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OPERATOR APPROXIMATE BIPROJECTIVITY
OF LOCALLY COMPACT QUANTUM GROUPS

MOHAMMAD REZA GHANEI1 and MEHDI NEMATI2

Communicated by R. B. V. Bhat

Abstract. We initiate a study of operator approximate biprojectivity for
quantum group algebra L1(G), where G is a locally compact quantum group.
We show that if L1(G) is operator approximately biprojective, then G is com-
pact. We prove that if G is a compact quantum group and H is a non-Kac-type
compact quantum group such that both L1(G) and L1(H) are operator approx-
imately biprojective, then L1(G)⊗̂L1(H) is operator approximately biprojec-
tive, but not operator biprojective.

1. Introduction and preliminaries

The concept of biprojectivity in the theory of homological Banach algebras was
first introduced by Helemskĭi [6] and later developed systematically in [7]. For
example, the group algebra L1(G) of a locally compact group G is biprojective if
and only ifG is compact. But when we work with a completely contractive Banach
algebra—in particular, the Fourier algebra A(G)—then evidence suggests that it
is best to work with operator homology.

The class of locally compact quantum groups was first introduced and stud-
ied by Kustermans and Vaes [8], [9]. Recall that a (von Neumann algebraic)
locally compact quantum group is a quadruple G = (L∞(G),∆, φ, ψ), where
L∞(G) is a von Neumann algebra with identity element 1 and a comultiplication
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∆ : L∞(G) → L∞(G)⊗̄L∞(G). Moreover, φ and ψ are normal faithful semifi-
nite left and right Haar weights on L∞(G), respectively. Here ⊗̄ denotes the von
Neumann algebra tensor product.

The Gelfand–Naimark–Segal construction applied to the left Haar weight φ
of every locally compact quantum group G gives a Hilbert space L2(G). There
exists a left fundamental unitary operator W on L2(G) ⊗ L2(G) implementing
the comultiplication ∆ via

∆(x) = W ∗(1⊗ x)W
(
x ∈ L∞(G)

)
.

(For more details see [8], [9].)
The predual of L∞(G) is denoted by L1(G). Then the preadjoint of the comulti-

plication ∆ induces on L1(G) an associative completely contractive multiplication
∆∗ : L1(G)⊗̂L1(G) → L1(G), where ⊗̂ is the projective tensor product of oper-
ator spaces. Therefore, L1(G) is a Banach algebra under the product ∗ given by
f ∗ g := ∆∗(f ⊗ g) ∈ L1(G) for all f, g ∈ L1(G). Moreover, the module actions of
L1(G) on L∞(G) are given by

f · x := (id⊗ f)
(
∆(x)

)
and x · f := (f ⊗ id)

(
∆(x)

)
for all f ∈ L1(G) and x ∈ L∞(G).

The reduced quantum group C∗-algebra of L∞(G) is defined as

C0(G) :=
{
(id⊗ ω)(W );ω ∈ B

(
L2(G)

)
∗

}‖·‖
.

We say that G is compact if C0(G) is a unital C∗-algebra. For compact quantum
groups, it follows that φ is finite and that φ = ψ. Moreover, there is a unique
Haar state on L∞(G), that we denote by hG, such that

hG(x · f) = hG(f · x) = hG(x)f(1)
(
x ∈ L∞(G), f ∈ L1(G)

)
.

In this case, we denote the compact quantum group G by (L∞(G),∆G).
Recall that a locally compact quantum group G is called amenable if there

exists a functional m ∈ L∞(G)∗ such that ‖m‖ = m(1) = 1 and m(x · f) =
m(x)f(1) for all x ∈ L∞(G) and f ∈ L1(G). In this case, m is called a left-
invariant mean on L∞(G). Moreover, G is called coamenable if L1(G) has a
bounded approximate identity.

The noncommutative operator biprojectivity of quantum group algebra L1(G)
of a locally compact quantum group G has been studied by several authors (see
[2], [4], [5]). It was shown by Aristov [2, Theorem 4.7] that if L1(G) is operator
biprojective, then G must be compact. Conversely, if G is a compact Kac algebra,
then G is operator biprojective (see [2, Theorem 4.12]). This leads him to the
following question.

Is L1(G) operator biprojective for any compact quantum group G?

Recently, in [4], Caspers, Lee, and Ricard gave a complete answer to the above
open problem. Indeed, they characterized operator biprojectivity of L1(G) as
follows. Let G be a locally compact quantum group. Then L1(G) is operator
biprojective if and only if G is compact and of Kac type.
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Furthermore, operator approximate homological notions like operator approx-
imate biprojectivity and operator approximate biflatness of completely contrac-
tive Banach algebras were introduced and studied by several authors (see, e.g.,
[12], [11], and also [1]). Therefore, it is a natural question whether operator
approximate biprojectivity of L1(G) is equivalent to G being compact and of
Kac type?

In this paper, we prove that when L1(G) is operator approximately biprojective,
then G is compact. Furthermore, we show that if G is compact and L1(G) is
operator approximately biprojective with special type of approximate splitting
morphism, then G is of Kac type.

Moreover, it is shown that, for a coamenable compact quantum group G and a
compact quantum group H, if L1(G)⊗̂L1(H) is operator approximately biprojec-
tive, then L1(G) is also operator approximately biprojective. Finally, we intend
to prove that if G is a compact quantum group and H is a non-Kac-type compact
quantum group such that L1(G) and L1(H) are operator approximately biprojec-
tive, then L1(G)⊗̂L1(H) is also operator approximately biprojective, but clearly
not operator biprojective.

2. Operator approximate biprojectivity

Recall from [12] that a completely contractive Banach algebra A is called
operator approximately biprojective if there is a net (ργ) of completely bounded
A-bimodule morphisms from A into A⊗̂A such that π ◦ ργ(a) → a for all a ∈ A,
where π : A⊗̂A → A is the product morphism. Also, from [11], A is called
operator approximately biflat if there is a net θγ : (A⊗̂A)∗ → A∗ of completely
bounded A-bimodule morphisms such that W∗OT-limγ θγ ◦ π∗ = idA∗ .

It is known that L1(G)⊗̂L1(G) can be regarded as an operator L1(G)-bimodule
via the following module structure:

f · (h⊗ k) · g := f ∗ h⊗ k ∗ g
(
f, g, h, k ∈ L1(G)

)
.

Therefore, L∞(G)⊗̄L∞(G) becomes an operator L1(G)-bimodule via the following
structure:

f · (x⊗ y) · g := x · g ⊗ f · y
(
f, g ∈ L1(G), x, y ∈ L∞(G)

)
.

Now we have the following definition.

Definition 2.1. Let G be a locally compact quantum group. Then

(i) L1(G) is operator approximately biprojective if there is a net ργ : L1(G) →
L1(G)⊗̂L1(G) of completely bounded L1(G)-bimodule morphisms such
that limγ ∆∗ ◦ ργ(f) = f for all f ∈ L1(G) (we call (ργ)γ an approximate
splitting morphism);

(ii) L1(G) is operator approximately biflat if there is a net θγ : L∞(G)⊗̄
L∞(G) → L∞(G) of completely bounded L1(G)-bimodule morphisms such
that W∗OT-limγ θγ ◦∆ = idL∞(G).

The following lemma is a restatement from Bédos and Tuset. We omit the proof
because it can easily be adapted from [3, Proof of Proposition 3.1].
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Lemma 2.2 ([3, Proposition 3.1]). Let G be a locally compact quantum group
such that there exists a left- (or right)-invariant functional f ∈ L1(G) such that
f |C0(G) 6= 0. Then G is compact.

Theorem 2.3. Let G be a locally compact quantum group. If L1(G) is operator
approximately biprojective, then G is compact.

Proof. Let L1(G) be operator approximately biprojective with splitting morphism
(ργ)γ. We put,

T = idL1(G) ⊗ 1 : L1(G)⊗̂L1(G) → L1(G) : f ⊗ g 7→ g(1)f.

Then it is easily verified that

T (f · ω) = f ∗ T (ω), T (ω · f) = f(1)T (ω)

and T (ω)(1) = ∆∗(ω)(1) for all f ∈ L1(G) and ω ∈ L1(G)⊗̂L1(G). Define the net

ξγ : L1(G) → L1(G)

of completely bounded left L1(G)-module morphisms by ξγ := T ◦ ργ. Moreover,
for each γ, we have

ξγ(f ∗ g) = g(1)ξγ(f)

for all f, g ∈ L1(G). This implies that, for each f ∈ L1(G) and g ∈ I0(G), we
have

ξγ(f ∗ g) = ξγ(f)g(1) = 0,

where I0(G) := {g ∈ L1(G) : g(1) = 0}. Since the linear span of L1(G) ∗ I0(G) is
dense in I0(G) (see [2, Theorem 4.4]), we conclude that ξγ(g) = 0 for all g ∈ I0(G).
Fix f0 ∈ L1(G) with f0(1) = 1. Since L1(G) is operator approximately biprojec-
tive, limγ ∆∗(ργ(f0)) = f0. Therefore, we can find γ0 such that ∆∗(ργ0(f0))(1) 6= 0.
Hence, if we set g0 = ξγ0(f0) ∈ L1(G), then we have

g0(1) = ξγ0(f0)(1) = T
(
ργ0(f0)

)
(1)

= ∆∗
(
ργ0(f0)

)
(1) 6= 0.

This shows that g0|C0(G) 6= 0. Moreover, for each f ∈ L1(G), we have f∗f0−f0∗f ∈
I0(G), which implies that

f ∗ g0 = f ∗ ξγ0(f0) = ξγ0(f ∗ f0)
= ξγ0(f0 ∗ f) = ξγ0(f0)f(1)

= f(1)g0.

Therefore, g0 is a left-invariant functional in L
1(G) such that g0|C0(G) 6= 0, whence

G is compact by Lemma 2.2. �

The proof of the following result is a modification of the argument used in the
proof of Theorem 2.3.

Theorem 2.4. Let G be a locally compact quantum group. If L1(G) is operator
approximately biflat, then G is amenable.
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Proof. Let L1(G) be operator approximately biflat. In that case, then, there is
a net θγ : L∞(G)⊗̄L∞(G) → L∞(G) of completely bounded L1(G)-bimodule
morphisms such that W∗-limγ θγ(∆(1)) = 1, where 1 is the identity element of
L∞(G). Fix f0 ∈ L1(G) with f0(1) = 1. Then we may find γ0 such that

θγ0
(
∆(1)

)
(f0) 6= 0.

Now, let us consider the completely bounded, left L1(G)-module morphism here,
Γ : L∞(G)∗ → L∞(G)∗, defined by Γ := T ∗∗ ◦ θ∗γ0 , where T is defined as in the

proof of Theorem 2.3. Moreover, for each g ∈ L1(G), each x ∈ L∞(G), and each
ω ∈ L1(G)⊗̂L1(G), we have〈

g · T ∗(x), ω
〉
=

〈
T ∗(x), ω · g

〉
=

〈
x, T (ω · g)

〉
= g(1)

〈
T ∗(x), ω

〉
.

This shows that g · T ∗(x) = g(1)T ∗(x). Therefore, for each f, g ∈ L1(G) and
x ∈ L∞(G), we obtain 〈

Γ(f ∗ g), x
〉
=

〈
θ∗γ0(f ∗ g), T ∗(x)

〉
=

〈
θ∗γ0(f) · g, T

∗(x)
〉

=
〈
θ∗γ0(f), g · T

∗(x)
〉

= g(1)
〈
θ∗γ0(f), T

∗(x)
〉

= g(1)
〈
Γ(f), x

〉
,

where, in the second equality, we used the fact that θγ0 , and so it holds that θ∗γ0
is a L1(G)-bimodule morphism. Hence,

Γ(f ∗ g) = g(1)Γ(f) for allf, g ∈ L1(G).

As the linear span of L1(G) ∗ I0(G) is dense in I0(G), we obtain that Γ|I0(G) = 0.
Define the functional m ∈ L∞(G)∗ by m := Γ(f0). Since ∆(1) = T ∗(1), it follows
that

m(1) = θγ0
(
∆(1)

)
(f0) 6= 0.

Moreover, for each f ∈ L1(G) and x ∈ L∞(G),we have

m(x · f)− f(1)m(x) = Γ
(
f ∗ f0 − f(1)f0

)
(x) = 0.

This shows that m is a left-invariant functional on L∞(G) such that m(1) 6= 0.
Therefore, the last part of the proof of [10, Theorem 2.1] shows that there exists
a left-invariant mean on L∞(G), which implies that G is amenable. �

A finite-dimensional corepresentation of a compact quantum group (L∞(G),
∆G) is a matrix v = (vij) ∈ Mn(L

∞(G)), where n is called the dimension of v
such that

∆G(vij) =
n∑

k=1

vik ⊗ vkj (1 ≤ i, j ≤ n).

Moreover, v is called unitary if v is a unitary matrix, and it is called irreducible if
we have {X ∈Mn(C) : Xv = vX} = CIn, where it holds that n is the dimension
of v. Recall that for any compact quantum group G there exists a maximal family
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{vα : α ∈ I} of finite-dimensional irreducible unitary corepresentation of G. For
each α ∈ I, we denote by nα the dimension of vα.

By [5, Proposition 2.1], for each α ∈ I there exists a unique positive invertible
matrix Fα ∈ Mn(C) with mα := TrFα = Tr(Fα)−1 such that for each α, we can
assume that Fα = diag(λα1 , . . . , λ

α
nα
). Moreover, for each α, β ∈ I, 1 ≤ i, j ≤ nα,

and 1 ≤ k, l ≤ nβ, we have

hG
(
(vβkl)

∗vαij
)
= δαβδjlδki

1

mαλαi
, hG

(
vβkl(v

α
ij)

∗) = δαβδikδjl
λαj
mα

.

If Fα = Inα , where Inα is the identity matrix, for all α ∈ I, then G is of Kac type
or is a Kac algebra.

Theorem 2.5. Let G be a compact quantum group. Consider the following state-
ments.

(1) L1(G) is operator approximately biprojective with approximate splitting
morphism (ργ).

(2) There exists a normal completely bounded net θγ : L∞(G)⊗̄L∞(G) →
L∞(G) such that

W∗OT- lim
γ
θγ∆ = idL∞(G), ∆θγ = (θγ ⊗ id)(id⊗∆) = (id⊗ θγ)(∆⊗ id).

(3) There exists a normal completely bounded net θγ : L∞(G)⊗̄L∞(G) →
L∞(G) such that for each θγ there exists a family {Xα,γ ∈ Mnα : α ∈ I}
such that, for α, β ∈ I, 1 ≤ i, j ≤ nα, and 1 ≤ k, l ≤ nβ,

θγ(v
α
ij ⊗ vβkl) = δαβX

α,γ
jk v

α
il, lim

γ

nα∑
r=1

Xα,γ
rr = 1.

Then (1) ⇒ (2) ⇒ (3).

Proof. (1)⇒(2). Take θγ := ρ∗γ. Then, for each x, y ∈ L∞(G) and f, g ∈ L1(G),
we have 〈

∆θγ(x⊗ y), f ⊗ g
〉
=

〈
x⊗ y, ργ∆∗(f ⊗ g)

〉
=

〈
x⊗ y, f · ργ(g)

〉
=

〈
x⊗ y, (∆⊗ id)∗

(
f ⊗ ργ(g)

)〉
=

〈
(id⊗ θγ)(∆⊗ id)(x⊗ y), f ⊗ g

〉
.

Thus, ∆θγ = (id⊗ θγ)(∆⊗ id). Similarly, ∆θγ = (θγ ⊗ id)(id⊗∆). Moreover, it
is easy to see that W∗OT-limγ θγ∆ = idL∞(G).

(2)⇒(3). By an argument similar to [5, Proof of Proposition 3.2], for 1 ≤ i, j ≤
nα, and 1 ≤ k, l ≤ nβ, we have

θγ(v
α
ij ⊗ vβkl) ∈ span{vαi1, . . . , vαinα

} ∩ span{vβ1l, . . . , v
β
nβ l

}.

By linear independence, we see that θγ(v
α
ij ⊗ vβkl) = 0 if α 6= β. If α = β, then we

see immediately that there is a scalar Xα,γ
jk such that

θγ(v
α
ij ⊗ vαkl) = Xα,γ

jk v
α
il.
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Now, by assumption, we have

vαij =W ∗ − lim
γ
θγ∆(vαij)

=W ∗ − lim
γ

nα∑
k=1

θγ(v
α
ik ⊗ vαkj)

=W ∗ − lim
γ

nα∑
k=1

Xα,γ
kk v

α
ij.

Therefore, limγ

∑nα

k=1X
α,γ
kk = 1. �

We now end this section with a result which shows that, for a compact quan-
tum group G, operator approximate biprojectivity of L1(G) with special type of
approximate splitting morphism implies that G is of Kac type. The proof of the
following proposition is similar to that of [5, Theorem 3.3]; we provide the details
for the convenience of the reader.

Proposition 2.6. Let G be a compact quantum group such that L1(G) is operator
approximately biprojective with approximate splitting morphism ργ : L1(G) →
L1(G)⊗̂L1(G), and suppose further that every θγ = ρ∗γ is an L∞(G)-bimodule
map, in the sense that θγ(∆(a)x∆(b)) = aθγ(x)b for all x ∈ L∞(G)⊗̄L∞(G) and
a, b ∈ L∞(G). Then the Haar state hG is tracial, so G is a Kac algebra.

Proof. Let α ∈ I and let α0 ∈ I be such that vα0 = 1, the trivial corepresentation.
The linear span A := span{vαij : α ∈ I, 1 ≤ i, j ≤ nα} forms a unital Hopf
∗-algebra which is dense in C0(G) and {vαij : α ∈ I, 1 ≤ i, j ≤ nα} forms a basis

for A. As hG(v
α
ij) = δαα0 and hG(v

α
ij(v

α
il)

∗) = δjl
λα
j

mα
, for 1 ≤ i, j, k ≤ nα, we obtain

that

vαij(v
α
il)

∗ ⊗ vαkj(v
α
lj)

∗ = δjl
λαj
mα

1⊗ δkl
λαj
mα

1 +R,

where R ∈ kerhG ⊗ kerhG. Moreover, by Theorem 2.5, θγ(v
α
ij ⊗ vβkl) = δαβX

α,γ
jk v

α
il

for all γ. It follows that hG ◦ θγ = hG ⊗ hG. Therefore, we see that

Xα,γ
jk

λαj
mα

= hG
(
Xα,γ

jk v
α
ij(v

α
ij)

∗)
= hG

(
θγ(v

α
ij ⊗ vαkj)(v

α
ij)

∗)
= hG ◦ θγ

(
(vαij ⊗ vαkj)∆(vαij)

∗)
=

nα∑
l=1

hG ◦ θγ
(
vαij(v

α
il)

∗ ⊗ vαkj(v
α
lj)

∗)
=

nα∑
l=1

hG

(
δjl
λαj
mα

1
)
hG

(
δkl

λαj
mα

1
)

= δjk

( λαj
mα

)2

,
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where in the third equality we use the assumption that θγ(x∆(b)) = θγ(x)b for

all x ∈ L∞(G)⊗̄L∞(G) and b ∈ L∞(G). Thus, Xα,γ
jk = δjk

λα
j

mα
.

Since hG((v
α
is)

∗vαij) = δsj
1

λα
i mα

and hG((v
α
sj)

∗vαkj) = δsk
1

λα
kmα

, it follows that

(vαis)
∗vαij ⊗ (vαsj)

∗vαkj = δsj
1

λαi mα

⊗ δsk
1

λαkmα

+ r,

where r ∈ kerhG ⊗ kerhG. Furthermore, we have

Xα,γ
jk (vαij)

∗vαij = (vαij)
∗θγ(v

α
ij ⊗ vαkj) =

nα∑
s=1

θγ
(
(vαis)

∗vαij ⊗ (vαsj)
∗vαkj

)
.

Again, by applying hG, we see that

Xα,γ
jk

1

λαi mα

=
nα∑
s=1

δsj
1

λαi mα

δsk
1

λαkmα

= δjk
1

λαi λ
α
km

2
α

.

Therefore, δjk
λα
j

mα
= δjk

1
λα
kmα

. Thus, λαk = 1 for all α and 1 ≤ k ≤ nα, and so hG is

tracial, which implies that G is a Kac algebra. �

3. Tensor product and operator approximate biprojectivity

Let (G,∆G) and (H,∆H) be two compact quantum groups. Then the tensor
product of G and H is the compact quantum group G⊗H := (L∞(G)⊗̄L∞(H),
∆G⊗H) with comultiplication defined by

∆G⊗H := (idL∞(G) ⊗ Σ⊗ idL∞(H))(∆
G ⊗∆H) : M → M⊗̄M,

where Σ is the flip map from L∞(G)⊗̄L∞(H) to L∞(H)⊗̄L∞(G) and M =
L∞(G)⊗̄L∞(H). The Haar integral of G⊗H is denoted by hG⊗H and is defined by
hG ⊗ hH.

Theorem 3.1. Let G be a coamenable compact quantum group, and let H be a
compact quantum group. If L1(G)⊗̂L1(H) is operator approximately biprojective,
then L1(G) is operator approximately biprojective.

Proof. Let A := L1(G)⊗̂L1(H) be operator approximately biprojective with
approximate splitting morphism ργ : A → A⊗̂A. Coamenability of G implies
that L1(G) has a bounded approximate identity, say (eα)α. It is known that for
compact quantum group H, the Haar state hH is a normal invariant mean on
L∞(H) and therefore hH ∗ hH = hH. Then for every f1, f2 ∈ L1(G), we have

ργ(f1 ∗ f2 ⊗ hH) = ργ
(
(f1 ⊗ hH)(f2 ⊗ hH)

)
= (f1 ⊗ hH) · ργ(f2 ⊗ hH)

= lim
α
(f1 ∗ eα ⊗ hH) · ργ(f2 ⊗ hH)

= lim
α
f1 · (eα ⊗ hH) · ργ(f2 ⊗ hH)

= f1 · lim
α
ργ(eα ∗ f2 ⊗ hH)

= f1 · ργ(f2 ⊗ hH).
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Similarly, we can show a right-module version of this equation. Therefore, for
each f1, f2 ∈ L1(G), we have

ργ(f1 ∗ f2 ⊗ hH) = f1 · ργ(f2 ⊗ hH) = ργ(f1 ⊗ hH) · f2. (3.1)

Now, we define θ : A⊗̂A → L1(G)⊗̂L1(G) by

θ(f1 ⊗ h1 ⊗ f2 ⊗ h2) = (h1 ∗ h2)(1)f1 ⊗ f2
(
f1, f2 ∈ L1(G), h1, h2 ∈ L1(H)

)
.

It is easy to see that θ is a completely contractive L1(G)-bimodule morphism. We
now define ρ̃γ : L1(G) → L1(G)⊗̂L1(G) by

ρ̃γ(f) = θ ◦ ργ(f ⊗ hH)
(
f ∈ L1(G)

)
.

From (3.1), ρ̃γ is a completely contractive L1(G)-bimodule morphism. Therefore,
for each f1, f2 ∈ L1(G) and h1, h2 ∈ L1(H), we have

(idL1(G) ⊗ 1)∆G⊗H
∗ (f1 ⊗ h1 ⊗ f2 ⊗ h2) = (idL1(G) ⊗ 1)(f1 ∗ f2 ⊗ h1 ∗ h2)

= (h1 ∗ h2)(1)f1 ∗ f2
= (h1 ∗ h2)(1)∆G

∗ (f1 ⊗ f2)

= ∆G
∗ ◦ θ(f1 ⊗ h1 ⊗ f2 ⊗ h2).

Thus, ∆G
∗ ◦ θ = (idL1(G) ⊗ 1) ◦∆G⊗H

∗ . It follows that for every f ∈ L1(G), we have

lim
γ

∆G
∗ ◦ ρ̃γ(f) = lim

γ
∆G

∗ ◦ θ ◦ ργ(f ⊗ hH)

= lim
γ
(idL1(G) ⊗ 1) ◦∆G⊗H

∗ ◦ ργ(f ⊗ hH)

= (idL1(G) ⊗ 1)(f ⊗ hH) = f.

This shows that L1(G) is operator approximately biprojective. �

It is clear that when G is a compact quantum group and H is a non-Kac-type
compact quantum group, then G⊗H is of non-Kac type. Therefore, the following
proposition follows immediately from [4, Corollary 1.3].

Proposition 3.2. Let G be a compact quantum group, and let H be a non-Kac-
type compact quantum group. Then L1(G)⊗̂L1(H) is not operator biprojective.

In the following theorem, we show that L1(G)⊗̂L1(H) is operator approxi-
mately biprojective, when both L1(G) and L1(H) are operator approximately
biprojective. However, when H is of non-Kac type, then Proposition 3.2 implies
that L1(G)⊗̂L1(H) is not operator biprojective.

Theorem 3.3. Let G and H be compact quantum groups. If L1(G) and L1(H) are
operator approximately biprojective, then L1(G)⊗̂L1(H) is operator approximately
biprojective.

Proof. If we set A := L1(G)⊗̂L1(G), B := L1(H)⊗̂L1(H), and E := L1(G)⊗̂L1(H),
then there are approximate splitting morphisms ργ : L1(G) → A and ρη :
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L1(H) → B. Let F be the set of all (γ, η). Then F is a directed set by set-
ting (γ1, η1) � (γ2, η2) if and only if γ1 � γ2 and η1 � η2. Now, consider the net
ρ(γ,η) : E → E⊗̂E defined by

ρ(γ,η) := (idL1(G) ⊗ σ ⊗ idL1(H)) ◦ (ργ ⊗ ρη),

where σ is the flip map on L1(G)⊗̂L1(H). It is not hard to check that any ρ(γ,η)
is a completely contractive E-bimodule morphism and that(
(idL∞(G) ⊗Σ⊗ idL∞(H)) ◦ (∆G ⊗∆H)

)
∗ = (∆G ⊗∆H)∗ ◦ (idL∞(G) ⊗Σ⊗ idL∞(H))∗,

where Σ is the flip map on L∞(G)⊗̄L∞(H). Moreover, as Σ∗ ◦σ = idE, we obtain
that

(idL∞(G) ⊗ Σ⊗ idL∞(H))∗ ◦ (idL1(G) ⊗ σ ⊗ idL1(H)) = idA⊗̂B.

Therefore, for each f ∈ L1(G) and g ∈ L1(G), we have

lim
(γ,η)

∥∥(∆G⊗H)∗ρ(γ,η)(f ⊗ g)− f ⊗ g
∥∥ = lim

(γ,η)

∥∥(∆G ⊗∆H)∗(ργ ⊗ ρη)(f ⊗ g)− f ⊗ g
∥∥

= lim
(γ,η)

∥∥∆G
∗ ργ(f)⊗∆H

∗ ρη(g)− f ⊗ g
∥∥

≤ lim
(γ,η)

(∥∥∆G
∗ ργ(f)

∥∥∥∥∆H
∗ ρη(g)− g

∥∥
+ ‖g‖

∥∥∆G
∗ ργ(f)− f

∥∥) = 0.

This shows that, (ρ(γ,η))) is an approximate splitting morphism for L1(G)⊗̂L1(H),
which implies that it is operator approximately biprojective. �
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