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Abstract. In this article, we prove that the tensor product of two hyperrigid
operator systems is hyperrigid in the spatial tensor product of C∗-algebras. We
deduce this by establishing that the unique extension property for unital com-
pletely positive maps on operator systems carry over to tensor products such
maps defined on the tensor product operator systems. Hopenwasser’s result
about the tensor product of boundary representations follows as a special case.
We also provide examples to illustrate the hyperrigidity property of tensor
products of operator systems.

1. Introduction and preliminaries

The notion of boundary representation of a C∗-algebra for an operator sys-
tem introduced by Arveson [1] greatly influenced the theory of noncommutative
approximation theory and other related areas such as Korovkin type proper-
ties for completely positive maps, peaking phenomena for operator systems, and
noncommutative convexity, and so on. Arveson [2] also introduced the notion of
hyperrigid set as a noncommutative analogue of the classical Korovkin set and
studied extensively the relation between hyperrigid operator systems and bound-
ary representations.

In this article, we study hyperrigidity of operator systems in C∗-algebras in
the context of tensor products of C∗-algebras. One interesting area to investi-
gate is whether tensor product of hyperrigid operator systems are hyperrigid.
By a result of Hopenwasser [7], a tensor product of boundary representations of
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C∗-algebras for operator systems is a boundary representation if one of the con-
stituent C∗-algebras is a GCR algebra. Since hyperrigidity implies that all irre-
ducible representations are boundary representations, we will be able to deduce
Hopenwasser’s result as a spatial case if we can prove a similar result for hyper-
rigidity. We achieve this by establishing first that unique extension property for
unital completely positive maps on operator systems carry over to the tensor
product of those maps defined on the tensor product of operator systems in the
spatial tensor product of C∗-algebras.

To fix our notation and terminology, we first recall the fundamental notions.
Let H be a complex Hilbert space, and let B(H) be the set of all bounded linear
operators on H. An operator system S in a C∗-algebra A is a self-adjoint linear
subspace of A containing the identity of A. Given a linear map φ from a C∗-algebra
A into a C∗-algebra B, we can define a family of maps φn : Mn(A) → Mn(B)
given by φn([aij]) = [φ(aij)], n ∈ N. We say that φ is completely bounded (CB)
if ‖φ‖CB = supn≥1 ‖φn‖ < ∞. We say that φ is completely contractive (CC) if
‖φ‖CB ≤ 1, and we say that φ is completely isometric if φn is isometric for all
n ≥ 1. We say that φ is completely positive (CP) if φn is positive for all n ≥ 1,
and we say that φ is unital completely positive (UCP) if in addition φ(1) = 1.

Definition 1.1. Let S be an operator system generating the C∗-algebra C∗(S).
A UCP map π : S → B(H) is said to have unique extension property (UEP) for
S if

(i) π has a unique completely positive extension π̃ : C∗(S) → B(H), and
(ii) π̃ is a representation of C∗(S) on H.

If the extension π̃ of such a map π to C∗(S) is an irreducible representation, then
the extension is called a boundary representation for S.

The noncommutative approximation theory initiated by Arveson [2] benefited
remarkably from the theory of boundary representations. The noncommutative
analogue of classical Korovkin sets introduced by Arveson in [2] is as follows.

Definition 1.2. Let A be a C∗-algebra, and let G ⊆ A (finite or countably
infinite) be a set of generators of A (i.e., A = C∗(G)). Then G is said to be
hyperrigid if, for every faithful representation A ⊆ B(H) of A on a Hilbert space
H and every sequence of unital completely positive maps φn : B(H) → B(H),
n = 1, 2, . . . ,

lim
n→∞

∥∥φn(g)− g
∥∥ = 0, ∀g ∈ G =⇒ lim

n→∞

∥∥φn(a)− a
∥∥ = 0, ∀a ∈ A.

The following characterization of hyperrigid operator systems due to Arveson
[2] is more of a workable definition of hyperrigidity of operator systems.

Theorem 1.3. Let S be a separable operator system generating the C∗-algebra
A = C∗(S). Then S is hyperrigid if and only if every unital representation
π : A→ B(H) on a separable Hilbert space π|S has the unique extension property.

In this context it is relevant to mention the “hyperrigidity conjecture” posed
by Arveson [2]. The hyperrigidity conjecture states that if every irreducible repre-
sentation of a C∗-algebra A is a boundary representation for a separable operator
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system S ⊆ A and A = C∗(S), then S is hyperrigid. Arveson [2] proved the
conjecture for C∗-algebras having a countable spectrum, while Kleski [8] estab-
lished the conjecture for all type-I C∗-algebras with some additional assumptions.
Recently Davidson and Kennedy [4] proved the conjecture for function systems.

Using the obvious correspondence between representations and modules, one
can translate many aspects of the above notions in terms of Hilbert modules.
Muhly and Solel [9] gave an algebraic characterization of boundary representa-
tions in terms of Hilbert modules. Following Muhly and Solel, the present authors
in [10, Lemma 0] established a Hilbert module characterization for hyperrigidity
of certain operator systems in a C∗-algebra.

We will consider tensor products of C∗-algebras in this article. Let A1 ⊗ A2

denote the algebraic tensor product of A1 and A2. Let A1 ⊗s A2 denote the
closure of A1⊗A2 provided with the spatial norm which is the minimal C∗-norm
on the tensor product of C∗-algebras. In what follows we will be considering
spatial norm for tensor product of C∗-algebras. We know that if representations
π1 is nondegenerate on A1 and π2 is nondegenerate on A2, then the representation
π1⊗π2 is nondegenerate on A1⊗A2. Conversely, from [3, Theorem II.9.2.1] we can
see that if π is a nondegenerate representation of A1 ⊗A2, then there are unique
nondegenerate representations π1 of A1 and π2 of A2 such that π = π1 ⊗ π2.

Tensor products of operator spaces (linear subspaces) of C∗-algebras and opera-
tor spaces of tensor products of C∗-algebras were explored by Hopenwasser earlier
in [6] and [7] in order to study boundary representations. In [6] it was shown that,
under certain conditions, boundary representations of an operator subspace of a
C∗-algebra A⊗Mn(C) are parameterized by the boundary representations of an
operator subspace of the C∗-algebra A which is given by the operator subspace
in A ⊗Mn(C). In [7] it was proved that if one of the C∗-algebras of the tensor
product is a GCR algebra, then the boundary representations of the tensor prod-
uct of C∗-algebras correspond to products of boundary representations. It is this
later result by Hopenwasser which motivated our work and influenced us to use
similar techniques.

2. Main results

In the following result, we investigate the relation between the hyperrigidity of
the tensor product of two operator system in the tensor product C∗-algebra and
the hyperrigidity of the individual operator systems in the respective C∗-algebras.
The following result shows that the unique extension property of completely pos-
itive maps on operator systems carries over to the tensor products of those maps
defined on the tensor products of operator systems.

Theorem 2.1. Let S1 and S2 be operator systems generating C∗-algebras A1 and
A2, respectively. Let πi : Si → B(Hi), i = 1, 2 be unital completely positive maps.
Then π1 and π2 have unique extension property if and only if the unital completely
positive map π1 ⊗ π2 : S1 ⊗ S2 → B(H1 ⊗H2) has unique extension property for
S1 ⊗ S2 ⊆ A1 ⊗s A2.

Proof. Assume that π1 ⊗ π2 has unique extension property, that is π1 ⊗ π2 has
unique completely positive extension π̃1 ⊗s π̃2 : A1 ⊗s A2 → B(H1 ⊗ H2) which



372 P. SHANKAR and A. K. VIJAYARAJAN

is a representation of A1 ⊗s A2. We will show that π1 and π2 have unique exten-
sion properties. On the contrary, assume that one of the factors, say π1, does not
have unique extension property. This means that there exist at least two exten-
sions of π1, a completely positive map φ1 : A1 → B(H1) and the representation
π̃1 : A1 → B(H1) such that φ1 6= π̃1 on A1, but φ1 = π̃1 = π1 on S1. Using [3,
Theorem II.9.7], we can see that the tensor product of two completely positive
maps is completely positive. We have that φ1⊗s π̃2 is a completely positive exten-
sion of π1 ⊗ π2 on S1 ⊗ S2, where π̃2 is a unique completely positive extension of
π2 on S2. Hence φ1⊗s π̃2 6= π̃1⊗s π̃2 on A1⊗sA2. This contradicts our assumption.

Conversely, assume that π1 and π2 have the unique extension property; that
is, π1 and π2 have unique completely positive extensions π̃1 : A1 → B(H1) and
π̃2 : A2 → B(H2), respectively, where π̃1 and π̃2 are representations of A1 and A2,
respectively. We will show that π1 ⊗ π2 has the unique extension property. We
have that π̃1⊗s π̃2 : A1⊗sA2 → B(H1⊗H2) is a representation and an extension
of π1 ⊗ π2 on S1 ⊗ S2. It is enough to show that if φ : A1 ⊗s A2 → B(H1 ⊗H2)
is a completely positive extension of π1 ⊗ π2 on S1 ⊗ S2, then φ = π̃1 ⊗s π̃2 on
A1 ⊗ A2.

Let P be any rank 1 projection in B(H2). The map a→ (1⊗P )φ(a⊗1)(1⊗P )
is completely positive on A1, since the map is a composition of three completely
positive maps. Let v be a unit vector in the range of P , and let K be the range of
1⊗ P . Define U : H1 → K by U(x) = x⊗ v, x ∈ H1, where U is a unitary map.
Let π̂ = Uπ̃1(a)U

∗, a ∈ A1, and let π̂(a) be the restriction to K of π̃1(a) ⊗ P =
(1⊗P )(π̃1(a)⊗1)(1⊗P ). Since π̂ is unitarily equivalent to π̃1, the representation
π̂|S1

has unique extension property. Let ψ(a) be the restriction to K of (1 ⊗
P )φ(a⊗ 1)(1⊗P ), which implies that ψ is a completely positive map that agrees
with π̂ on S1, and hence on all of A1.

Let x, y ∈ H1, and let r ∈ H2. From the above paragraph we have, for any
a ∈ A1, 〈φ(a⊗1)(x⊗r), y⊗r〉 = 〈(π̃1(a)⊗1)(x⊗r), y⊗r〉. (We let P be the rank
1 projection on the subspace spanned by r.) Let D = φ(a⊗ 1)− π̃1 ⊗ 1. Then we
have 〈D(x⊗ r), y ⊗ r〉 = 0, for all x, y ∈ H1, r ∈ H2, using polarization formula

4
〈
D(x⊗ r), y ⊗ s

〉
=

〈
D
(
x⊗ (r + s)

)
, y ⊗ (r + s)

〉
−

〈
D
(
x⊗ (r − s)

)
, y ⊗ (r − s)

〉
+ i

〈
D
(
x⊗ (r + is)

)
, y ⊗ (r + is)

〉
− i

〈
D
(
x⊗ (r − is)

)
, y ⊗ (r − is)

〉
.

We have 〈D(x ⊗ r), y ⊗ s〉 = 0 for all x, y ∈ H1 and for all r, s ∈ H2. Con-
sequently, if z1 =

∑n
i=1 xi ⊗ ri and z2 =

∑m
i=1 yi ⊗ si, then 〈Dz1, z2〉 = 0. Since

z1, z2 run through a dense subset of H1 ⊗ H2 and since D is bounded, D = 0.
Therefore, φ(a ⊗ 1) = π̃1(a) ⊗ 1 for all a ∈ A1. In the same way we can obtain
φ(1⊗b) = 1⊗ π̃2(b) for all b ∈ A2. Since φ is a completely positive map on A1⊗A2

and φ(1⊗ b) = 1⊗ π̃2(b) for all b ∈ A2, using a multiplicative domain argument
(e.g., see [7, Lemma 2]), we have

φ(a⊗ b) = φ(a⊗ 1)
(
1⊗ π̃2(b)

)
=

(
1⊗ π̃2(b)

)
φ(a⊗ 1)



TENSOR PRODUCTS OF HYPERRIGID OPERATOR SYSTEMS 373

for all a ∈ A1, b ∈ A2. Also φ(a⊗1) = π̃1(a)⊗1 for all a ∈ A1. Hence φ = π̃1⊗s π̃2
on A1 ⊗s A2. �

Corollary 2.2. Let S1 and S2 be separable operator systems generating
C∗-algebras A1 and A2, respectively. Assume that either A1 or A2 is a GCR
algebra. Then S1 and S2 are hyperrigid in A1 and A2, respectively, if and only if
S1 ⊗ S2 is hyperrigid in A1 ⊗s A2.

Proof. Assume that S1 ⊗ S2 is hyperrigid in the C∗-algebra A1 ⊗s A2. By Theo-
rem 1.3, every unital representation π : A1⊗sA2 → B(H1⊗H2), π|S1⊗S2

has unique
extension property. We have that, if π is a unital representation of A1⊗sA2, since
one of the C∗-algebras is GCR, then by [5, Proposition 2] there are unique unital
representations π1 of A1 and π2 of A2 such that π = π1⊗s π2. Using Theorem 2.1,
we can see that π1|S1

and π2|S2
have unique extension property. This implies that

S1 and S2 are hyperrigid in A1 and A2, respectively, again by Theorem 1.3.
Conversely, assume that S1 is hyperrigid in A1 and that S2 is hyperrigid in

A2. By Theorem 1.3, for every unital representations π1 : A1 → B(H1) and
π2 : A2 → B(H2), π1|S1

and π2|S2
have unique extension property. We have, if

π1 and π2 are unital representations of A1 and A2, respectively, that π1 ⊗s π2
is an unital representation of A1 ⊗s A2. Using Theorem 2.1, we can see that
π1 ⊗s π2|S1⊗S2

has unique extension property. Now, by Theorem 1.3, S1 ⊗ S2 is
hyperrigid in A1 ⊗s A2. �

Let A1 ⊗m A2 denote the closure of A1 ⊗A2 provided with maximal C∗-norm.
There are C∗-algebras A1 for which the minimal and the maximal norm on A1⊗A2

coincide for all C∗-algebras A2, and consequently the C∗-norm on A1 ⊗ A2 is
unique. Such C∗-algebras are called nuclear. Clearly, the spatial norm assump-
tion in the above result is redundant if the C∗-algebras are nuclear. But general
C∗-algebras lacking the injectivity associated with other C∗-norms, including the
maximal one, will require additional assumptions.

Let A1 and A2 be C∗-algebras, and let γ be any C∗-cross norm on A1 ⊗A2. If
π1 and π2 are irreducible representations of A1 and A2, respectively, then π1 ⊗γ

π2 is an irreducible representation of A1 ⊗γ A2. Conversely, every irreducible
representation π on A1⊗γ A2 need not factor as a product π1⊗γ π2 of irreducible
representations. If we assume one of the C∗-algebras is a GCR algebra, then by
[5, Proposition 2] every irreducible representation factors. Since GCR algebras
are nuclear, there is a unique C∗-cross norm on A1 ⊗ A2, which we denote by
A1 ⊗γ A2.

Using the above facts, the result by Hopenwasser [7] relating boundary rep-
resentations of tensor products of C∗-algebras will become a corollary to our
Theorem 2.1.

Corollary 2.3. Let S1 and S2 be unital operator subspaces of generating
C∗-algebras A1 and A2, respectively. Assume that either A1 or A2 is a GCR
algebra. Then the representation π1 ⊗γ π2 of A1 ⊗γ A2 is a boundary represen-
tation for S1 ⊗ S2 if and only if the representations π1 of A1 and π2 of A2 are
boundary representations for S1 and S2, respectively.

Now, we will provide some examples which illustrate the results above.
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Example 2.4. Let G = linear span(I, S, S∗), where S is the unilateral right shift
in B(H) and I is the identity operator. Let A = C∗(G) be the C∗-algebra gen-
erated by G. We have that K(H) ⊆ A, A/K(H) ∼= C(T) is commutative, where
T denotes the unit circle in C. Let Id denote the identity representation of the
C∗-algebra A. Let S∗Id(·)S be a completely positive map on the C∗-algebra A
such that S∗IdS|G = Id|G ; it is easy to see that S∗IdS|A 6= Id|A . Therefore, the
unital representation Id|G does not have unique extension property. Using Theo-
rem 1.3, we conclude that G is not a hyperrigid operator system in a C∗-algebra
A.

Let G1 = G, let A1 = A, and let Id1 denote the identity representation of
A1. Let G2 = A2 = Mn(C), and let Id2 denote the identity representation of
the C∗-algebra A2. The completely positive map S∗Id1S ⊗ Id2 on the C∗-algebra
A1 ⊗ A2 is such that S∗Id1S ⊗ Id2 = Id1 ⊗ Id2 on operator system G1 ⊗ G2. By
the above conclusion, we see that S∗Id1S ⊗ Id2 6= Id1 ⊗ Id2 on the C∗-algebra
A1 ⊗ A2. Therefore, the unital representation Id1 ⊗ Id2 does not have unique
extension property for G1⊗G2. Hence by Theorem 1.3, G1⊗G2 is not a hyperrigid
operator system in a C∗-algebra A1 ⊗ A2.

Example 2.5. Let the Volterra integration operator V acting on the Hilbert
space H = L2[0, 1] be given by

V f(x) =

∫ x

0

f(t) dt, f ∈ L2[0, 1].

Note that V generates the C∗-algebra K = K(H) of all compact operators. Let
S = linear span(V, V ∗, V 2, V 2∗) and let S be hyperrigid (see [2, Theorem 1.7]).
Then S̃ = S + C · 1 is a hyperrigid operator system generating the C∗-algebra
Ã = K + C · 1. Let S1 = S2 = S̃ and let A1 = A2 = Ã. We know that S1 and
S2 are hyperrigid operator systems in the C∗-algebra A1 and A2, respectively.
By Corollary 2.2, we conclude that S1 ⊗ S2 is hyperrigid operator system in the
C∗-algebra A1 ⊗ A2.

Example 2.6. Let G = linear span(I, S, S∗, SS∗), where S is the unilateral right
shift in B(H) and I is the identity operator. Let A = C∗(G) be the C∗-algebra
generated by the operator system G. We have that K(H) ⊆ A; also, A/K(H) ∼=
C(T) is commutative, where T denotes the unit circle in C. Since S is an isometry,
G is a hyperrigid operator system (see [2, Theorem 3.3]) in the C∗-algebra A. Let
G1 = G, let A1 = A, and let G2 = A2 =Mn(C). It is clear that G2 is a hyperrigid
operator system in the C∗-algebra A2 = C∗(G2). By Corollary 2.2, G⊗Mn(C) is
a hyperrigid operator system in A⊗Mn(C).
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