is an integral operator with kernel en. �

To prove the next lemma, we add boundedness to the integral operator K :
L2(X, ν) → L2(X, ν) given by (1.2).

Lemma 3.5. Let K be a bounded integral operator given by (1.2), with kernel k.
The integral operator Kn, with kernel kn given by (3.2), is also bounded and

(PnKPn)(f) = Kn(f), f ∈ L2(X, ν).

Proof. Since each element of PF
n has finite measure, it follows from Fubini’s/

Tonelli’s theorem and Lemma 3.4 that, for each n = 1, 2, . . . ,

(PnKPn)(f) =
∑
i

〈f, ξi〉Pn(K)(ξi)

=
∑
i

〈f, ξi〉
∑
j

〈
K(ξi), ξj

〉
ξj

=
∑
i,j

χUnj

ν(Uni)ν(Unj)

∫
Uni

f dν

∫
Unj

∫
Uni

K dν dν

=
∑

U,V ∈PF
n

χU

ν(U)ν(V )

∫
U

∫
V

k(u, v) dν(u) dν(v)

∫
U

f dν

= (Knf), f ∈ L2(X, ν).

The result follows. In particular, ‖Kn‖ ≤ ‖PnKPn‖ = ‖K‖. �
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We can easily verify that when X is a Lebesgue measurable subset of the
Euclidean space, the Lebesgue differentiation theorem and boundedness of the
Hardy–Littlewood maximal operator hold (see [6]).

We are now able to add another hypothesis to (X,A, ν) to ensure that similar
versions to this result hold in a more general setting. The contexts within which we
will work include those where X is in the Euclidean sphere or a similar manifold.
The results are related to the concept of martingale and Lusin filtration and
extend topics covered in [2], [3], and [10].

Assumption 3.6. For each f ∈ L2(X, ν), the sequence E(f |Fn) = Pn(f) converges
to f (almost everywhere).

Note that this and the next assumption are (weak) versions of the Lebesgue
differentiation theorem and are related to the martingale convergence theorem
(see [2], [10]). It is clear that∣∣Pn(f)(x)

∣∣ ≤ HF (f)(x), x ∈ X.

To bound the maximal operator we also need to add the next assumption.

Assumption 3.7. The maximal operator HF is bounded in L2(X, ν), which means
the existence of a constant C > 0 such that∥∥HF (f)

∥∥
2
≤ C‖f‖2, f ∈ L2(X, ν). (3.4)

This enables us to obtain a convergence result related to the lemmas of Sec-
tion 2.

Proposition 3.8. Let K be bounded, and suppose that Assumptions 3.6 and 3.7
hold. If f ∈ L2(X, ν), then Kn(f) converges to K(f).

Proof. Since |Pn(f)(x) − f(x)| ≤ HF (f)(x) + |f(x)|, for x ∈ X, it follows that
Pn(f) converges to f in L2(X, ν). Hence,∥∥PnKPn(f)−K(f)

∥∥ ≤ ‖Pn‖
∥∥KPn(f)−K(f)

∥∥+
∥∥PnK(f)−K(f)

∥∥
≤ ‖Pn‖‖K‖

∥∥Pn(f)− f
∥∥+

∥∥Pn

(
K(f)

)
−K(f)

∥∥,
and the result follows. �

Now we use (3.3) to define another orthogonal projector Pn,m : L2(X, ν) →
L2(X, ν) as

Pn,m(f) =
m∑
j=1

〈f, ξj〉ξj, f ∈ L2(X, ν).

It follows from Bessel’s inequality that∥∥Pn(f)− Pn,m(f)
∥∥2

2
=

∑
j>m

∣∣〈f, ξj〉∣∣2, f ∈ L2(X, ν), (3.5)
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and that Pn,m(f) converges to Pn(f) as m→ ∞. We can also use (3.2) to define

Kn,m(x, y) =
∑

U,V ∈PF
n,m

χU(x)χV (y)

ν(U)ν(V )

∫
U×V

k d(ν × ν), x, y ∈ X, (3.6)

where P F
n,m = {Un1, Un2, . . . , Unm}.

4. The main results

In this section, we use Assumptions 3.6 and 3.7 to prove results on the nuclearity
of integral operators. We note that these assumptions are not needed in the next
result.

Lemma 4.1. Let k be as in Definition 3.2. Then Pn,mKPn,m is a nuclear operator
with trace

tr(Pn,mKPn,m) =

∫
X

kn,m(x, x) dν(x).

Proof. It is clear that each operator Pn,mKPn,m has finite rank, and hence, it is
nuclear and

tr(Pn,mKPn,m) =
∑

〈KPn,mu, Pn,mu〉, u ∈ B,

to any orthonormal basis B of L2(X, ν). If one chooses the basis

B =
{ χUnj√

ν(Unj
)

}
∪B1,

it follows that

tr(Pn,mKPn,m) =
m∑
j=1

〈
K(ξj), ξj

〉
=

m∑
j=1

∫
X

(∫
Unj

k(u, v) dν(v)√
ν(Unj)

χUnj
(u)√

ν(Unj)

)
dν(u)

=
∑

U∈PF
n,m

1

ν(U)

∫
U×U

k(u, v) dν(u) dν(v)

=

∫
X

kn,m(x, x) dν(x). �

The last result is used to prove one of the main results of this article. Note that
the calculations ahead are similar to those in [2].

Theorem 4.2. Let K : L2(X, ν) → L2(X, ν) be an integral operator, and suppose
that Assumptions 3.6 and 3.7 hold. If K is in the trace class, then∫

X

HF 2(k)(x, x) dν(x) < C2‖K‖1,

where C comes from (3.4). In particular,

tr(K) =

∫
X

k̃(x, x) dν(x), (4.1)
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where

k̃ = lim
n→∞

E(k|Fn × Fn).

Proof. By using Lemma 2.4, one can define

g(x, y) =
∑
j

sj
∣∣ηj(x)∣∣∣∣ξj(y)∣∣, x, y ∈ X.

It follows that ∫
X×X

|g|2ν × ν ≤
(∑

j

sj

)2

< +∞,

and g is in L2(X ×X, ν ⊗ ν). Since∣∣k(x, y)∣∣2 ≤ ∣∣g(x, y)∣∣2 ≤ ∑
j

sj
∣∣ηj(x)∣∣2∑

l

sl
∣∣ξl(y)∣∣2, x, y ∈ X (a.e.),

(3.2) implies that

E
(
|k||Fn × Fn

)
≤ E(g|Fn × Fn), n ∈ N,

and that

HF 2(k) ≤ HF 2(g).

Otherwise, the equalities

E(g|Fn × Fn)(x, y) =
∑

U,V ∈Pn

χU×V (x, y)

ν(U × V )

∫
U×V

g dν × ν

=
∑

U,V ∈Pn

χU×V (x, y)

ν(U)ν(V )

∫
U

∫
V

∑
j

sj
∣∣ηj(u)∣∣∣∣ξj(v)∣∣ dν × ν(u, v)

=
∑
j

sj
∑
U∈Pn

χU(x)

ν(U)

∫
U

|ηj| dν
∑
U∈Pn

χU(y)

ν(V )

∫
V

|ξj| dν

=
∑
j

sjE
(
|ηj||Fn

)
(x)E

(
|ξj||Fn

)
(y), x, y ∈ X,

help us to see that

HF 2(k)(x, y) ≤
∑
j

sjHF 2(ξj)(y)HF 2(ηj)(x), x, y ∈ X.

Assumption 3.7 and the Cauchy–Schwarz inequality imply the inequalities∫
X

HF 2(k)(x, x) dν(x) ≤
∫
X

∑
j

sjHF 2(ξj)(x)HF 2(ηj)(x) dν(x)

≤
∑
j

sj
∥∥HF 2(ξj)

∥∥∥∥HF 2(ηj)
∥∥

= C2
∑
j

sj

= C2‖K‖1.
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The end result stated follows from applications of Lemmas 2.1 and 4.1, which
produce (4.1). First, note that

tr(Kn,m) =

∫
X

kn,m(x, x) dν(x)

and that ∣∣kn,m(x, y)∣∣ ≤ HF 2(k)(x, y),
∣∣kn(x, y)∣∣ ≤ HF 2(k)(x, y)

for all x, y ∈ X. The dominated convergence theorem produces the equalities

tr(Kn) = lim
m→∞

tr(Kn,m) =

∫
X

kn(x, x) dν(x) =

∫
X

E(k|Fn × Fn)(x, x) dν(x).

The same arguments show that

tr(K) = lim
n→∞

tr(Kn) =

∫
X

k̃(x, x) dν(x). �

As we can see, it is generally not an easy task to find the kernel k̃ explicitly
and, even if we can do it, we should evaluate an integral. In some cases, we can
easily estimate the trace.

Corollary 4.3. Let K : L2(X, ν) → L2(X, ν) be an integral operator, and suppose
that Assumptions 3.6 and 3.7 hold. If K is in the trace class, with k ∈ L∞(X, ν)
and ν(X) <∞, then ∣∣ tr(K)

∣∣ ≤ ν(X)‖k‖L∞ .

Proof. It follows from the proof of Theorem 4.2 that∣∣ tr(K)
∣∣ = ∣∣ lim

n→∞
tr(Kn)

∣∣ = ∣∣∣ lim
n→∞

(
lim

m→∞

∫
X

kn,m(x, x) dν(x)
)∣∣∣.

Now, we can use (3.6) to see that∣∣kn,m(x, y)∣∣ ≤ ‖k‖L∞ , x, y ∈ X.

The result follows. �

Note that [10] uses the positivity of K as a hypothesis to prove a version of
the last theorem, and we do not. On the other hand, a careful read of Jefferies’s
proof will make it clear that the author does not use positivity there. If we add
positive definiteness (2.1) to K, then we can rewrite the preceding theorem as an
equivalence. These results are extensions of those given in [2], [3], [6], and [10].

Theorem 4.4. Let K : L2(X, ν) → L2(X, ν) be a positive integral operator, and
suppose that Assumptions 3.6 and 3.7 hold. Then K is in the trace class if and
only if ∫

X

HF 2(k)(x, x) dν(x) <∞. (4.2)
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Proof. We need only do the first part; the other follows from Theorem 4.2. As
such, let us assume that (4.2) holds. SinceK is a positive operator, the inequalities

kn,m(x, x) =
∑

U∈PF
n,m

χU(x)

ν(U)2

∫
U

∫
U

k(u, v) dν(u) dν(v)

=
∑

U∈PF
n,m

χU(x)

ν(U)2

∫
X

∫
X

k(u, v)χU(v) dν(v)χU(u) dν(u)

=
∑

U∈PF
n,m

χU(x)

ν(U)2
〈KχU , χU〉

≥ 0, x ∈ X,

clearly show that 0 ≤ kn,m(x, x) ≤ kn(x, x) ≤ HF 2(k)(x, x) for x ∈ X. Applying
Lemma 4.1, we find that

tr(Pn,mKPn,m) ≤
∫
X

HF 2(k)(x, x) dν(x), n,m = 1, 2, . . . .

It follows from (3.5) that Pn,m(f) converges to Pn(f) for each f ∈ L2(X, ν). Since
‖Kn,m‖1 = tr(Kn,m) and ‖Kn‖1 = tr(Kn), because both are positive definite,
Lemma 2.2 may be used to ensure that the Kn’s are in the trace class, with

tr(Kn) ≤
∫
X

HF 2(k)(x, x) dν(x).

To finish the proof, note that Proposition 3.8 implies that Kn(f) converges to
K(f) for all f ∈ L2(X, ν). Another application of Lemma 2.2 shows that K is in
the trace class and that

‖K‖1 = tr(K) ≤
∫
X

HF 2(k)(x, x) dν(x). �

5. Final results and remarks

We start this final section with the next result, which completes the statements
of Theorem 4.4. Its proof is based on the spectral decomposition of K, as given
in Lemma 2.4, and it can be found in [6, Lemma 5.1].

Lemma 5.1. If K is a Hilbert–Schmidt operator in L2(X, ν), then the equality

K = α1K1 + α2K2 + α3K3 + α4K4

holds, where the operators Ki : L
2(X, ν) → L2(X, ν) are positive definite and each

αi is a complex number.

To better manipulate k̃ in Theorem 4.2, we use the following new assumption
from now on.

Assumption 5.2. The measure space (X,A, ν) and the filter F are such that

lim
n→∞

kn(x, x) = k(x, x), x ∈ X (a.e.).
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Remark 5.3. Note that Assumption 3.7 implies that

k̃(x, y) = k(x, y), x, y ∈ X (a.e.),

and that the diagonal of X × X has null measure and enables that k̃(x, x) 6=
k(x, x), for almost all x ∈ X. On the other hand, Assumption 5.2 clearly holds
when k is a continuous kernel and X is in a context where Lebesgue’s differentia-
tion theorem may be applied. This is the case when X is a Lebesgue measurable
subset (with boundary ∂(X) with null measure) of the Euclidean space Rm, or a
subset of Euclidean manifolds like the sphere Sm or the torus Tm. These previous
settings include, for instance, those in which dν(x) = ρ(x) dµ(x), where µ is the
usual Lebesgue measure and the weight ρ : Rm → (0,∞) is a continuous function.

In the case in which X ⊂ Rm, a filter F is constructed by using cubes of sides
2−n for each partition related to Fn. In this way, the Un(x)’s shrink nicely to x, if
x is in the interior of X (see [7, p. 98]). A similar process can be applied to other
special surfaces like spheres, tori, and similar manifolds. See Theorem 2.4 in [2]
and [3] to guarantee that our assumptions 3.6, 3.7, and 5.2 still hold on a σ-finite
Borel measure on a second countable space.

The last assumption enables us to obtain the next corollaries of the main
results. Note that these are different ways to prove and extend the results of
Sections 4 and 5 of [6], and include some results of [2], [6], and [10] as special
contexts.

Corollary 5.4. Let K : L2(X, ν) → L2(X, ν) be an integral operator, and suppose
that Assumptions 3.6, 3.7, and 5.2 hold. If K is in the trace class, then

tr(K) =

∫
X

k(x, x) dν(x).

Proof. The proof follows from Theorem 4.2. �

We conclude with a result summarizing the previous one.

Corollary 5.5. Let K : L2(X, ν) → L2(X, ν) be a positive integral operator, and
suppose that Assumptions 3.6, 3.7, and 5.2 hold. We have that K is in the trace
class if and only if the function x ∈ X → K(x, x) is in L1(X, ν). If K is in the
trace class, then

tr(K) =

∫
X

k(x, x) dν(x).

Proof. The proof follows from Theorems 4.2 and 4.4. �

We finish this article with a classical and beautiful example (of a positive
integral operator) and a counterexample (with a nonpositive integral operator)
to this kind of result, when X = [0, 1] (with the usual Lebesgue measure). The
first one is related to Poisson’s equation

u′′ = −λu, u(0) = u(1) = 0.

This boundary value problem is related to the positive definite integral operator
K with kernel

k(x, y) = min(x, y)− xy, x, y ∈ [0, 1].
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It is straightforward to find the eigensystem of K as

sn =
1

n2π2
, φn(x) =

√
2 sin(nπx), n = 1, 2, . . . .

Corollary 5.5 helps us find a solution to the Basel problem as

Tr(K) =
1

π2

( ∞∑
n=1

1

n2

)
=

∫ 1

0

(x− x2) dx =
1

6
.

For a counterexample, we consider the Volterra integral operator

T (f)(x) =

∫ x

0

f(t) dt, f ∈ L2[0, 1],

with nonpositive definite kernel

G(x, y) = χ[0,x](y), x, y ∈ [0, 1].

A direct calculation shows that

T ∗ ◦ T (f)(x) =
∫ 1

x

∫ s

0

f(t) dt ds, f ∈ L2[0, 1],

has eigensystem

φn(x) = cn cos
((2n− 1)

2
πx

)
, s2n =

( 2

(2n− 1)π

)2

.

This means that
∞∑
n=1

sn = +∞

and that T is not in the trace class, but rather∫ 1

0

G(x, x) dx = 1.
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