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ABSTRACT. In this article, we consider some Jensen-type inequalities for Lip-
schitzian maps between Banach spaces and functions defined by power series.
We obtain as applications some inequalities of Levinson type for Lipschitzian
maps. Applications for functions of norms in Banach spaces are provided as
well.

1. Introduction

Let B(H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H. The absolute value of an operator A is the positive operator | A|
defined as |A| := (A*A)1/2.

One of the central problems in perturbation theory is to find bounds for || f(A4)—
f(B)] in terms of |A — B for different classes of measurable functions f for
which the function of operator can be defined. It is known (see [2]) that in the
infinite-dimensional case, the map f(A) := |A| is not Lipschitz continuous on
B(H) with the usual operator norm; that is, there is no constant L > 0 such that
I|A] — |B||| < L||JA— B|| for any A, B € B(H). However, the following inequality
holds
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for any A, B € B(H) with A # B. Bhatia (in [2]) also obtained the Lipschitz-type
inequality

[f(4) = f(B)]| < f(a)| A~ B, (1.1)

where f is an operator monotone function on (0,00) and A, B > aly > 0.

As an application of (1.1), Dragomir in [5] and [6] gave an Ostrowski-type
inequality and a Hermite-Hadamard-type inequality for operator monotone func-
tions (see also [7]). We note that the authors in [4] obtained some Jensen-type
inequalities for a Lipschitz function. As corollaries, they got Jensen-type inequal-
ities (see (1.1)) for a differentiable function on (m, M) such that f'(u) < M for
all uw € (m, M). (For both Jensen inequality and Levinson inequality for Hilbert-
space operators, see [9] and [10]; for further details on the subject, see [1] and [3].)

Motivated by the above results, in this paper we investigate some Jensen-type
and Levinson-type inequalities for Lipschitzian maps between Banach spaces and
functions defined by power series. As applications, some Levinson-type inequal-
ities for Lipschitzian maps are obtained. Applications for functions of norms in
Banach spaces are provided as well.

Now, we will give some more denotations. Let F(D(0, R)) denote the set of
all analytic functions given by the power series f(z) = Y oo, ;2" with complex
coefficients and convergent on the open disk D(0, R) C C for some R > 0. If
f(z) :== 372, a;z", then we can naturally construct another power series which
will have as coefficients the absolute values of the coefficients of the original series
fa(2) = >"72, |as|2". It is obvious that this new power series will have the same
radius of convergence as the original series.

Let X and Y be complex linear spaces. An operator ¢ : X — Y is linear if

o(ax + By) = agxr + Poy for all a, f € C and all z,y € X.
A linear operator ¢ : X — Y is bounded if there is a constant M > 0 such that
|pz|| < M||z|| for all x € X.

If o : X — Y is a bounded linear operator, then we define the operator norm or
uniform norm ||@|| of ¢ by

o]l = inf{M : [lgx]| < Mlfe]|, for all = € X}.

We denote the set of all bounded linear operators ¢ : X — Y by B(X,Y). When
the domain and range spaces are the same, we write B(X, X) = B(X).

2. Power series in Banach algebras

2.1. Preliminaries and previous results. Let B be an algebra. An algebra
norm on B is a map || - || : B — [0,00) such that (B, || -||) is a normed space.
The normed algebra (B, || - ||) is a Banach algebra if || - || is a complete norm. We
assume that the Banach algebra is unital, which means that B has an identity 1
and that ||1]| = 1.

Let B be a unital algebra. The set of invertible elements of B is denoted by
Inv B. The resolvent set of a € Inv B is p(a) := {z € C: z1 — a € Inv B}, the
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spectrum of a is o(a) = C\ p(a); the resolvent function of a, R, : p(a) — Inv B,
is Ry(2) := (21 —a)~!; and the spectral radius of a is v(a) := sup{|z| : z € o(a)}.
Let f € F(D(0, R)) given by the power series

o0
= Zoz,-zz, |z] < R.
=0

If v(a) < R, then the series > ;° «;a’ converges in the Banach algebra B because
Yoo lasllla’]] < oo, and we can define f(a) to be its sum. Clearly, f(a) is well
defined. There are many examples of important functions on a Banach algebra B
that can be constructed in this way. Furthermore, let (B, ||-||) be a unital Banach
algebra.

The following theorem is proved by Dragomir in [6, Theorem 4] and [5, Theo-
rem 1].

Theorem A. If f € F(D(0,R)), then for any x,y € B with ||z||,|y|]| < R, we
have

/() = f@)] < IIy—ﬂfiH/0 Ll =)z + ty]]) dt. (2.1)

2.2. Jensen-type inequalities. A combination Z?lejxj of vectors z; in a
real linear space and real coefficients p; is convex if p; > 0 and Z?:1 p; = 1. If
f is a convex function defined on a convex set in a real linear space, then the
inequality

F(mn) < S nif) 22)

holds for all convex combinations of vectors z; belonging to the domain of f. This
is the well-known Jensen inequality; the classic version can be seen in [8]. Next
we give a Lipschitz-type inequality for power series in Banach algebras.

Theorem 2.1. Let f € F(D(0,R)) be an analytic function, let T = Z?:l DiT;
be a convex combination of vectors x; € B such that ||z;|| < R, and let ¢ € B(B)
be a bounded linear operator such that ||¢x;|| < R. Then we have the inequality

Hzm f(or;) - (ZW%)H
< ||¢||Zp] 2, —xn/ (11 = om; + toa])) at

—_

—I\é\lng |z — 2l (fo(loz;1) + fa(llozll))

[\

< [lo]| max { f.(ll¢z;|) }ij |z; — Z|. (2.3)

1<5<n
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Proof. Note that ¢z = 37| pj¢x;. Using the fact that )7, p; = 1, and applying
the Jensen inequality to the norm convexity, we get

S mst0m) — 163 = [ m(s0m) - si6m)|

= ijllf(quj) — f(om)]| (2.4)

Applying Theorem A to ¢x; and ¢z, and using ||¢px; — ¢z|| < ||¢||||z; — Z||, we
get

| f(6x;) — f(2)]| < oz — | /0 L[ = t)pa; + toz|) dt. (2.5)

Note the function f,(z) = > 57, i|a;]2" . The restriction of f to the real interval
[0, R) is nondecreasing and convex. The norm is convex. Therefore, their compo-
sition is convex. Then it follows that

Fa(l(0 = t)gw; + toz(]) < (1 =) f(léw;1) + tha(llozl)).
Integrating the above inequality by ¢ over the interval [0, 1], we obtain

/01 H 1 —t)px, —|—tgba:“) dt < — ( (||¢%H) + f! (HGWH)) (2.6)

Applying the Jensen inequality to the composition of f! and norm, we get

2 (lozl)) ij (léw;ll) < max {fo(lloz;])},

1<j<n

and consequently

%Ué(”mﬂl) + fu(llozl)) < max {fi (1) }- (2.7)

1<j<n
Finally, combining the inequalities in (2.4)—(2.7), we obtain the multiple inequal-
ity in (2.3). O

Remark 2.2. Let the assumptions of Theorem 2.1 be valid, and let ||¢z;|| <
M < R for any z; € B, j = 1,...,n. Taking into account that f/ is monotonic
nondecreasing and then using (2.3), we obtain

HZPJ (p;) — (Z pﬂ%)

Now, we define Jensen’s map J : F(D(0, R)) x B(B) x B" xR} x[0,1]xN = B
as

<o) D pylle; — )
j=1

J(f .x,p,tn) = Zij((l — 1)z + tZPk¢$k>, (2.8)
j=1 k=1

where f € F(D(0,R)) is an analytic function, ¢ € B(B) is a bounded linear
operator, x = (21,...,x,) is an n-tuple of elements z; € B, p = (p1,...,pn) 18
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an n-tuple of positive real numbers p; € Ry such that 7 p; =1, ¢ € [0,1] and
n is a natural number. In the following theorem, we show that the map (2.8) is a
Lipschitzian map.

Theorem 2.3. Let J(f,¢,x,p,t,n) be the map defined by (2.8) and let T =
> i1 P be a convex combination of vectors x;. If ||px;|, [zl < R, j=1,...,n,
then

Hs(fa ¢7X7p7t27n) _3<f7 (baX?p?thn)H
< [t2 = 11l 9] ZPjH%‘ —z|
1 -
X / fé(H (1 — tl + (tl — t2)8)¢l‘j + (tl — (tl — t2)8)¢(i’”) dS
0

1 n
< 5‘752 — ¢l ijij —7[[((2 = t1 = ta) fi (lp5ll) + (81 +t2) fo (l9Z]]))
j=1

< [t2 — t1]l|]| max {f |¢$JH ij |$J . (2.9)

1<j<n

Proof. We use the same technique as in the proof of Theorem 2.1. We give a
sketch of the proof:

H3 f (b?X p7t27 )_ ~(f7 ¢7X7p7t17n)H
< Zp]Hf t)ow; + tz) — f((1 = t)gr; + ta7) |

<lto— 1161 S pylles — 2
j=1
1
/ F([(1 =t + (b = t2)s) g + (11 — (11 — t2)s) o)) ds
< Jto = tulll6) S pyla; — 7]
j=1

< (L2lhen) [ =6+ -l

+ f(loat) | o (1 — )5l )

- t+t ty +t
= 1t = tlllel > piles — 2l ( (1= 222) silgwl) + 222 (o))
j=1

< [t = tal [l maX{f lp511) }ij | — |
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Corollary 2.4. Let the assumptions of Theorem 2.5 be valid. Then

|3t 0.x.p.8,m) - (Zpkm)”
< (=19l ZP;‘H%‘ -z
j=1

x/o (| = Dsga; + (1+ (¢ = 1)s)oz])) ds

<5l D _pilles = 2l (L= O (lowsl) + (1 + D1 (lozll))

IN

(1 =1l max{f H¢x3” }ZPJH@"] l, (2.10)

1<j<n

HZ])J (pz;) —I(f, ¢,x,p, t, n)H

St||¢||§jpj||xj—x||/o Fal(0= (= $)t)gw; + (1 = s)toz]]) ds

< Slél me —2(@ - 0 fa(léx,l) + e (lol))
<t puax { /. ||¢x]”}zp]”x] ; (211)

and

HJ f,0,x,p,t,n) — (1 —1) Zp] (px;) —tf(zpk¢wk)“

1—t||¢|erJ||xj—xH/ (10 =16, + (1+ (¢ = Ds)oz]
+ 1| (1= (1= 9)t) g + (1 = s)to]))) ds
< e Y plls = 211 = 202 I51) + 1+ 207 le)

< 24(1 = D)lol] max {1 (1] }Zpg 2y — ]| (2.12)

Proof. The inequalities (2.10) and (2.11) follow from (2.9) by choosing t; = 1,
to = t, and t; = t, t = 0, respectively. We obtain (2.12) using the triangle
inequality and adding (2.10) multiplied by ¢ and (2.11) multiplied by 1 —¢. O
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Remark 2.5. Let the assumptions of Theorem 2.3 be valid. If ||¢z;|| < M < R
for any x; € B, j =1,...,n, then Theorem 2.3 gives

Hﬁ(fa ¢7 Xapthan) _3(fa ¢7Xapat17n)H < |t2 - t1|||¢||f;(M) ZPJ“% - j'||
j=1

Since the operator valued integral fol f((1—t)px+toy) dt exists for an analytic
function f € ]:(D(O R)), an operator ¢ € B(B), and z,y € B, we can observe a

map J1(f, ¢, x,p,n) fo (f,6,x,p,t,n)dt, where J(f,d,x,p,t,n) is Jensen’s
map (2.8); that is,

n 1 n
j=1 k=1

By using (2.10) and (2.11), we obtain the following theorem. We omit the proof.
Theorem 2.6. Let the assumptions of Theorem 2.5 be valid. Then

‘ 3i(f, 6, %x,p,n) — f(ipk(bx’“) H
k=1

A

- 1 1
<1161 pallas — (2 1a o) + 5 fa(llox]))
7j=1

| /\

—H¢|I max { f ([l¢z; ) ZPJH‘TJ_IH

1<5<n

and

j=1
< 6l ol — 211 (5 £l ) + 72 (o)
j=1

1
< S0l s {2 (o) }me—xu

Next, we define Jensen’s map J : F(D(0, R)) x B(B) x B*xR" x[0,1]xN — B
as

j=1 k=1

f € F(D(0,R)) is an analytic function, ¢ € B(B) be a bounded linear operator,
x = (21,...,2,) is an n-tuple of elements z; € B, p = (p1,...,pn) is an n-tuple
of positive real numbers p; € R, such that Z;L:lpj =1,t € [0,1], and n is a
natural number. We can obtain results similar to the above for the map (2.13)
and its integral version; for example, we have the following theorem, which is
similar to Theorem 2.3.
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Theorem 2.7. Let J(f,¢,X,p,t,n) be the map defined by (2.15), and let T =
> i1 P be a convex combination of vectors z;. If ||px;|, [|z;|| < R, j=1,...,n,
then

Hj(fv ¢7Xapat2an) _j(fa ¢7X7p7t17n)“
< [t2 — talllgl D pjllz; — 2|
j=1

X /0 f;(H(l — tl + (tl - t2)8)¢$j + (tl - (tl - tg)S)(be) ds

1 n
< gl =tallél D pilles — 21 (2 =t = ) fa(léwsll) + (82 + t2) fo(llo])))
j=1

< [tz = tall| ol maX{f l¢z;11) }ZPJII%

The proof is similar to the one for Theorem 2.3. We omit the details.
Finally, we define Levinson’s map £,,(f,X,y,p,q,t,n) as the difference
between the corresponding Jensen maps (2.8):

£¢’w(f7 X7 Y7 p7 q? t? n) = 3(.]“7 1/}7 y7 q? t? n) - 1FK(.f‘? (b? X7 p7 t? n)’
or explicitly
Lou(f.x,y,p,qt,n)

=> %f((l — )by 1) W/Jyk)
=1 k=1
=S w1 = 0w + £ prom). (2.14)
j=1 k=1

where f € F(D(0,R)) is an analytic function, ¢,v € B(B) are bounded linear
operators, X = (z1,...,%,) and y = (y1,...,Yn) are n-tuples of elements x;,y; €
B, p=(p1,...,pn) and q = (q1,...,qs) are n-tuples of positive real numbers
pj»q; such that 377 p; = >°% 1 ¢; = 1, t € [0,1], and n is a natural number.
By using Theorem 2.3 and the triangle inequality, we can show that (2.14) is a
Lipschitzian map, as follows.

Theorem 2.8. Let £,4,(f.x,y,P,q,t,n) be the map defined by (2.14), and let
T =30 § = 2 4y I ol sl 1yl llyll < R, 3 =1,....n
then

Hgd),w(f7 X,y,b;q, t27 n) - £¢,¢(f7 X,y,b;q, tlvn)”
<tz =l (Y allyy — ol + Y pilles — 2,
P =1

where Cy = max{[|o[|, [¢[[} and Cy = maxy<;<n{ fo(I¥y; 1), fallldz;]) -
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Remark 2.9. Of course, we can obtain similar results for other versions of Levinson
maps as the difference between the corresponding Jensen maps (2.13) or (3.3).
We omit the details.

Now, we consider some simple examples.
Ezample 2.10. (1) If we consider the exponential function exp(z) = > oo %2,
z € C, then we obtain special versions of the above inequalities. For example, by

putting t; = 1 and t; = 0 in Theorem 2.8, we obtain

n n

]:1 _j=1

< Mmax{ |6l 1413 (3 asllys — 5l + D pille; - 21))
j=1 =1

for all z;,y; € B such that ||¢z;|, |[Yy;|| < M < o0, j=1,...,n.

(2) If we consider the functions -~ = >">2 2%, z € D(0,1), then

”zn: q;(1+ @ijj)_l - zn:pj(l + Spfﬂj)_l
i=1 po
- (1 + i%‘@ﬁ)_l + (1 + ipj@?j)_l‘
=1 o

1 n n
< G U101 Wl (3 aills — a1l + - pilke; — 1)
Jj=1 =1

for all z;,y; € B such that ||z;]],||y;|| < 1 and ||¢z;||, Yyl < M <1, j =
1,...,n.

3. Norm inequalities

In this section we observe applications for functions of norms in Banach spaces
and functions defined by power series in Banach algebra. Furthermore, let (X, [|-||)
be a Banach space. Similar to (2.1), we have that

(Il = £l | < lly — =l /01 Fa(l(X = 1)z +ty[]) dt (3.1)

holds for any f € F(D(0,R)) and z,y € X with |z|,|ly]] < R (see also [6,
Theorem 3]).

First, we give a Lipschitz type of the Jensen inequality for a function defined
by a power series.

Theorem 3.1. Let f € F(D(0, R)) be an analytic function, let & = Z;L=1 p;x; be
a convex combination of vectors x; € X such that ||| < R, and let ¢ € B(X,Y)
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be a bounded linear operator such that ||¢x;|| < R. Then we have the inequality

(ij f(lléw;l) = (HZP@% )‘

<u¢uzp]|x] ol [ 22010 - 60 + o)

%MH ij |z =z (fa (lozi]) + fa(loz))
< o] 1I£1a<X {f ||gz§xj|| ZPJH% |, (3.2)

where T =" p;T;.

Proof. Similarly to the proof of Theorem 2.1, by using linearity of ¢ and (3.1),
we obtain the first inequality in (3.2). The second and the third inequalities in
(3.2) follow from Theorem 2.1. O

Now, we can consider similar types of maps as in Section 2.2. We observe one
of them as follows. We define the Jensen-type map J : F(D(0, R)) x B(X,Y) x
B" xR} x[0,1] x N =R as

J(f, 0, %x,p,t,n) = Zn:pjf<Ht¢xj +(1—1) Zn:pk(bka), (3.3)
=1 k=1

where f € F(D(0, R)) is an analytic function, ¢ € B(X,Y’) is a bounded linear
operator, x = (z1,...,,) is an n-tuple of elements z; € X, p = (p1,...,py) is
an n-tuple of positive real numbers p; € Ry such that 7 p; =1, ¢ € [0, 1], and
n is a natural number.

In the following theorem we show that (3.3) is a Lipschitzian map.

Theorem 3.2. Let J(f,¢,x,p,t,n) be the map defined by (5.3), and let T =
23;1 p;x; be a convex combination of vectors x;. If ||px;||, [|z;]| < R, 7 =1,...,n,
then

‘J(f, ¢7X7p7t27n) - J(f7 ¢7X7p7t17n>‘
<|ta = talllgll > pill; — 2|

j=1

X A fé(H (1 — t1 + (tl — t2)8)¢$j + (tl — (tl — t2)8)¢£i‘”) ds

ta = tafll¢] ZPJH% =32 =t = ) fa(llozsll) + (81 + 22) fa(llozl]))

l\.’)lr—t

< lta = tal [l max { £ (Il;11) }ZPJHIJ

1<j<n
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Proof. We use the same technique as in the proof of Theorem 2.3. We omit the
details. O

By putting t; = 1, to = t, or t; = t, t5 = 0 in Theorem 3.2, we obtain the
following corollary.

Corollary 3.3. Let the assumptions of Theorem 3.2 be valid. Then

)

< —t>||¢||§jpj||xj — 7 / Fa(l( = t)sa; + (1 + (t = 1)s)oz|) ds

x| o

< S0l S pilles = (= 0 (losl) + (@ + 01z (o)

< (= t)ll6ll masx { fo (1l 1)} D pylle; 2.

\ijf(llell) — J(f.6,%,D,t,n)

< ¢l ijll% — 7 / fa|[ (L= (1 = s)t) g + (1 = s)toz|) ds

t

< 5 loll ZPJH% = zll(2 =) fa(llez;l) +tfa(lozll))

\)

< tll¢ll max { £z (léw;1) }Zpgll% zll,

1<5<n

and

(6% p ) Hzp] (Iléa;1) —tf(\\zpmku)\

H1— 1) |¢||Zp] |x]—x||/ Fa(l(t = Bsom; + (1 + (t = 1)s) o)
+ fa(l(1 (1—8))% + (1= s)toz|)) ds
< 003 pyley = a11(3 — 2012 s l) + (1 + 20 2a1)

< 2001 = 0)joll max {£7 (a5 1) } D pslls — 2]l
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Remark 3.4. Let the assumptions of Theorem 3.2 be valid. If ||¢z;|| < M < R
for any z; € X, 5 =1,...,n, then

|J(f7 ¢7 Xapthan) - ‘](fa qbvxapatl?n)‘ S |t2 - t1|||¢||f(;(M) ZPJ“% - j”
j=1

Now, we observe the Levinson-type map Ly (f,X,y, P, d,t,n) as the difference
between the corresponding Jensen-type maps (3.3); that is,
) —

Loy(f, %y, P a,t,n) = J(f,¢,y,a,t,n) — J(f,6,x,p,t,n), (3.4)

or explicitly

L(i),w(f? X,¥Y,Pp,q, ta n)

- im(“a — )y, +tzn:qk¢yku>
o k=1
_ ipjfw(l — t)pw, +tipk¢$k
o k=1

where f € F(D(0,R)) is an analytic function, ¢,7 € B(X,Y) are bounded
linear operators, x = (z1,...,2,) and y = (y1,...,y,) are n-tuples of elements
zj,y; € X, p = (p1,...,pn) and 4 = (qu,-..,¢s) are n-tuples of positive real
numbers pj, g; such that 37 p; = >0 ¢; = 1, t € [0,1], and n is a natural
number.

By using Theorem 3.2 and the triangle inequality, we can show that (3.5) is a
Lipschitzian map, as follows.

), (3.5)

Theorem 3.5. Let Ly (f,X,y,P,q,t,n) be the map defined by (5.4), and let
=30 ¥ =25 ay- I loxill sl 1wyl vl < R, 3 =1,....n,
then

‘L@w(fa xX,y,pb;q, tz,’l’L) - Lqﬁ,w(fy xX,¥,pP;q, t17n)|

<l =tlCr- (Y aly —oll+ Yopilla—2l).  (36)
j=1 =1

where Cy = max{||||, [¢[|} and Cy = maxy<;j<n{fo(ll¥y;]]), fa(lloz;])}-
Applying Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let the assumptions of Theorem 3.5 be valid. Then

)H(HZW )
<(1-0C -G (Z aly; = 3 +ijj||xj - al)). (3.7)

Louw(f,%,y,P,q,t,1) (HZ%%
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and

> aif(leyil) = Y- pif (I62,1) = Low(f.x.y. P )|
=1 i=1

<tCr- G (Y asllys =l + D pilles — 7). (38)
j=1 j=1

Remark 3.7. Let the assumptions of Theorem 3.5 be valid. If ¢z, |[|[vy;|| <

M < R for any zj,y; € B, j =1,...,n, then (3.6)(3.8) hold with Cy = f.(M).
Now, it is natural to consider some simple examples.

Ezample 3.8. (1) If we consider the logarithmic function log(1+2) = >, (*13“1 X

2", z € D(0,1), then we can obtain special versions of the above inequalities. So,

putting ¢t; = 1 and ¢, = 0 in Theorem 3.5, we obtain

> astos([[v 0+ w)ll) -

_1og<HZn:qj¢yj >+10g<HZn:pf¢xj )‘
i=1 =t
1

< = max{Jlgll 101} (3 aillys = ol + > pillas — 7))
Jj=1 j=1

for any z;,y; € X, ¢, € B(X,Y), such that ||z,||, [|y;|| <1 and ||¢z,||, ||¢y;] <
M<1l,57=1,...,n.

(2) If we consider the function cosz = )
to = 0 in Theorem 3.5, and we obtain

> ascos(llvgsll) = D py cos(llpa; ) — cos(
7=1 j=1

pjlog(||le(1 + z)]|)
1

oo (=1
i=0 "(2i)!

2% 2 € C, then t; = 1 and

)]Zj;%'?byj >+cos< )’

< sinh (M) max i, llell} (3 asllys = a1l + > pilla; - )
j=1 j=1

‘ijcbﬂfj
j=1

for any r;y; < X, ¢7¢ € B(va) such that ||¢:13]||,||¢y]|| < M < oo, J =
1,...,n.
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