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Abstract. In this article, we study the perturbation analysis for the (skew)

Hermitian matrix least squares problem (LSP). Suppose that S and Ŝ are
two sets of solutions to the (skew) Hermitian matrix least squares problem
AXAH = B and the perturbed Hermitian matrix least squares problem

ÂX̂ÂH = B̂, respectively. For any given X ∈ S, we derive general expressions

of the least squares solutions X̂ ∈ Ŝ that are closest to X, and we present the
corresponding distances between them under appropriate norms. Perturbation
bounds for the nearest least squares solutions are further derived.

1. Introduction

The application of a numerical algorithm to the solution of the linear least
squares problem (LSP) inevitably generates round-off errors that result from data
or computer processing operations. This highlights the importance of perform-
ing perturbation analysis of LSPs (see [8]). Ding and Huang [4] presented some
perturbation analysis results for least squares solutions to the operator equation
Tx = y in Hilbert spaces. A componentwise perturbation bound for the linear
system Ax = b was deduced in [14] in cases where the coefficient matrix A is rank
deficient. For linear systems with multiple right-hand sides AX = B, the com-
ponentwise backward error and componentwise condition number under Hölder
p-norms, as well as a perturbation bound for the minimum p-norm solutions, were
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derived in [6], and normwise, mixed, and componentwise condition numbers were
derived in [16].

In [9], the perturbation analysis for the matrix least squares problem AXB = C
was studied by an alternative method. According to the theory of generalized
inverses and the classical norm-preserving dilation theorem (see [3]), perturbation
bounds for the least squares solutions were deduced. If the coefficient matrices
are required to satisfy B = AH and C = ±CH , then the perturbation analysis is
converted to the (skew) Hermitian matrix LSP

AXAH = B (1.1)

with B = ±BH .
There are a number of investigations focused on analyzing and computing solu-

tions to (1.1) with some special requirements from differing points of view. For
example, symmetric, positive semidefinite, and positive definite real solutions
(see [2]), antisymmetric orthosymmetric solutions (see [15]), general nonnegative
definite solutions (see [7]), possible minimal rank nonnegative definite solutions
(see [5]), rank-constrained Hermitian nonnegative definite solutions (see [17]),
and rank-constrained least square Hermitian nonnegative definite solutions under
Frobenius norm (see [13]) were considered through the generalized inverses or the
singular value decomposition (SVD) of matrices. By applying the norm-preserving
dilation theorem (see [18]) and the Hermitian-type (skew Hermitian-type) gen-
eralized singular value decomposition (HGSVD, SHGSVD) technique, minimum
rank (skew) Hermitian solutions to the matrix approximation problem under
spectral norm were investigated (see [10]). More generally, the admissible inertias
and ranks of the expressions A−BXBH −CY CH with unknowns X and Y were
studied in [1].

Suppose that A ∈ Cm×n, B = ±BH ∈ Cm×m are given matrices. We con-
sider the (skew) Hermitian matrix LSP (1.1) and the perturbed (skew) Hermitian
matrix least squares problem

ÂX̂ÂH = B̂, (1.2)

where Â = A + ∆A, B̂ = B + ∆B, ∆A,∆B are small perturbation matrices

and B̂ = ±B̂H . For any given least squares solution X of (1.1), we characterize

general formulas of the least squares solutions X̂ of (1.2) that are closest to X,
and present the corresponding distances between them under appropriate norms.
Perturbation bounds for the nearest least squares solutions are further derived.

The rest of the article is organized as follows. In Section 2, we briefly review
some results on special cases of norm-preserving dilations for further discussions.
In Section 3, we study the perturbation analysis for the Hermitian matrix LSP. We

first specify a general formula of the solution X̂ of the perturbed Hermitian matrix
LSP (1.2) that is closest to any given solutionX of (1.1) under appropriate norms.
Applying the derived nearest solutions, we deduce the perturbation bounds for
solutions of the Hermitian matrix LSP by adding some appropriate restrictions.
Similar results for the skew Hermitian matrix LSP are stated in Section 4 without
proofs, because the techniques are analogous to those of the Hermitian matrix
LSP.
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We use the following notation throughout this article:

(i) Cm×n is the set of all m× n matrices with complex entries;
(ii) Cn×n

H is the set of all n× n Hermitian matrices with complex entries;
(iii) Cn×n

K is the set of all n×n skew-Hermitian matrices with complex entries;
(iv) rank(A), R(A), N (A), AH denote rank, range, null space, and conjugate

transpose of A, respectively;
(v) A† is the Moore–Penrose inverse of the matrix A that uniquely exists;
(vi) ‖ · ‖F and ‖ · ‖2 represent the matrix Frobenius norm and the spectral

norm, respectively; ‖ · ‖ stands for the matrix Frobenius norm or spectral
norm.

2. Preliminaries

In this section, we list some lemmas which we will use. Let the sets of least

squares solutions to the matrix LSPs (1.1) and (1.2) be S and Ŝ, respectively.
Then the least squares solutions to (1.1) are characterized by the following results.

Lemma 2.1 ([11, Lemma 1.3]). Suppose that A ∈ Cm×n, B ∈ Cm×m
H . Then the

matrix equation (1.1) has a Hermitian solution if and only if R(B) ⊆ R(A). In
this case, the general Hermitian solution is

X = A†B(A†)H + (In − A†A)Z + ZH(In − A†A)

for arbitrary Z ∈ Cn×n, among which XLS = A†B(A†)H is the smallest under
Frobenius norm. The Hermitian solution to (1.1) is unique if and only if A†A =
In, that is, rank(A) = n.

Denote the four orthogonal projections related to a complex matrix A by

PA = AA†, P⊥
A = Im − AA†, PAH = A†A, P⊥

AH = In − A†A.

Then the perturbation analysis on the Moore–Penrose inverse yields the following
results.

Lemma 2.2 (see [12]). Suppose that A, Â ∈ Cm×n, Â = A+ E. Then

Â† − A† = −Â†EA† + Â†P⊥
A − P⊥

ÂHA
†

= −Â†PÂEPAHA† + Â†PÂP
⊥
A − P⊥

ÂHPAHA†

= −Â†PÂEPAHA† + (ÂHÂ)†EHP⊥
A + P⊥

ÂHE
H(AAH)†.

We refer to a matrix as a contraction if its spectral norm is less than or equal
to 1. The following lemma is a special case of the Davis–Kahan–Weinberger solu-
tions of norm-preserving dilations (see [3]).

Lemma 2.3 ([9, Lemma 2.3]). For a given matrix A ∈ Cm×n with ‖A‖2 = µ, let

Q = (µ2In − AHA)
1
2 , Q∗ = (µ2Im − AAH)

1
2 .
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Then

(1) there exists a matrix B ∈ Cl×n such that

min
B∈Cl×n

∥∥∥∥[AB
]∥∥∥∥

2

= µ,

where B has the form B = KQ with K ∈ Cl×n an arbitrary contraction;
(2) there exists a matrix C ∈ Cm×k such that

min
C∈Cl×n

∥∥[A, C
]∥∥

2
= µ,

where C has the form C = Q∗L with L ∈ Cm×k an arbitrary contraction.

Norm-preserving dilations of Hermitian-type matrices were studied by Zheng
[18], described as follows.

Lemma 2.4 ([10, Lemma 2.1]). Suppose that A ∈ Cm×m
H , B ∈ Cm×n satisfy∥∥[A B

]∥∥
2
= µ.

Then there exists D ∈ Cn×n
H such that

min
D∈Cn×n

H

∥∥∥∥[ A B
BH D

]∥∥∥∥
2

= µ.

Moreover, a general form of D with this property is

D = −KAKH + µ(In −KKH)
1
2Z(In −KKH)

1
2 ,

where

KH =
[
(µ2Im − A2)

1
2

]†
B,

and Z ∈ Cn×n
H is an arbitrary Hermitian contraction matrix.

As a continuation, another special case of norm-preserving dilation theorem for
skew-Hermitian-type matrices is the following, which can be found in Lemma 4.1
of [10], but we modify it here slightly.

Lemma 2.5. Suppose that A ∈ Cm×m
K , B ∈ Cm×n satisfy∥∥[A B

]∥∥
2
= µ.

Then there exists D ∈ Cn×n
K such that

min
D∈Cn×n

K

∥∥∥∥[ A B
−BH D

]∥∥∥∥
2

= µ.

Moreover, a general form of D with this property is

D = KAKH + µ(In −KKH)
1
2Z(In −KKH)

1
2 ,

where

KH =
[
(µ2Im + A2)

1
2

]†
B,

and Z ∈ Cn×n
K is an arbitrary skew-Hermitian contraction matrix.
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3. Perturbation analysis for the Hermitian matrix LSP

In this section, we consider the Hermitian matrix least squares problem

AXAH = B, (3.1)

where A ∈ Cm×n, B = BH ∈ Cm×m are given matrices. Its perturbed Hermitian
matrix least squares problem is stated to be

ÂX̂ÂH = B̂, (3.2)

where Â = A+∆A, B̂ = B +∆B, ∆A,∆B are small perturbation matrices and

B̂ = B̂H . We first specify the explicit formula of the Hermitian least squares
solution of the perturbed matrix LSP (3.2) that is closest to any given Hermitian
least squares solution of the matrix LSP (3.1).

Theorem 3.1. Suppose that A, Â = A + ∆A ∈ Cm×n, B, B̂ = B + ∆B ∈
Cm×m

H are given matrices. For any given Hermitian solution X of the Hermitian
matrix least squares problem (3.1), there exists a unique solution of the perturbed
Hermitian matrix least squares problem (3.2) with the form

X̂m = Â†B̂(Â†)H +X − Â†ÂXÂ†Â (3.3)

such that

min
X̂∈ŜH

‖X̂ −X‖F = ‖X̂m −X‖F =
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
F
, (3.4)

where ŜH is the set of Hermitian solutions of (3.2).

Proof. For any Hermitian least squares solution X̂ of (3.2), from Lemma 2.1, we
have the splitting

X̂ = Â†B̂(Â†)H + (In − Â†Â)Ẑ + ẐH(In − Â†Â)

= Â†B̂(Â†)H + (In − Â†Â)ẐÂ†Â+ Â†ÂẐH(In − Â†Â)

+ (In − Â†Â)(Ẑ + ẐH)(In − Â†Â), (3.5)

where Ẑ ∈ Cn×n is arbitrary. Therefore,

X̂ −X = Â†B̂(Â†)H + (In − Â†Â)ẐÂ†Â+ Â†ÂẐH(In − Â†Â)

+ (In − Â†Â)(Ẑ + ẐH)(In − Â†Â)−
[
Â†ÂXÂ†Â+ (In − Â†Â)XÂ†Â

+ Â†ÂX(In − Â†Â) + (In − Â†Â)X(In − Â†Â)
]

= Â†Â
[
Â†B̂(Â†)H −X

]
Â†Â+ (In − Â†Â)(Ẑ −X)Â†Â

+ Â†Â(ẐH −X)(In − Â†Â)

+ (In − Â†Â)(Ẑ + ẐH −X)(In − Â†Â). (3.6)



440 S.-T. LING, R.-R. WANG, and Q.-B. LIU

Taking Frobenius norms on both sides of (3.6), we have

‖X̂ −X‖2F =
∥∥Â†Â

[
Â†B̂(Â†)H −X

]
Â†Â

∥∥2

F
+ 2

∥∥(In − Â†Â)(Ẑ −X)Â†Â
∥∥2

F

+
∥∥(In − Â†Â)(Ẑ + ẐH −X)(In − Â†Â)

∥∥2

F

≥
∥∥Â†Â

[
Â†B̂(Â†)H −X

]
Â†Â

∥∥2

F
.

It is clear that the last inequality becomes an equality if and only if

(In − Â†Â)ẐÂ†Â = (In − Â†Â)XÂ†Â,

(In − Â†Â)(Ẑ + ẐH)(In − Â†Â) = (In − Â†Â)X(In − Â†Â).
(3.7)

Substituting the equalities in (3.7) into (3.5), we obtain

X̂m = Â†B̂(Â†)H + (In − Â†Â)XÂ†Â+ Â†ÂX(In − Â†Â)

+ (In − Â†Â)X(In − Â†Â)

= Â†B̂(Â†)H +X − Â†ÂXÂ†Â,

which is exactly the expression of X̂m in (3.3). �

From Theorem 3.1, we see that, for a given Hermitian least squares solution
X of the Hermitian matrix LSP (3.1), the nearest Hermitian least squares solu-

tion X̂m is unique under the matrix Frobenius norm. However, X̂m may not be
unique under spectral norm. To prove this, we first introduce the singular value

decomposition (SVD) of the coefficient matrix Â. Suppose that Â ∈ Cm×n
r with

rank(A) = r. Let

Â =
[
Û1, Û2

]
diag

(
Σ̂Â, 0

) [
V̂1, V̂2

]H
= Û1Σ̂ÂV̂

H
1 (3.8)

be the SVD of Â, where ÛH
1 Û1 = V̂ H

1 V̂1 = Ir and Σ̂Â > 0 is a diagonal matrix.
Then we have the following two orthogonal projectors:

Â†Â = V̂1V̂
H
1 , In − Â†Â = V̂2V̂

H
2 .

Theorem 3.2. Suppose that A, Â = A+∆A ∈ Cm×n, B, B̂ = B +∆B ∈ Cm×m
H

are given matrices. For any given Hermitian solution X of the Hermitian matrix

least squares problem (3.1), there exist Hermitian solutions X̂m of the Hermitian
matrix least squares problem (3.2) such that

min
X̂∈ŜH

‖X̂ −X‖2 = ‖X̂m −X‖2 =
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
2
, (3.9)

and a general form of X̂m is

X̂m = Â†B̂(Â†)H +X − Â†ÂXÂ†Â

− (In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

+ (In − Â†Â)L̂HÂ†Â(µ2In −A2)
1
2 Â†Â

+ Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â)
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+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â), (3.10)

where µ = ‖A‖2 and

A = Â†B̂(Â†)H − Â†ÂXÂ†Â,

B = Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â),

KH = Â†Â
[
(µ2In −A2)

1
2

]†
Â†ÂB(In − Â†Â),

in which L̂ ∈ Cn×n is an arbitrary contraction, and Ẑ ∈ Cn×n
H is an arbitrary

Hermitian contraction.

Proof. From the expression of X̂−X in (3.6) and the SVD of Â in (3.8), we have

‖X̂ −X‖2 =
∥∥[V̂1, V̂2

]H
(X̂ −X)

[
V̂1, V̂2

]∥∥
2

=

∥∥∥∥[A1 B1

BH
1 D1

]∥∥∥∥
2

,

where

A1 = V̂ H
1

[
Â†B̂(Â†)H −X

]
V̂1, B1 = V̂ H

1 (ẐH −X)V̂2,

D1 = V̂ H
2 (Ẑ + ẐH −X)V̂2.

Let

A = V̂1A1V̂
H
1 = Â†B̂(Â†)H − Â†ÂXÂ†Â,

B = V̂1B1V̂
H
2 , D = V̂2D1V̂

H
2 ,

(3.11)

and let

µ̂ =
∥∥[A1, B1

]∥∥
2
.

From Lemma 2.3, we observe that

min
Ẑ∈Cn×n

µ̂ = min
Ẑ∈Cn×n

∥∥[A1, B1

]∥∥
2

= ‖A1‖2 = ‖V̂1A1V̂
H
1 ‖2 = ‖A‖2

=
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
2
=: µ

with the choice

B1 = (µ2Ir −A2
1)

1
2 L̃,

in which L̃ ∈ Cr×(n−r) is an arbitrary contraction. From (3.11) we have

B = V̂1B1V̂
H
2 = Â†Â(ẐH −X)(In − Â†Â)

= V̂1(µ
2Ir −A2

1)
1
2 L̃V̂ H

2

= Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â),
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in which L̂ = V̂1L̃V̂
H
2 is also a contraction. Thus,

Â†ÂẐH(In − Â†Â)

= Â†ÂX(In − Â†Â) + Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â). (3.12)

From Lemma 2.4, we know that

min
D1

‖X̂ −X‖2 = µ =
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
2

with the choice

D1 = V̂ H
2 (Ẑ + ẐH −X)V̂2

= −K1A1K
H
1 + µ(In−r −K1K

H
1 )

1
2 Z̃(In−r −K1K

H
1 )

1
2 ,

where

KH
1 =

[
(µ2Ir −A2

1)
1
2

]†B1 ∈ Cr×(n−r), (3.13)

and Z̃ ∈ C(n−r)×(n−r)
H is an arbitrary Hermitian contraction.

It is easy to verify that

(In − Â†Â)(Ẑ + ẐH −X)(In − Â†Â)

= V̂2D1V̂
H
2

= −V̂2K1A1K
H
1 V̂ H

2 + µV̂2(In−r −K1K
H
1 )

1
2 Z̃(In−r −K1K

H
1 )

1
2 V̂ H

2

= −(In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â),

where Ẑ = V̂2Z̃V̂
H
2 ∈ Cn×n

H is also an arbitrary Hermitian contraction, and

K = V̂2K1V̂
H
1 ∈ Cn×r. (3.14)

Therefore,

(In − Â†Â)(Ẑ + ẐH)(In − Â†Â)

= (In − Â†Â)X(In − Â†Â)− (In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â). (3.15)

Furthermore, by (3.11), (3.13), and (3.14), we have

KH = V̂1

[
(µ2Ir −A2

1)
1
2

]†B1V̂
H
2

= Â†Â
[
(µ2In −A2)

1
2

]†
Â†ÂB(In − Â†Â).
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Combining (3.12) and (3.15) with the explicit formula of X̂ in (3.5), we obtain

X̂m = Â†B̂(Â†)H + (In − Â†Â)XÂ†Â+ (In − Â†Â)L̂HÂ†Â(µ2In −A2)
1
2 Â†Â

+ Â†ÂX(In − Â†Â) + Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â)

+ (In − Â†Â)X(In − Â†Â)− (In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

= Â†B̂(Â†)H +X − Â†ÂXÂ†Â− (In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

+ (In − Â†Â)L̂HÂ†Â(µ2In −A2)
1
2 Â†Â

+ Â†Â(µ2In −A2)
1
2 Â†ÂL̂(In − Â†Â)

+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â).

This completes the proof. �

Note that the Hermitian least squares solution X̂m of the form in (3.3) is a

special case of (3.10) with L̂ = 0 and Ẑ = 0. To derive perturbation bounds
for the Hermitian least squares solutions of the Hermitian matrix LSP (3.1), we
assume that perturbations for the coefficient matrix A keep rank invariant. Using
the results obtained in Theorems 3.1–3.2, we now present the following main
results of this section.

Theorem 3.3. Suppose that A, Â = A+∆A ∈ Cm×n, B, B̂ = B +∆B ∈ Cm×m
H

are given matrices with rank(A) = rank(Â) and ‖A†‖2‖∆A‖2 < 1. Then

(1) for the Hermitian least squares solution XLS = A†B(A†)H with the mini-
mum Frobenius norm, we have the estimate

‖X̂m −XLS‖

=
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
≤ 2‖A†‖2

∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + 2‖A†‖22‖A†B‖‖P⊥

A∆APAH‖2
+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O

(
‖∆A‖22 + ‖∆B‖22

)
, (3.16)

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm;
(2) for any given Hermitian least squares solution X ∈ SH of the form

X = A†B(A†)H + (In − A†A)Z + ZH(In − A†A) (3.17)

with Z ∈ Cn×n, let X̂m be the same as in Theorem 3.1 or Theorem 3.2.
Then we have the estimate

‖X̂m −X‖

≤ 2‖A†‖2
(∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†B‖‖P⊥
A∆APAH‖2
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+
1

2
‖A†‖‖PA∆BPA‖2 + ‖P⊥

AHZPAH‖‖PA∆AP⊥
AH‖2

)
+O

(
‖∆A‖22 + ‖∆B‖22

)
, (3.18)

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm.

Proof. (1) For Â†B̂(Â†)H − A†B(A†)H , we have the following decomposition:

Â†B̂(Â†)H − A†B(A†)H

= (Â† − A†)B̂(Â†)H + A†(B̂ −B)(Â†)H + A†B(Â† − A†)H .

Furthermore, from Lemma 2.2, we have

‖X̂m −XLS‖

=
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
=

∥∥−Â†∆AA†B̂(Â†)H + Â†(Â†)H(∆A)H(Im − AA†)B̂(Â†)H

+ Â†ÂA†∆B(Â†)H

− Â†ÂA†B(A†)H(∆A)H(Â†)H + Â†ÂA†B(Im − AA†)∆AÂ†(Â†)H
∥∥

≤ ‖Â†‖2
∥∥A†B̂(Â†)H

∥∥‖PÂ∆APAH‖2 + ‖Â†‖22
∥∥B̂(Â†)H

∥∥‖P⊥
A∆APÂH‖2

+ ‖A†‖2‖Â†‖‖PA∆BPÂ‖2 + ‖Â†‖2
∥∥A†B(A†)H

∥∥‖PÂ∆APAH‖2
+ ‖Â†‖22‖A†B‖‖P⊥

A∆APÂH‖2
= 2‖A†‖2

∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + 2‖A†‖22‖A†B‖‖P⊥

A∆APAH‖2
+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O

(
‖∆A‖22 + ‖∆B‖22

)
,

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm. In the last
equality, we have used the fact that

‖A†‖2
1 + ‖A†‖2‖∆A‖2

≤ ‖Â†‖2 ≤
‖A†‖2

1− ‖A†‖2‖∆A‖2
, (3.19)

which holds by applying the conditions of the theorem. Then we yield the estimate
in (3.16).

(2) By applying the assertion (3.16), we have from (3.17), (3.4), and (3.9) that

‖X̂m −X‖

=
∥∥Â†Â(Â†)H − Â†ÂXÂ(Â†)H

∥∥
=

∥∥Â†Â
[
Â†B̂(Â†)H − A†B(A†)H − (In − A†A)Z − ZH(In − A†A)

]
Â†Â

∥∥
=

∥∥Â†Â
[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

− Â†∆A(In − A†A)ZÂ†Â− Â†ÂZH(In − A†A)(∆A)H(Â†)H
∥∥

≤ 2‖A†‖2
∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + 2‖A†‖22‖A†B‖‖P⊥
A∆APAH‖2

+ ‖A†‖2‖A†‖‖PA∆BPA‖2 + 2‖Â†‖2
∥∥(In − A†A)ZÂ†Â

∥∥‖PÂ∆AP⊥
AH‖2

+O
(
‖∆A‖22 + ‖∆B‖22

)
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= 2‖A†‖2
(∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†B‖‖P⊥
A∆APAH‖2

+
1

2
‖A†‖‖PA∆BPA‖2 + ‖P⊥

AHZPAH‖‖PA∆AP⊥
AH‖2

)
+O

(
‖∆A‖22 + ‖∆B‖22

)
.

Note that in the last equality, we used the inequalities in (3.19) once again. Hence
the estimate in (3.18) follows. �

If the Hermitian linear system (3.1) is consistent, we have the following con-
clusion.

Theorem 3.4. Under the assumptions of Theorem 3.3, furthermore suppose that
the Hermitian linear system (3.1) is consistent. Then

(1) for the minimum Frobenius norm Hermitian solution XLS = Â†B̂(Â†)H ,
we have the estimate

‖X̂m −XLS‖

=
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
≤ 2‖A†‖2

∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†‖‖PA∆BPA‖2

+O
(
‖∆A‖22 + ‖∆B‖22

)
, (3.20)

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm;

(2) for any given Hermitian solution X ∈ SH of the form (3.17), let X̂m be
as in Theorem 3.1 or Theorem 3.2. Then we have the estimate

‖X̂m −X‖
≤ 2‖A†‖2

(∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + ‖P⊥

AHZPAH‖‖PA∆AP⊥
AH‖2

)
+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O

(
‖∆A‖22 + ‖∆B‖22

)
, (3.21)

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm.

Proof. (1) The consistency of the linear system (3.1) implies that B = AA†BAA†.
Therefore,

‖X̂m −XLS‖

=
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
=

∥∥−Â†∆AA†B̂(Â†)H + Â†(Â†)H(∆A)H(Im − AA†)B̂(Â†)H

+ Â†ÂA†∆B(Â†)H

− Â†ÂA†B(A†)H(∆A)H(Â†)H + Â†ÂA†B(Im − AA†)∆AÂ†(Â†)H
∥∥

=
∥∥−Â†∆AA†B̂(Â†)H + Â†(Â†)H(∆A)H(Im − AA†)∆B(Â†)H

+ Â†ÂA†∆B(Â†)H − Â†ÂA†B(A†)H(∆A)H(Â†)H
∥∥

≤ 2‖A†‖2
∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†‖‖PA∆BPA‖2
+O

(
‖∆A‖22 + ‖∆B‖22

)
.
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Note that in the last inequality, we used the inequalities in (3.19) to get the
estimate in (3.20).

(2) By applying the assertion in (3.20), we have from (3.4) and (3.9) that

‖X̂m −X‖

=
∥∥Â†Â(Â†)H − Â†ÂXÂ(Â†)H

∥∥
=

∥∥Â†Â
[
Â†B̂(Â†)H − A†B(A†)H − (In − A†A)Z − ZH(In − A†A)

]
Â†Â

∥∥
=

∥∥Â†Â
[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

− Â†∆A(In − A†A)ZÂ†Â− Â†ÂZH(In − A†A)(∆A)H(Â†)H
∥∥

≤ 2‖A†‖2
∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†‖‖PA∆BPA‖2
+ 2‖Â†‖2

∥∥(In − A†A)ZÂ†Â
∥∥‖PÂ∆AP⊥

AH‖2 +O
(
‖∆A‖22 + ‖∆B‖22

)
= 2‖A†‖2

(∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + ‖P⊥

AHZPAH‖‖PA∆AP⊥
AH‖2

)
+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O

(
‖∆A‖22 + ‖∆B‖22

)
.

Note that in the last equality, we used the inequalities in (3.19) once again. Hence
the estimate in (3.21) follows. �

4. Perturbation analysis for the skew-Hermitian matrix LSP

Since the perturbation analysis for the skew-Hermitian matrix least squares
problem can be treated using the same technique as in the preceding section, we
only state the main results without proofs here.

For the skew-Hermitian matrix least squares problem

AXAH = B, (4.1)

where A ∈ Cm×n, B = −BH ∈ Cm×m are given matrices, its perturbed Hermitian
matrix least squares problem is described to be

ÂX̂ÂH = B̂, (4.2)

where Â = A+∆A, B̂ = B +∆B, ∆A,∆B are small perturbation matrices and

B̂ = −B̂H . The general solutions of (4.1) are given by the following lemma.

Lemma 4.1 ([11, Lemma 1.5]). Suppose that A ∈ Cm×n, B ∈ Cm×m
K . Then the

matrix equation (4.1) has a skew-Hermitian solution if and only if R(B) ⊆ R(A).
In this case, the general skew-Hermitian solution is

X = A†B(A†)H + (In − A†A)Z − ZH(In − A†A)

for arbitrary Z ∈ Cn×n. The skew-Hermitian solution to (4.1) is unique if and
only if A†A = In; that is, rank(A) = n.

According to Lemma 4.1 and applying the same proof as Theorem 3.1, we have
the following result.
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Theorem 4.2. Suppose that A, Â = A + ∆A ∈ Cm×n, B, B̂ = B + ∆B ∈
Cm×m

K are given matrices. For any given skew-Hermitian solution X of the skew-
Hermitian matrix LSP (4.1) there exists a unique solution of the perturbed skew-
Hermitian matrix LSP (4.2) with the form

X̂m = Â†B̂(Â†)H +X − Â†ÂXÂ†Â (4.3)

such that

min
X̂∈ŜK

‖X̂ −X‖F = ‖X̂m −X‖F =
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
F
,

where ŜK is the set of skew-Hermitian solutions of (4.2).

If the distances are measured by the spectral norm, according to Lemmas 2.5
and 4.1, we have the following result.

Theorem 4.3. Suppose that A, Â = A + ∆A ∈ Cm×n, B, B̂ = B + ∆B ∈
Cm×m

K are given matrices. For any given skew-Hermitian solution X of the skew-

Hermitian matrix LSP (4.1) there exist skew-Hermitian solutions X̂m of the skew-
Hermitian matrix LSP (4.2) such that

min
X̂∈ŜK

‖X̂ −X‖2 = ‖X̂m −X‖2 =
∥∥Â†B̂(Â†)H − Â†ÂXÂ†Â

∥∥
2
,

and a general form of X̂m is

X̂m = Â†B̂(Â†)H +X − Â†ÂXÂ†Â+ (In − Â†Â)KÂ†ÂAÂ†ÂKH(In − Â†Â)

− (In − Â†Â)L̂HÂ†Â(µ2In +A2)
1
2 Â†Â

+ Â†Â(µ2In +A2)
1
2 Â†ÂL̂(In − Â†Â)

+ µ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â)

× Ẑ(In − Â†Â)(In −KKH)
1
2 (In − Â†Â), (4.4)

where µ = ‖A‖2 and

A = Â†B̂(Â†)H − Â†ÂXÂ†Â,

B = Â†Â(µ2In +A2)
1
2 Â†ÂL̂(In − Â†Â),

KH = Â†Â
[
(µ2In +A2)

1
2

]†
Â†ÂB(In − Â†Â),

in which L̂ ∈ Cn×n is an arbitrary contraction and Ẑ ∈ Cn×n
K is an arbitrary

skew-Hermitian contraction.

Analogous to the case of the Hermitian LSP, from Theorem 4.2 we see that, for
a given skew-Hermitian least squares solution X of the skew-Hermitian matrix

LSP (4.1), the nearest skew-Hermitian least squares solution X̂m is unique under

the matrix Frobenius norm. However, X̂m may not be unique under spectral norm.

Moreover, the skew-Hermitian least squares solution X̂m of the form in (4.3) is a

special case of (4.4) with L̂ = 0 and Ẑ = 0.
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Perturbation bounds for the skew-Hermitian least square solutions of (4.1)
are presented according to the results derived in Theorems 4.2–4.3, by adding a
restriction that the perturbations of the coefficient matrix A keep rank-invariant.

Theorem 4.4. Suppose that A, Â = A+∆A ∈ Cm×n, B, B̂ = B +∆B ∈ Cm×m
K

are given matrices with rank(A) = rank(Â) and ‖A†‖2‖∆A‖2 < 1. Then

(1) for the skew-Hermitian least squares solution XLS = A†B(A†)H with the
minimum Frobenius norm, we have the estimate

‖X̂m −XLS‖

=
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
≤ 2‖A†‖2

∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + 2‖A†‖22‖A†B‖‖P⊥

A∆APAH‖2
+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O

(
‖∆A‖22 + ‖∆B‖22

)
,

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm;
(2) for any given skew-Hermitian least squares solution X ∈ SK of the form

X = A†B(A†)H + (In − A†A)Z − ZH(In − A†A) (4.5)

with Z ∈ Cn×n, let X̂m be the same as in Theorem 4.2 or Theorem 4.3.
Then we have the estimate

‖X̂m −X‖ ≤ 2‖A†‖2
(∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†B‖‖P⊥
A∆APAH‖2

+
1

2
‖A†‖‖PA∆BPA‖2 + ‖P⊥

AHZPAH‖‖PA∆AP⊥
AH‖2

)
+O

(
‖∆A‖22 + ‖∆B‖22

)
,

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm.

If the skew-Hermitian linear system (4.1) is consistent, we have the following
conclusion.

Theorem 4.5. Under the assumptions of Theorem 4.4, furthermore suppose that
the skew-Hermitian linear system (4.1) is consistent. Then

(1) for the minimum Frobenius norm skew-Hermitian solution XLS =

Â†B̂(Â†)H , we have the estimate

‖X̂m −XLS‖ =
∥∥Â†Â

[
Â†B̂(Â†)H − A†B(A†)H

]
Â†Â

∥∥
≤ 2‖A†‖2

∥∥A†B(A†)H
∥∥‖PA∆APAH‖2 + ‖A†‖2‖A†‖‖PA∆BPA‖2

+O
(
‖∆A‖22 + ‖∆B‖22

)
,

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm;

(2) for any given skew-Hermitian solution X ∈ SK of the form (4.5), let X̂m

be as in Theorem 4.2 or Theorem 4.3. Then we have the estimate

‖X̂m −X‖ ≤ 2‖A†‖2
(∥∥A†B(A†)H

∥∥‖PA∆APAH‖2 + ‖P⊥
AHZPAH‖‖PA∆AP⊥

AH‖2
)

+ ‖A†‖2‖A†‖‖PA∆BPA‖2 +O
(
‖∆A‖22 + ‖∆B‖22

)
,

where ‖ · ‖ is either the matrix Frobenius norm or spectral norm.
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