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Abstract. We study an interplay between operator algebras and the geom-
etry of rational elliptic curves. Namely, let OB be the Cuntz–Krieger algebra
given by a square matrix B = (b− 1, 1, b− 2, 1), where b is an integer greater
than or equal to 2. We prove that there exists a dense, self-adjoint subalge-
bra of OB which is isomorphic (modulo an ideal) to a twisted homogeneous
coordinate ring of the rational elliptic curve E(Q) = {(x, y, z) ∈ P2(C) | y2z =
x(x− z)(x− b−2

b+2z)}.

1. Introduction

In the 1950s, due to the work of J.-P. Serre and P. Gabriel, it became apparent
that algebraic geometry could be recast in terms of noncommutative algebra (we
refer the reader to an excellent survey by Stafford and van den Bergh [7]). The
following simple example illustrates the idea. If X is a Hausdorff topological space
and C(X) is the C∗-algebra of continuous complex-valued functions on X, then
by the Gelfand theorem the topology of X is determined by the commutative
algebra C(X). This fact can be written as Ktop

0 (X) ∼= Kalg
0 (C(X)), where Ktop

0

and Kalg
0 are the topological and algebraic K0-groups, respectively (see Blackadar

[1]). Now consider the algebra C(X) ⊗M2(C) consisting of 2 × 2 matrices with
entries in C(X). Since the algebraic K-theory is stable under the tensor products,

one gets an isomorphism Kalg
0 (C(X)) ∼= Kalg

0 (C(X)⊗M2(C)) (see [1, Section 5]).
In other words, the topology of the space X is determined by the tensor product
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C(X) ⊗ M2(C) which is no longer a commutative algebra. In the context of
algebraic geometry, one replaces the spaceX by a projective variety V , the algebra
C(X) by the coordinate ring of V , the tensor product C(X)⊗M2(C) by a twisted
coordinate ring of V , and the group Ktop(X) by a category of quasicoherent
sheaves on V (see [7, p. 173]). Below we give a brief review of this construction
when V is an elliptic curve (we refer the reader to Sklyanin [5], Smith and Stafford
[6, pp. 265–268], and Stafford and van den Bergh [7, p. 197] for a detailed account).

Let k be a field of char(k) 6= 2. The Sklyanin algebra Sα,β,γ(k) is a free k-algebra
on four generators xi and six quadratic relations,

x1x2 − x2x1 = α(x3x4 + x4x3),

x1x2 + x2x1 = x3x4 − x4x3,

x1x3 − x3x1 = β(x4x2 + x2x4),

x1x3 + x3x1 = x4x2 − x2x4,

x1x4 − x4x1 = γ(x2x3 + x3x2),

x1x4 + x4x1 = x2x3 − x3x2,

(1.1)

where α, β, γ ∈ k and α + β + γ + αβγ = 0. If α /∈ {0;±1}, then algebra
Sα,β,γ(k) defines a nonsingular elliptic curve E ⊂ P3(k) given by an intersection
of the quadrics u2 + v2 + w2 + z2 = 1−α

1+β
v2 + 1+α

1−γ
w2 + z2 = 0 together with an

automorphism σ : E → E . We will use the following isomorphism (see [5], [6]):

QGr
(
Sα,β,γ(k)/Ω

) ∼= Qcoh(E), (1.2)

whereQGr is a category of the quotient graded modules over the algebraSα,β,γ(k)
modulo torsion, Qcoh is a category of the quasicoherent sheaves on E , and
Ω ⊂ Sα,β,γ(k) is a two-sided ideal generated by the central elements Ω1 =

−x2
1 + x2

2 + x2
3 + x2

4 and Ω2 = x2
2 +

1+β
1−γ

x2
3 +

1−β
1+α

x2
4 (see [6, p. 276]). The quotient

of the Sklyanin algebra by the ideal Ω is called a twisted homogeneous coordinate
ring of the elliptic curve E .

Let A be a 2 × 2 matrix with nonnegative integer entries aij such that every
row and every column of A is nonzero. The 2-dimensional Cuntz–Krieger algebra
OA is a C∗-algebra of bounded linear operators on a Hilbert space H generated
by the partial isometries s1 and s2, and relations

s∗1s1 = a11s1s
∗
1 + a12s2s

∗
2,

s∗2s2 = a21s1s
∗
1 + a22s2s

∗
2,

Id = s1s
∗
1 + s2s

∗
2,

(1.3)

where Id is the identity operator on H. Occasionally, the algebra OA will be
written as Oa11,a12,a21,a22 . If one defines x1 = s1, x2 = s∗1, x3 = s2, and x4 = s∗2,
then it is easy to see that OA contains a dense subalgebra O0

A, which is a free
C-algebra on four generators xi and three quadratic relations

x2x1 = a11x1x2 + a12x3x4,

x4x3 = a21x1x2 + a22x3x4,

1 = x1x2 + x3x4,

(1.4)
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along with an involution acting by the formula

x∗
1 = x2, x∗

3 = x4. (1.5)

Note that equations (1.4) are invariant under this involution.
It is known that the ideal (1.1) is stable under involution (1.5) if and only if

ᾱ = α, β = 1, and γ = −1 (see Lemma 2.1); the involution turns the Sklyanin
algebra Sα,1,−1(C) into a ∗-algebra (i.e., a self-adjoint algebra). Denote by I0 a
nonhomogeneous two-sided ideal of Sα,1,−1(C) generated by the relation x1x2 +
x3x4 = 1. Let J0 be a two-sided ideal of O0

A generated by the four relations
x4x2 − x1x3 = x3x1 + x2x4 = x4x1 − x2x3 = x3x2 + x1x4 = 0. The following
theorem and corollary describe a family of Cuntz–Krieger algebras which are
twisted homogeneous coordinate rings of rational elliptic curves.

Theorem 1.1. For every integer b ≥ 2, there exists a ∗-isomorphism

S b−2
b+2

,1,−1(C)/I0
∼= O0

B/J0, where B =

(
b− 1 1
b− 2 1

)
. (1.6)

Corollary 1.2. For every integer b ≥ 2, there exists a dense, self-adjoint sub-
algebra of the Cuntz–Krieger algebra OB isomorphic modulo the ideal I0 to the
twisted homogeneous coordinate ring of the rational elliptic curve

Eb(Q) =
{
(x, y, z) ∈ P2(C)

∣∣ y2z = x(x− z)
(
x− b− 2

b+ 2
z
)}

. (1.7)

Remark 1.3. There exists a canonical isomorphism

OB ⊗K ∼= AB oσ Z, (1.8)

where AB is an AF-algebra with the incidence matrix B introduced by Effros and
Shen [3], σ is the shift automorphism of AB, and K is the C∗-algebra of compact
operators (see [1, Exercise 10.11.9]). Thus the algebra AB is an analogue of the
coordinate ring of the curve Eb(Q). This observation can be used to calculate
traces of the Frobenius endomorphisms in terms of the algebra AB (see [4]).

Our note is organized as follows. Theorem 1.1 is proved in Section 2. The
proof of Corollary 1.2 can be found in Section 3. All preliminary facts have been
introduced in Section 1 (we refer the reader to Cuntz and Krieger [2] and Stafford
and van den Bergh [7] for more details).

2. Proof of Theorem 1.1

We will split the proof into a series of lemmas.

Lemma 2.1. The ideal of free algebra C〈x1, x2, x3, x4〉 generated by equations
(1.1) is stable under involution (1.5) if and only if ᾱ = α, β = 1, and γ = −1.

Proof. (i) Let us consider the first two equations in (1.1); this pair is invariant
under involution (1.5). Indeed, by the rules of composition for an involution, we
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have 
(x1x2)

∗ = x∗
2x

∗
1 = x1x2,

(x2x1)
∗ = x∗

1x
∗
2 = x2x1,

(x3x4)
∗ = x∗

4x
∗
3 = x3x4,

(x4x3)
∗ = x∗

3x
∗
4 = x4x3.

(2.1)

Since α∗ = ᾱ = α, the first two equations in (1.1) remain invariant under involu-
tion (1.5).

(ii) Let us consider the middle pair of equations in (1.1); by the rules of com-
position for an involution, we have

(x1x3)
∗ = x∗

3x
∗
1 = x4x2,

(x3x1)
∗ = x∗

1x
∗
3 = x2x4,

(x2x4)
∗ = x∗

4x
∗
2 = x3x1,

(x4x2)
∗ = x∗

2x
∗
4 = x1x3.

(2.2)

One can apply the involution to the first equation x1x3 − x3x1 = β(x4x2 + x2x4);
then one gets x4x2 − x2x4 = β̄(x1x3 + x3x1). But the second equation says that
x1x3 + x3x1 = x4x2 − x2x4; the last two equations are compatible if and only if
β̄ = 1. Thus, β = 1.

The second equation in involution writes as x4x2+x2x4 = x1x3−x3x1; the last
equation coincides with the first equation for β = 1. Therefore, β = 1 is necessary
and sufficient for invariance of the middle pair of equations in (1.1) with respect
to involution (1.5).

(iii) Let us consider the last pair of equations in (1.1); by the rules of compo-
sition for an involution, we have

(x1x4)
∗ = x∗

4x
∗
1 = x3x2,

(x4x1)
∗ = x∗

1x
∗
4 = x2x3,

(x2x3)
∗ = x∗

3x
∗
2 = x4x1,

(x3x2)
∗ = x∗

2x
∗
3 = x1x4.

(2.3)

One can apply the involution to the first equation x1x4 − x4x1 = γ(x2x3 + x3x2);
then one gets x3x2 − x2x3 = γ̄(x4x1 + x1x4). But the second equation says that
x1x4 + x4x1 = x2x3 − x3x2; the last two equations are compatible if and only if
γ̄ = −1. Thus, γ = −1.

The second equation in involution writes as x3x2 + x2x3 = x4x1 − x1x4; the
last equation coincides with the first equation for γ = −1. Therefore, γ = −1 is
necessary and sufficient for invariance of the last pair of equations in (1.1) with
respect to involution (1.5).

(iv) It remains to verify that condition α + β + γ + αβγ = 0 is satisfied by
β = 1 and γ = −1 for any α ∈ k. Lemma 2.1 follows. �
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Lemma 2.2. Whenever α 6= 1, there exists an invertible linear transformation
with rational coefficients which brings the system of equations{

x1x2 − x2x1 = α(x3x4 + x4x3),

x1x2 + x2x1 = x3x4 − x4x3

(2.4)

to the form {
x2x1 = (b− 1)x1x2 + x3x4,

x4x3 = (b− 2)x1x2 + x3x4,
(2.5)

where α = b−2
b+2

.

Proof. (i) Let us isolate x2x1 and x4x3 in (2.4). For that, we will write (2.4) in
the form {

x2x1 + αx4x3 = x1x2 − αx3x4,

x2x1 + x4x3 = −x1x2 + x3x4.
(2.6)

Consider (2.6) as a linear system of equations relatively x2x1 and x4x3; since
α 6= 1, it has a unique solution:x2x1 =

1
1−α

∣∣ x1x2−αx3x4 α
−x1x2+x3x4 1

∣∣ = 1+α
1−α

x1x2 − 2α
1−α

x3x4,

x4x3 =
1

1−α

∣∣ 1 x1x2−αx3x4
1 −x1x2+x3x4

∣∣ = −2
1−α

x1x2 +
1+α
1−α

x3x4.
(2.7)

(ii) Let us substitute α = b−2
b+2

in (2.7). Then one arrives at the following system
of equations given in the matrix form(

x2x1

x4x3

)
=

(
b
2

1− b
2

−1− b
2

b
2

)(
x1x2

x3x4

)
. (2.8)

It is verified directly that(
1
2

−1
2

1 0

)(
b
2

1− b
2

−1− b
2

b
2

)(
0 1
−2 1

)
=

(
b− 1 1
b− 2 1

)
. (2.9)

In other words, matrices (2.5) and (2.8) are similar in the matrix group GL2(Q).
Lemma 2.2 is proved. �

Lemma 2.3. If b ≥ 2 is an integer, then there exists a ∗-isomorphism

S b−2
b+2

,1,−1(C)/I0
∼= O0

b−1,1,b−2,1/J0; (2.10)

the isomorphism is given by identification of generators xi of the respective alge-
bras.

Proof. Since b is an integer number, one gets that α = b−2
b+2

is a rational number.
In particular, α is real; that is, ᾱ = α. Thus, by Lemma 2.1, algebra S b−2

b+2
,1,−1(C)

is a self-adjoint Sklyanin algebra.
Recall that the ideal I0 is generated by the relation

x1x2 + x3x4 = 1, (2.11)
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while the ideal J0 is generated by the system of relations
x1x3 = x4x2,

x3x1 = −x2x4,

x1x4 = −x3x2,

x4x1 = x2x3.

(2.12)

Note that ideals I0 and J0 are stable under involution (1.5).
By Lemma 2.2, the first pair of equations in the system (1.1) with α = b−2

b+2

coincides with the first pair of equations in the system (1.4) with a11 = b−1, a12 =
1, a21 = b− 2, and a22 = 1. Thus, if one complements system (1.1) with equation
(2.11) and system (1.4) with the system of equations (2.12), then one obtains the
required ∗-isomorphism (2.10). Lemma 2.3 is proved. �

Theorem 1.1 follows from Lemma 2.3.

Remark 2.4. The ideals I0 and J0 do not depend on “modulus” b of the Sklyanin
algebra S b−2

b+2
,1,−1(C); therefore, algebra O0

b−1,1,b−2,1 can be viewed as a twisted

homogeneous coordinate ring of the elliptic curve E ⊂ P3(C).

3. Proof of Corollary 1.2

We will split the proof into a series of lemmas, starting with the following
elementary result.

Lemma 3.1. If α is a real number different from 0 and 1, then the algebra
Sα,1,−1(C)/Ω0 is the coordinate ring of a nonsingular elliptic curve E(C) =
{(x, y, z) ∈ P2(C) | y2z = x(x− z)(x− αz)}.

Proof. Recall that the Sklyanin algebra Sα,1,−1(C) defines an elliptic curve E ⊂
P3(C) given by the intersection of two quadrics (see [6, p. 267]):{

(1− α)v2 + (1 + α)w2 + 2z2 = 0,

u2 + v2 + w2 + z2 = 0.
(3.1)

We will pass in (3.1) from variables (u, v, w, z) to the new variables (X,Y, Z, T )
given by the formulas 

u2 = T 2,

v2 = 1
2
Y 2 − 1

2
Z2 − T 2,

w2 = X2 + 1
2
Y 2 − 1

2
Z2 − T 2,

z2 = Z2.

(3.2)

Then equations (3.1) take the form{
αX2 + Z2 − T 2 = 0,

X2 + Y 2 − T 2 = 0.
(3.3)
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Let us consider another (polynomial) transformation (x, y) 7→ (X,Y, Z, T ) given
by the formulas 

X = −2y,

Y = x2 − 1 + α,

Z = x2 + 2(1− α)x+ 1− α,

T = x2 + 2x+ 1− α.

(3.4)

Then both of the equations in (3.3) give us the equation y2 = x(x+1)(x+1−α),
which after a shift x′ = x+ 1 takes the canonical form

y2 = x(x− 1)(x− α). (3.5)

Using the projective transformation x = x′

z′
y = y′

z′
in (3.5), one gets the homoge-

neous equation of elliptic curve E :

y2z = x(x− z)(x− αz). (3.6)

Lemma 3.1 follows. �

Lemma 3.2. If b ≥ 2 is an integer, then there exists a dense, self-adjoint subal-
gebra of the Cuntz–Krieger algebra Ob−1,1,b−2,1 which is related (modulo ideal I0)
to a twisted homogeneous coordinate ring of the rational elliptic curve E(Q) =
{(x, y, z) ∈ P2(C) | y2z = x(x − z)(x − b−2

b+2
z)}; the curve is nonsingular unless

b = 2.

Proof. If one assumes that α = b−2
b+2

in Lemma 3.1, then

S b−2
b+2

,1,−1(C)/I0
∼= O0

b−1,1,b−2,1/J0. (3.7)

The right-hand side of (3.7) is a subalgebra of the Cuntz–Krieger algebra
Ob−1,1,b−2,1; such an algebra is self-adjoint, since the ideal J0 is invariant under
involution (1.5). The right-hand side of (3.7) is a dense subalgebra of the Cuntz–
Krieger algebra Ob−1,1,b−2,1, since O0

b−1,1,b−2,1/J0 is dense in Ob−1,1,b−2,1.

On the other hand, if b 6= 2, then the algebra O0
b−1,1,b−2,1/J0 is related to the

factor (by the ideal I0) of the coordinate ring S b−2
b+2

,1,−1(C)/Ω of the nonsingular

curve E(Q) = {(x, y) ∈ P2(C) | y2z = x(x− z)(x− b−2
b+2

z)}. It is easy to see that
the curve E(Q) is singular if and only if b = 2. Lemma 3.2 is proved. �

Corollary 1.2 follows from Lemma 3.2.
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