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Abstract. It is known that if M is a finite-dimensional Banach space, or
a strictly convex space, or the space `1, then every nonexpansive bijection
F : BM → BM of its unit ball BM is an isometry. We extend these results
to nonexpansive bijections F : BE → BM between unit balls of two different
Banach spaces. Namely, if E is an arbitrary Banach space and M is finite-
dimensional or strictly convex, or the space `1, then every nonexpansive bijec-
tion F : BE → BM is an isometry.

1. Introduction

Let M be a metric space. A map F : M → M is called nonexpansive if
ρ(F (x), F (y)) ≤ ρ(x, y) for all x, y ∈ M . The space M is called expand-contract
plastic (or simply, an EC-space) if every nonexpansive bijection from M onto
itself is an isometry.

This definition was introduced in [8], where an extensive study of this notion
was performed. Among other results it was shown that “an EC-space need not be
compact, complete, or bounded” and it was observed that “it is an open question
whether there exists a simple characterization of these spaces.” Theorem 1.1
from the same source states that every compact (or even totally bounded) metric
space is expand-contract plastic, so in particular every bounded subset of Rn is
an EC-space.

The situation with bounded subsets of infinite-dimensional spaces is different.
On the one hand, there is a non-expand-contract plastic bounded closed convex
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subset of a Hilbert space (see [2, Example 2.7]; in fact, that set is an ellipsoid),
but on the other hand, the unit ball of a Hilbert space, and in general the unit ball
of every strictly convex Banach space, is an EC-space (see [2, Theorem 2.6]). It is
unknown whether the same result remains valid for the unit ball of an arbitrary
Banach space—in other words, the following problem arises.

Problem 1.1. For which Banach spaces Y is every nonexpansive bijection F :
BY → BY an isometry?

Outside of strictly convex spaces, Problem 1.1 is solved positively for all finite-
dimensional spaces (because of the compactness of the unit ball), and has been
proved for the space `1 in [6, Theorem 1]. To the best of our knowledge, the
following natural extension of Problem 1.1 is also open.

Problem 1.2. For which pairs (X,Y ) of Banach spaces is every bijective non-
expansive map F : BX → BY an isometry?

An evident bridge between these two problems is the following one, which we
also are not yet able to solve in full generality.

Problem 1.3. Let X,Y be Banach spaces that admit a bijective nonexpansive
map F : BX → BY . Is it true that they are linearly isometric?

Indeed, if one solves Problem 1.2 for a fixed pair (X,Y ) in the positive, one may
also solve Problem 1.3 for this pair applying a classical theorem by Mankiewicz
(see Proposition 3.2). On the other hand, for this fixed pair the positive answers
to Problems 1.1 and 1.3 would imply the positive solution for Problem 1.2.

The aim of this article is to demonstrate that for all spaces Y where Prob-
lem 1.1 is known to have a positive solution (i.e., strictly convex spaces, `1, and
finite-dimensional spaces), Problem 1.2 can be solved in the positive for all pairs
of the form (X,Y ) (see Theorems 3.1, 3.5, and 3.8). In fact, our result for pairs
(X,Y ) with Y being strictly convex repeats the arguments given for the case
X = Y from [2, Theorem 2.6] almost word-to-word. The proof of Theorem 3.5
needs additional work compared to its particular caseX = `1 from [6, Theorem 1].
The most difficult one is the finite-dimensional case, because the approach from
[8, Theorem 1.1] uses iterations of the map and consequently is not applicable
for maps between two different spaces. Our proof relies on duality technique and
uses some differentiability argument from [2] and topological ideas from [6].

There is another similar circle of problems that motivates our study. In 1987,
Tingley [11] proposed the following question: let f be a bijective isometry between
the unit spheres SX and SE of real Banach spacesX, E respectively. Is it then true
that f extends to a linear (bijective) isometry F : X → E of the corresponding
spaces? Let us mention that this is equivalent to the fact that the following natural
positive-homogeneous extension F : X → E of f is linear:

F (0) = 0, F (x) = ‖x‖ f
(
x/‖x‖

) (
x ∈ X \ {0}

)
.

Since, according to Mankiewicz’s theorem [7, Main Theorem] every bijective
isometry between convex bodies can be uniquely extended to an affine isometry
of the whole spaces, Tingley’s problem can be reformulated as follows
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Problem 1.4. Let F : BX → BE be a positive-homogeneous map, whose restric-
tion to SX is a bijective isometry between SX and SE. Is it true that F is an
isometry itself?

Various publications are devoted to Tingley’s problem (see [3] for a survey
of corresponding results), and, in particular, the problem is solved in the posi-
tive for many concrete classical Banach spaces. Surprisingly, for general spaces
this innocent-looking question remains open even in dimension 2. For finite-
dimensional polyhedral spaces the problem was solved in the positive by Kadets
and Mart́ın [5] in 2012, and the positive solution for the class of generalized lush
spaces was given by Tan, Huang, and Liu [10] in 2013. A step in the proof of the
latter result was a lemma (see [10, Proposition 3.4]) which in our terminology
says that if the map F in Problem 1.4 is nonexpansive, then the problem has a
positive solution. So, the problem which we address in our paper (Problem 1.2)
can be considered as a much stronger variant of that lemma.

2. Preliminaries

In the following , the letters X and Y stand for real Banach spaces. We denote
by SX and BX the unit sphere and the closed unit ball of X, respectively. For
a convex set A ⊂ X, denote by ext(A) the set of extreme points of A; that is,
x ∈ ext(A) whenever x ∈ A and for every y ∈ X \ {0} either x + y /∈ A or
x − y /∈ A. Recall that X is called strictly convex when all elements of SX are
extreme points of BX , or in other words, when SX does not contain nontrivial
line segments. Strict convexity of X is equivalent to the strict triangle inequality
‖x + y‖ < ‖x‖ + ‖y‖ holding for all pairs of vectors x, y ∈ X that do not
have the same direction. For subsets A,B ⊂ X we use the standard notation
A+B = {x+ y: x ∈ A, y ∈ B} and aA = {ax: x ∈ A}.

Now let us reformulate the results of [2] on the case of two different spaces.
The following theorem generalizes [2, Theorem 2.3], where the case X = Y was
considered. It can be demonstrated repeating the proof there almost word to
word.

Theorem 2.1. Let F : BX → BY be a nonexpansive bijection. The following
hold.

(1) F (0) = 0.
(2) F−1(SY ) ⊂ SX .
(3) If F (x) is an extreme point of BY , then F (ax) = aF (x) for all a ∈ (0, 1).
(4) If F (x) is an extreme point of BY , then x is also an extreme point of BX .
(5) If F (x) is an extreme point of BY , then F (−x) = −F (x).

Moreover, if Y is strictly convex, then

(i) F maps SX bijectively onto SY ;
(ii) F (ax) = aF (x) for all x ∈ SX and a ∈ (0, 1);
(iii) F (−x) = −F (x) for all x ∈ SX .
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Following the notation in [2], for every u ∈ SX and v ∈ X, denote by u∗(v) the
directional derivative of the function x 7→ ‖x‖X at the point u in the direction v:

u∗(v) = lim
a→0+

1

a

(
‖u+ av‖X − ‖u‖X

)
.

Since the norm is a convex function, its directional derivative exists. Let M ⊂ X
be a subspace, let u be a smooth point of SM , and let u∗|M be the restriction of
u∗ to M ; u∗|M is known to be the supporting functional at point u, that is, the
unique linear functional on M that satisfies u∗|M(u) = 1, ‖u∗|M‖ = 1. If u is a
nonsmooth point, the map u∗ : X → R is not linear. However, it turns out to be
subadditive, positively homogeneous, and satisfying the following inequality: for
any y1, y2 ∈ X,

u∗(y1)− u∗(y2) ≤ ‖y1 − y2‖X . (1)

The next lemma generalizes in a straightforward way [2, Lemma 2.4].

Lemma 2.2. Let F : BX → BY be a bijective nonexpansive map, and suppose
that for some u ∈ SX and v ∈ BX we have u∗(−v) = −u∗(v), ‖F (u)‖ = ‖u‖ and
F (av) = aF (v) for all a ∈ [−1, 1]. Then (F (u))∗(F (v)) = u∗(v).

The following result and Corollary 2.4 are extracted from the proof of [2,
Lemma 2.5].

Lemma 2.3. Let F : BX → BY be a bijective nonexpansive map such that
F (SX) = SY . Let V ⊂ SX be a subset such that F (av) = aF (v) for all a ∈ [−1, 1],
v ∈ V . Denote A = {tx : x ∈ V, t ∈ [−1, 1]}; then F |A is a bijective isometry
between A and F (A).

Proof. Fix arbitrary y1, y2 ∈ A. Let E = span{y1, y2}, and let W ⊂ SE be the
set of smooth points of SE (which is dense in SE). All the functionals x∗, where
x ∈ W , are linear on E, so x∗(−yi) = −x∗(yi), for i = 1, 2. Also, according to our
assumption, F (ayi) = aF (yi) for all a ∈ [−1, 1]. Now we can apply Lemma 2.2:∥∥F (y1)− F (y2)

∥∥
Y
≤ ‖y1 − y2‖X
= sup

{
x∗(y1 − y2) : x ∈ W

}
= sup

{
x∗(y1)− x∗(y2) : x ∈ W

}
= sup

{(
F (x)

)∗(
F (y1)

)
−

(
F (x)

)∗(
F (y2)

)
: x ∈ W

}
≤

∥∥F (y1)− F (y2)
∥∥
Y
,

where on the last inequality we used (1). So ‖F (y1)− F (y2)‖ = ‖y1 − y2‖. �

Corollary 2.4. If F : BX → BY is a bijective nonexpansive function that satisfies
(i), (ii), and (iii) of Theorem 2.1, then F is an isometry.

Proof. We can apply Lemma 2.3 with V = SX and A = BX . �
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3. Main results

The first of our goals, mentioned in the Introduction, can be now achieved by
using the results of Section 2.

Theorem 3.1. Let F : BX → BY be a bijective nonexpansive map. If Y is strictly
convex, then F is an isometry.

Proof. If Y is strictly convex, then F satisfies (i), (ii), and (iii) of Theorem 2.1,
and so Corollary 2.4 is applicable. �

Our next goal is to show that each nonexpansive bijection from the unit ball
of arbitrary Banach space to the unit ball of `1 is an isometry. In the proof we
will use the following three known results.

Proposition 3.2 ([7, Main Theorem]). If A ⊂ X and B ⊂ Y are convex with
nonempty interior, then every bijective isometry F : A → B can be extended to a
bijective affine isometry F̃ : X → Y .

Taking into account that in the case of A, B being the unit balls, every isometry
maps 0 to 0, this result implies that every bijective isometry F : BX → BY is the
restriction of a linear isometry from X onto Y .

Proposition 3.3 (Brower’s invariance of domain principle [1]). Let U be an open
subset of Rn and let f : U → Rn be an injective continuous map; then f(U) is
open in Rn.

Proposition 3.4 ([6, Proposition 4]). Let X be a finite-dimensional normed space
and let V be a subset of BX with the following two properties: V is homeomorphic
to BX and V ⊃ SX . Then V = BX .

Now we give the promised theorem.

Theorem 3.5. Let X be a Banach space, and let F : BX → B`1 be a bijective
nonexpansive map. Then F is an isometry.

Proof. Denote by en = (δi,n)i∈N, n = 1, 2, . . . , the elements of the canonical basis
of `1 (here, as usual, δi,n = 0 for n 6= i and δn,n = 1). It is well known and easy
to check that ext(B`1) = {±en, i = 1, 2, . . .}.

Denote gn = F−1en. According to item (4) of Theorem 2.1 each of gn is an
extreme point of BX .

One more notation: for every N ∈ N and XN = span{gk}k≤N , denote by UN

and ∂UN the unit ball and the unit sphere of XN , respectively, and analogously
for YN = span{ek}k≤N denote by VN and ∂VN the unit ball and the unit sphere
of YN , respectively.

Claim. For every N ∈ N and every collection {ak}k≤N of reals, it holds that

(A)
∥∥∥ N∑
k=1

akgk

∥∥∥ =
N∑
k=1

|ak| and

(B) if
∥∥∥ N∑
k=1

akgk

∥∥∥ ≤ 1 then F
( N∑

k=1

akgk

)
=

N∑
k=1

akek.
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Proof of the Claim. We will prove (A) and (B) simultaneously, using induction
on N . If N = 1, then the statement (A) is obvious and (B) follows from items (3)
and (5) of Theorem 2.1. Now assume the validity of (A) and (B) for N − 1, and
let us prove it for N . At first, we will prove (A). Note that, due to the positive

homogeneity of the norm, it is sufficient to consider the case of
∑N

k=1 |ak| ≤ 1. In
such a case ∥∥∥N−1∑

k=1

akgk

∥∥∥ ≤
N−1∑
k=1

‖akgk‖ =
N−1∑
i=1

|ak| ≤
N∑
i=1

|ak| ≤ 1,

and
∑N−1

k=1 akgk ∈ UN . On the one hand, denoting x :=
∑N

k=1 akgk we have

‖x‖ =
∥∥∥ N∑
k=1

akgk

∥∥∥ ≤
N∑
k=1

|ak|.

On the other hand, by the induction hypothesis F (
∑N−1

k=1 akgk) =
∑N−1

k=1 akek.
Also, by items (3) and (5) of Theorem 2.1 F (−aNgN) = −aNeN . Consequently,

‖x‖ =
∥∥∥N−1∑

k=1

akgk + aNgN

∥∥∥
=

∥∥∥N−1∑
k=1

akgk − (−aNgN)
∥∥∥

≥
∥∥∥F(N−1∑

k=1

akgk

)
− F (−aNgN)

∥∥∥
=

∥∥∥N−1∑
k=1

akek + aNeN

∥∥∥
=

N∑
k=1

|ak|,

and (A) is demonstrated. That means that

UN =
{∑

n≤N

angn :
∑
n≤N

|an| ≤ 1
}
,

∂UN =
{∑

n≤N

angn :
∑
n≤N

|an| = 1
}
.

The remaining part of the proof of the Claim, and of the whole theorem repeats
almost literally the corresponding part of the proof of [6, Theorem 1], so we
present it here only for the reader’s convenience. Let us show that

F (UN) ⊂ VN . (2)

To this end, consider x ∈ UN . If x is of the form agN the statement follows
from Theorem 2.1. So we must consider x =

∑N
k=1 akgk,

∑N
k=1 |ak| ≤ 1, with
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k=1 |ak| 6= 0. Denote the expansion of F (x) by F (x) =

∑∞
k=1 ykek. For the

element

x1 =

∑N−1
k=1 akgk∑N−1
k=1 |ak|

we have by the induction hypothesis

F (x1) =

∑N−1
k=1 akek∑N−1
k=1 |ak|

.

So we may write the following chain of inequalities:

2 =
∥∥∥F (x1)−

aN
|aN |

eN

∥∥∥
≤

∥∥∥F (x1)−
N∑
k=1

ykek

∥∥∥+
∥∥∥ N∑
k=1

ykek −
aN
|aN |

eN

∥∥∥
=

∥∥F (x1)− F (x)
∥∥+

∥∥∥F (x)− aN
|aN |

eN

∥∥∥− 2
∞∑

k=N+1

|yk|

≤
∥∥F (x1)− F (x)

∥∥+
∥∥∥F (x)− F

( aN
|aN |

gN

)∥∥∥
≤ ‖x1 − x‖+

∥∥∥x− aN
|aN |

gN

∥∥∥
=

N−1∑
j=1

∣∣∣aj − aj∑N−1
k=1 |ak|

∣∣∣+ |aN |+
N−1∑
j=1

|aj|+
∣∣∣aN − aN

|aN |

∣∣∣
=

N−1∑
j=1

|aj|
(
1 +

∣∣∣1− 1∑N−1
k=1 |ak|

∣∣∣)+ |aN |
(
1 +

∣∣∣1− 1

|aN |

∣∣∣) = 2.

This means that all the inequalities in between are in fact equalities, so in
particular

∑∞
k=N+1 |yk| = 0 (i.e., F (x) =

∑N
k=1 ykek ∈ VN) and (2) is proved.

Now, let us demonstrate that

F (UN) ⊃ ∂VN . (3)

Assume on the contrary, that there is y ∈ ∂VN \ F (UN). Denote x = F−1(y).
Then, ‖x‖ = 1 (by (2) of Theorem 2.1) and x /∈ UN . For every t ∈ [0, 1], consider
F (tx). Let F (tx) =

∑
n∈N bnen be the corresponding expansion. Then,

‖y‖ = ‖0− tx‖+ ‖tx− x‖
≥

∥∥0− F (tx)
∥∥+

∥∥F (tx)− y
∥∥

= 2
∑
n>N

|bn|+
∥∥∥∑
n≤N

bnen

∥∥∥+
∥∥∥y − ∑

n≤N

bnen

∥∥∥
≥ 2

∑
n>N

|bn|+ 1,
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so
∑

n>N |bn| = 0, since ‖y‖ = 1. This means that F (tx) ∈ VN for every t ∈ [0, 1].
On the other hand, F (UN) contains a relative neighborhood of 0 in VN (here
we use the fact that F (0) = 0 and Proposition 3.3), so the continuous curve
{F (tx) : t ∈ [0, 1]} in VN which connects 0 and y has a nontrivial intersection
with F (UN). This implies that there is a t ∈ (0, 1) such that F (tx) ∈ F (UN).
Since tx /∈ UN this contradicts the injectivity of F . Inclusion (3) is proved.

Now, inclusions (2) and (3) allow us to apply Proposition 3.4 to the finite-
dimensional Banach space YN , its unit ball VN , and to the subset F (UN) ⊂
VN , which is a homeomorphic copy of an n-dimensional ball. This implies that
F (UN) = VN . Observe that by (A), UN is isometric to VN , and by finite dimen-
sionality, UN and VN are compacta. So, UN and VN can be considered as two
copies of the same compact metric space, and [8, Theorem 1.1] implies that every
bijective nonexpansive map from UN onto VN is an isometry. In particular, F
maps UN onto VN isometrically. Finally, the application of Proposition 3.2 gives
us that the restriction of F to UN extends to a linear map from XN to YN , which
completes the proof of (B) and that of the Claim.

Now let us complete the proof of the theorem. At first, passing in (A) to the
limit as N → ∞, we get

‖z‖ =
∞∑
k=1

|zk|

for every z =
∑∞

k=1 zkgk with
∑∞

k=1 |zk| < ∞. The continuity of F and the
statements (A) and (B) imply that, for every x =

∑∞
k=1 xkek ∈ B`1 ,

(A′)
∥∥∥ ∞∑
k=1

xkgk

∥∥∥ =
∞∑
k=1

|xk| and (B′) F
( ∞∑

k=1

xkgk

)
=

∞∑
k=1

xkek.

Let T : `1 → X be the unique bounded operator satisfying that T (en) = gn for
every n ∈ N. Then (A′) gives that T is a linear isometry (in general not onto)
and (B′) gives that T |B`1

= F−1. �

So, F−1 is an isometry, and consequently the same is true for F . �

Our next (and last) goal is to demonstrate that each nonexpansive bijection
between the unit balls of two different finite-dimensional Banach spaces is an
isometry. Below we recall the definitions and well-known properties of total and
1-norming subsets of dual spaces that we will need further.

A subset V ⊂ SX∗ is called total if for every x 6= 0 there exists f ∈ V such
that f(x) 6= 0. V is called 1-norming if sup |f(x)|f∈V = ‖x‖ for all x ∈ X. We
will use the following easy exercise.

Lemma 3.6 ([4, Exercise 9, p. 538]). Let A ⊂ SX be dense in SX , and for every
a ∈ A let fa be a supporting functional at a. Then V = {fa : a ∈ A} is 1-norming
(and consequently total).

The following known fact is an easy consequence of the bipolar theorem.

Lemma 3.7. Let X be a reflexive space. Then V ⊂ SX∗ is 1-norming if and only
if aconv(V ) = BX∗.
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Now we can demonstrate the promised result.

Theorem 3.8. Let X, Y be Banach spaces, let Y be finite-dimensional, and let
F : BX → BY be a bijective nonexpansive map. Then F is an isometry.

Proof. Take an arbitrary finite-dimensional subspace Z ⊂ X. Then the restriction
of F to BZ is a bijective and continuous map between two compact sets BZ

and F (BZ), so BZ and F (BZ) are homeomorphic. Thus, Brower’s invariance of
domain principle (Proposition 3.3) implies that dimZ ≤ dimY . By arbitrariness
of Z ⊂ X this implies that dimX ≤ dimY . Consequently, F being bijective
and a continuous map between compact sets BX and BY , it is a homeomorphism.
Another application of Proposition 3.3 says that dimX = dimY , F maps interior
points in interior points, and F (SX) = SY .

Let G be the set of all x ∈ SX such that the norm is differentiable both at x
and F (x). According to [9, Theorem 25.5], the complement to the set of differen-
tiability points of the norm is meager. Consequently, since G is an intersection of
two comeager sets, it is dense in SX . Recall that F is a homeomorphism, so F (G)
is dense in SY . Given a smooth point x ∈ SX , we will denote by x∗ ∈ SX∗ the
unique supporting functional of BX at x. Let us introduce A := {x∗ : x ∈ G} and
B := {F (x)∗ : x ∈ G} = {y∗ : y ∈ F (G)} the sets of the supporting functionals
of x and F (x) accordingly. Thus, Lemma 3.6 ensures that A and B are 1-norming
subsets of X∗ and Y ∗, respectively, and consequently by Lemma 3.7,

aconv(A) = BX∗ , aconv(B) = BY ∗ . (4)

Denote K = F−1(extBY ) ⊂ extBX . Note that for all x ∈ G the corresponding
(F (x))∗ and x∗ are linear, and Lemma 2.2 implies that for all x ∈ G and z ∈ K
the following equality holds true:(

F (x)
)∗(

F (z)
)
= x∗(z).

Let us define the map H : A → B such that H(x∗) = (F (x))∗. For the correct-
ness of this definition it is necessary to verify for all x1, x2 ∈ G the implication

(x1
∗ = x2

∗) =⇒
(
F (x1)

∗ = F (x2)
∗).

Assume for given x1, x2 ∈ G that x1
∗ = x2

∗. In order to check equality F (x1)
∗ =

F (x2)
∗ it is sufficient to verify that F (x1)

∗y = F (x2)
∗y for y ∈ extBY (i.e., for y

of the form y = F (x) with x ∈ K). Indeed,

F (x1)
∗(F (x)

)
= x1

∗(x) = x2
∗(x) = F (x2)

∗(F (x)
)
.

Let us extend H by linearity to H̃ : X∗ = span(x∗, x ∈ G) → Y ∗. For x∗ =∑N
k=1 λkxk

∗, xk ∈ G let H̃(x∗) =
∑N

k=1 λkH(xk
∗). To verify the correctness of

this extension, we will prove that( N∑
k=1

λkxk
∗ =

M∑
k=1

µkyk
∗
)

=⇒
( N∑

k=1

λkH(xk
∗) =

M∑
k=1

µkH(yk
∗)
)
.
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Again we will prove equality
∑N

k=1 λkH(xk
∗) =

∑M
k=1 µkH(yk

∗) of functionals
only on elements of the form y = F (x) with x ∈ K.

( N∑
k=1

λkH(xk
∗)
)
F (x) =

N∑
k=1

λkF (xk)
∗(F (x)

)
=

N∑
k=1

λkxk
∗(x)

=
M∑
k=1

µkyk
∗(x)

=
M∑
k=1

µkF (yk)
∗(F (x)

)
=

( M∑
k=1

µkH(yk
∗)
)
F (x).

Observe that, according to (4), H̃(X∗) = spanH(A) = spanB = Y ∗, so H̃ is
surjective, and consequently, by equality of corresponding dimensions, it is bijec-
tive. Recall, that H̃(A) = H(A) = B, so H̃ maps A to B bijectively. Applying
again (4), we deduce that H̃(BX∗) = BY ∗ and that X∗ is isometric to Y ∗. Passing
to the duals we deduce that Y ∗∗ is isometric to X∗∗ (with H̃∗ being the cor-
responding isometry), that is X and Y are isometric. So, BX and BY are two
copies of the same compact metric space, and the application of EC-plasticity of
compacts [8, Theorem 1.1] completes the proof. �

Although, we made some progress in solving Problem 1.2, it remains open, as
does Problem 1.1. These problems need further consideration and research.

Remark. One may get some improvements and corollaries that we list below.

– Theorem 3.5 can be extended to the space `1(Γ). The argument is similar
to that given in the proof of that theorem.

– Theorem 2.1 implies that there is no bijective nonexpansive function from
the unit ball of c0 or L1[0, 1] onto the unit ball of a dual Banach space
because the unit balls of c0 and L1[0, 1] do not have extreme points, but
a dual ball is w∗-compact, so it has extreme points by the Krein–Milman
theorem.

– From Corollary 2.4 and Proposition 3.2 can be deduced that a bijective
nonexpansive function between balls is an isometry if and only if (i) to
(iii) of Theorem 2.1 hold.
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