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Abstract. In this article, we investigate the surjective linear isometries be-
tween the differentiable function spaces Cp

0 (X,E) and Cq
0(Y, F ), where X, Y

are open subsets of R and E, F are strictly convex Banach spaces with dimen-
sion greater than 1. We show that such isometries can be written as weighted
composition operators.

1. Introduction

The classical Banach–Stone theorem gives the first characterization of the sur-
jective linear isometries between spaces of scalar-valued continuous functions.
Several researchers have derived many extensions of this theorem and applied
them to a variety of different settings (for a survey of this topic, we refer the
reader to [5]). Cambern and Pathak (see [3], [4]) considered the surjective linear
isometries on the spaces of scalar-valued differentiable functions on the locally
compact subsets of R, and gave the representation for such isometries. Pathak
[8] and Koshimizu [6] considered isometries on the space Cn[0, 1] and obtained
their representations. Then Botelho and Jamison [2] extended these results to
vector-valued continuously differentiable function spaces C1([0, 1], H), where H
is a finite-dimensional Hilbert space. Moreover, Wang [10] worked on the scalar-
valued differentiable function spaces Cn

0 (X) with open subset X ⊂ Rn. Recently,
the first author and Wang [7] investigated the surjective isometries on the space
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Cp
0 (X,E) whenever X is an open subset of Euclidean space and E is a reflexive

strictly convex space. From the above-mentioned literature, the characterization
of the extreme points of the dual unit ball of the differentiable function spaces
played a crucial role in our proofs. On the other hand, Wang [9] used different
tools to investigate the surjective isometries between the unit spheres of Cn

0 (X)
whenever X is a locally compact subset of R without isolated points.

In this article, we use the “parallel relation” (see Definition 2.1) of elements
in Banach spaces to investigate the surjective isometries on the spaces of vector-
valued continuously differentiable functions on an open subset of R. We show
that such isometries can be written in the form of canonical weighted composition
operators (see Theorem 2.13). This result extends the main results of [2]–[4], [8],
and [11] and gives a smooth version of the Banach–Stone theorem.

2. Main results

Throughout this paper, we assume that p, q ∈ N, X,Y are open subsets of R
and that E,F are Banach spaces with strictly convex norm. Let ρ be an `1-norm
on Rp+1. We use Cp

0 (X,E) to denote the Banach space consisting of all E-valued
functions which have up to pth-times continuous derivatives on X and vanish at
infinity; that is, the set{

x ∈ X : ρ
(∥∥f(x)∥∥, . . . , ∥∥f (p)(x)

∥∥) ≥ ε
}

is compact in X for any ε > 0, with the norm

‖f‖ = max
x∈X

(ρf)(x) = max
x∈X

ρ
(∥∥f(x)∥∥, . . . , ∥∥f (p)(x)

∥∥) for all f ∈ Cp
0 (X,E).

Similarly, let σ be an `1-norm on Rq+1, and define

‖g‖ = max
y∈Y

(σg)(y) = max
y∈Y

σ
(∥∥g(y)∥∥, . . . , ∥∥g(q)(y)∥∥) for all g ∈ Cq

0(Y, F ).

Normalize the norms ρ and σ by assuming that

ρ(0, . . . , 0, 1) = σ(0, . . . , 0, 1) = 1.

A function f ∈ Cp
0 (X,E) is said to peak at x0 ∈ X if it attains its norm at x0

and nowhere else.

Definition 2.1. Suppose that E is a Banach space and that u, v ∈ E. We say that
u | v if there exists α ≥ 0 such that u = αv or v = αu. For λ = (λi)1≤i≤n ∈ En

and β = (βi)1≤i≤n ∈ En, we write λ ‖ β if λi | βi for each 1 ≤ i ≤ n.

From now on, we consider the linear surjective isometry T from Cp
0 (X,E) onto

Cq
0(Y, F ). For 0 < δ < 1, there exists hδ ∈ Cp(R) determined by the conditions

h
(i)
δ (x0) = 0 for any 0 ≤ i < p and

h
(p)
δ (x) =

(
1− |x− x0|

δ

)+

.

Then one can derive that

h
(i)
δ (x) =

∫ x

x0

(x− t)p−1−i

(p− 1− i)!
h
(p)
δ (t) dt,
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which implies that∣∣h(i)
δ (x)

∣∣ ≤ ∫ max{x,x0}

min{x,x0}

|I|p−1−i

(p− 1− i)!
h
(p)
δ (t) dt

≤ δ|I|p−i−1

(p− i− 1)!
, ∀0 ≤ i ≤ p− 1, x ∈ R. (2.1)

Lemma 2.2. Suppose that x0 ∈ I ⊂ X, where I is an open set in X, and
let λ0 be an element in Ep+1 whose final coordinate is nonzero. There exist an
open neighborhood U of λ0 in Ep+1 and a continuous map λ 7→ Hλ from U

into Cp
0 (X,E) such that suppHλ ⊂ I, Hλ peaks at x0 and (H

(i)
λ (x0))0≤i≤p ‖ λ.

Furthermore, for λ = (a0, . . . , ap) and for each i = 0, 1, . . . , p, if ai 6= 0, then

H
(i)
λ (x0) 6= 0.

Proof. We may assume that I is a bounded interval. Let ϕ be a function in Cp
0 (R)

such that supp(ϕ) ⊂ I and such that ϕ = 1 on a neighborhood of x0. Let U be a
bounded open neighborhood of λ0 so that there exists ε > 0 such that ‖ap‖ > ε
for any λ = (a0, . . . , ap) ∈ U .

For each λ = (a0, . . . , ap) ∈ U , define

fλ(x) =

p−1∑
k=0

ak
k!
(x− x0)

k

and set

Hλ = (δfλ + aphδ)ϕ,

where δ > 0 is to be chosen. Clearly, λ 7→ Hλ is a continuous function such that

suppHλ ⊂ I and (H
(i)
λ (x0))0≤i≤p ‖ λ. Furthermore, if ai 6= 0, then H

(i)
λ (x0) 6= 0.

We will show that for sufficiently small δ > 0 (independent of λ), Hλ peaks

at x0. Observe that ‖ap‖|h(p)
δ (x0)| = ‖ap‖ > ε, supλ∈U ‖fλϕ‖ < ∞ since U is

bounded, and

inf
δ>0

inf
λ∈U

‖Hλ‖ ≥ inf
λ∈U

(ρHλ)(x0) ≥ ε > 0.

Clearly, Hλ = 0 outside I. By choosing δ0 to be small, we may assume that ϕ = 1

on B(x0, δ0) = (x0 − δ0, x0 + δ0). If x ∈ I \B(x0, δ0), then h
(p)
δ (x) = 0 for δ < δ0.

Since I is bounded, it follows from (2.1) that

lim
δ→0

(hδϕ)
(i)(x) = 0 uniformly on I \B(x0, δ0), 0 ≤ i ≤ p.

Then one can derive that

lim
δ→0

ρ(hδϕ)(x) = 0 uniformly on I \B(x0, δ0).

For sufficiently small δ > 0, we thus have

(ρHλ)(x) ≤ δ‖fλϕ‖+ ‖ap‖ρ(hδϕ)(x) < ‖ap‖ ≤ ‖Hλ‖

for all x ∈ I \B(x0, δ0). Hence Hλ does not attain its norm in I \B(x0, δ0) if δ is
small enough.
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On the other hand,Hλ = δfλ+aphδ on B(x0, δ0). Observe that for x ∈ B(x0, δ0)
with x 6= x0, ∥∥H(p)

λ (x0)
∥∥−

∥∥H(p)
λ (x)

∥∥ = ‖ap‖
|x− x0|

δ
, (2.2)

while for 0 ≤ i < p,∣∣∥∥H(i)
λ (x0)

∥∥−
∥∥H(i)

λ (x)
∥∥∣∣ ≤ ∥∥H(i)

λ (x)−H
(i)
λ (x0)

∥∥
≤ δ sup

z∈B(x0,δ0)

∥∥f (i+1)
λ (z)

∥∥|x− x0|

+ ‖ap‖ sup
z∈B(x0,δ0)

∣∣h(i+1)
δ (z)

∣∣|x− x0|

≤
(
δK + C‖ap‖

)
|x− x0|, (2.3)

where

K = max
0≤i<p

sup
λ∈U

sup
z∈I

∥∥f (i+1)
λ (z)

∥∥ < ∞ and C = max
0≤i<p

|I|p−i−1

(p− i− 1)!
,

independent of δ. For x0− δ0 < x < x0, since ρ is the `1-norm and by (2.2)–(2.3),
one can derive that

ρ(‖Hλ(x0)‖, . . . , ‖H(p)
λ (x0)‖)− ρ(‖Hλ(x)‖, . . . , ‖H(p)

λ (x)‖)
x0 − x

=
ρ(0, . . . , 0, ‖H(p)

λ (x0)‖)− ρ(0, . . . , 0, ‖H(p)
λ (x)‖)

x0 − x

+
ρ(‖Hλ(x0)‖, . . . , ‖H(p−1)

λ (x0)‖, 0)− ρ(‖Hλ(x)‖, . . . , ‖H(p−1)
λ (x)‖, 0)

x0 − x

≥ ε

δ
− ρ(|‖Hλ(x0)‖ − ‖Hλ(x)‖|, . . . , |‖H(p−1)

λ (x0)‖ − ‖H(p−1)
λ (x)‖|, 0)

x0 − x

≥ ε

δ
−

(
δK + C‖ap‖

)
ρ(1, . . . , 1, 0),

which implies that (ρHλ)(x0) > (ρHλ)(x) for small enough δ. Similarly, we can
show that if x0 < x < x0 + δ0, then (ρHλ)(x0) > (ρHλ)(x) for small enough δ.
These two estimates combine to show that for small enough δ, if x ∈ B(x0, δ0) \
{x0}, then we have

(ρHλ)(x0) > (ρHλ)(x). �

Remark 2.3. Suppose that I is an open neighborhood of x0 ∈ X and that λ =
(λ0, . . . , λp) ∈ Ep+1. Fix 0 6= a ∈ E, let

µi =

{
λi if λi 6= 0,

a if λi = 0.

Set µ = (µ0, . . . , µp). By Lemma 2.2, there exists H ∈ Cp
0 (X,E), supported in

I, such that H peaks at x0 and 0 6= H(i)(x0) | µi for all 0 ≤ i ≤ p. Then
0 6= H(i)(x0) | λi for all 0 ≤ i ≤ p as well.
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Lemma 2.4. Suppose that Tf and Tg attain their norms at y0. Assume that
(Tf)(j)(y0) | (Tg)(j)(y0) for all 0 ≤ j ≤ q. Then there exists x0 such that both f
and g attain their norms at x0 and f (i)(x0) | g(i)(x0) for 0 ≤ i ≤ p.

Proof. Observe that

‖f + g‖ = ‖Tf + Tg‖ ≥ σ
((∥∥(Tf + Tg)(j)(y0)

∥∥)
0≤j≤q

)
= σ

((∥∥(Tf)(j)(y0)∥∥)0≤j≤q

)
+ σ

((∥∥(Tg)(j)(y0)∥∥)0≤j≤q

)
= ‖Tf‖+ ‖Tg‖ = ‖f‖+ ‖g‖ ≥ ‖f + g‖.

Let x0 be a point at which f + g attains its norm. Then one can derive that

‖f‖+ ‖g‖ = ‖f + g‖ = ρ
((∥∥(f + g)(i)(x0)

∥∥)
0≤i≤p

)
≤ ρ

((∥∥f (i)(x0)
∥∥)

0≤i≤p

)
+ ρ

((∥∥g(i)(x0)
∥∥)

0≤i≤p

)
≤ ‖f‖+ ‖g‖.

Clearly, both f and g attain their norms at x0. From the above, we also have

ρ
((∥∥(f + g)(i)(x0)

∥∥)
0≤i≤p

)
= ρ

((∥∥f (i)(x0)
∥∥)

0≤i≤p

)
+ ρ

((∥∥g(i)(x0)
∥∥)

0≤i≤p

)
= ρ

((∥∥f (i)(x0)
∥∥+

∥∥g(i)(x0)
∥∥)

0≤i≤p

)
≥ ρ

((∥∥(f + g)(i)(x0)
∥∥)

0≤i≤p

)
.

Therefore, ‖f (i)(x0) + g(i)(x0)‖ = ‖f (i)(x0)‖ + ‖g(i)(x0)‖ for all 0 ≤ i ≤ p. By
strict convexity of the norm of E, we can derive that f (i)(x0) | g(i)(x0) for all
0 ≤ i ≤ p. �

Lemma 2.5. Suppose that f peaks at x0 and that f (i)(x0) 6= 0 for all 0 ≤ i ≤ p.
Then there exists y0 such that Tf peaks at y0. Moreover, (Tf)(j)(y0) 6= 0 for any
0 ≤ j ≤ q.

Proof. Suppose on the contrary that there exist distinct points y1 and y2 such
that Tf attains its norm at both y1 and y2. By Lemma 2.2, there exist nonzero
functions g1 and g2 with disjoint support such that gk peaks at yk and such that

g
(j)
k (yk) | (Tf)(j)(yk) for all 0 ≤ j ≤ q and k = 1, 2. We may assume that ‖g1‖ =
‖g2‖ = 1. By Lemma 2.4, T−1gk attains its norm at x0 and f (i)(x0) | (T−1gk)

(i)(x0)
for any 0 ≤ i ≤ p and k = 1, 2. Since f (i)(x0) 6= 0, one can derive that

(T−1g1)
(i)(x0) | (T−1g2)

(i)(x0) for any 0 ≤ i ≤ p.

Now

1 = ‖g1 + g2‖ = ‖T−1g1 + T−1g2‖
≥ ρ

((∥∥(T−1g1)
(i)(x0) + (T−1g2)

(i)(x0)
∥∥)

0≤i≤p

)
= ρ

((∥∥(T−1g1)
(i)(x0)

∥∥)
0≤i≤p

)
+ ρ

((∥∥(T−1g2)
(i)(x0)

∥∥)
0≤i≤p

)
≥ ρ

((∥∥(T−1g1)
(i)(x0)

∥∥)
0≤i≤p

)
= ‖T−1g1‖ = ‖g1‖ = 1.
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Thus ‖(T−1g2)
(i)(x0)‖ = 0 for all i = 0, 1, . . . , p. But since T−1g2 attains its norm

at x0, it follows that ‖g2‖ = 0, contrary to its choice. This proves that there exists
y0 such that Tf peaks at y0.

Now suppose that J = {j : (Tf)(j)(y0) = 0} 6= ∅. Fix 0 6= u ∈ F , and let

a1j =

{
(Tf)(j)(y0) if j /∈ J,

u if j ∈ J,
a2j =

{
(Tf)(j)(y0) if j /∈ J,

−u if j ∈ J.

Choose g1, g2 ∈ Cq
0(Y, F ) such that gk peaks at y0 and such that 0 6= g

(j)
k (y0) | akj

for any 0 ≤ j ≤ q and k = 1, 2. Note that g
(j)
k (y0) | (Tf)(j)(y0) for all 0 ≤ j ≤ q

and k = 1, 2. Thus

‖Tf + gk‖ ≥ σ
((∥∥(Tf + gk)

(j)(y0)
∥∥)

0≤j≤q

)
= σ

((∥∥(Tf)(j)(y0)∥∥)0≤j≤q

)
+ σ

((∥∥g(j)k (y0)
∥∥)

0≤j≤q

)
= ‖Tf‖+ ‖gk‖ ≥ ‖Tf + gk‖.

Hence Tf + gk attains its norm at y0, and (Tf + gk)
(j)(y0) | (Tf)(j)(y0) for all

0 ≤ j ≤ q and k = 1, 2. By Lemma 2.4, f + T−1gk and f attain their norms
at a common point, which must be x0, and (f + T−1gk)

(i)(x0) | f (i)(x0) for all
0 ≤ i ≤ p. Since f (i)(x0) 6= 0 for all 0 ≤ i ≤ p, it follows that

(f + T−1g1)
(i)(x0) | (f + T−1g2)

(i)(x0) for all 0 ≤ i ≤ p.

Applying Lemma 2.4 to T−1, we can see that Tf + g1 and Tf + g2 attain their
norms at a common point y1 and that (Tf + g1)

(j)(y1) | (Tf + g2)
(j)(y1) for all

0 ≤ i ≤ q. Since gk peaks at y0 and ‖Tf + gk‖ = ‖Tf‖+ ‖gk‖, y1 must be y0. For
any j ∈ J ,

u | g(j)1 (y0) = (Tf + g1)
(j)(y0) | (Tf + g2)

(j)(y0) = g
(j)
2 (y0) | −u.

This is impossible since g
(j)
k (y0) and u are nonzero. �

Lemma 2.6. Suppose that (fn) converges to a nonzero function f ∈ Cp
0 (X,E)

that peaks at some x0. If (xn) is a sequence so that fn attains its norm at xn for
each n ∈ N, then (xn) converges to x0.

Proof. The sequence (fn, . . . , f
(p)
n ) converges uniformly on X to (f, . . . , f (p)).

There is a compact set K such that

ρ
(∥∥f(x)∥∥, . . . , ∥∥f (p)(x)

∥∥) < ‖f‖
2

for all x /∈ K.

Then for sufficiently large n, we have that ρ(‖fn(x)‖, . . . , ‖f (p)
n (x)‖) < ‖fn‖ for

all x /∈ K. Thus we may assume that xn ∈ K for all n ∈ N. For any convergent
subsequence (xnk

) of (xn), we can assume that its limit is z ∈ K. Clearly, f must
attain its norm at z, and thus z = x0. This implies that (xn) converges to x0. �

Lemma 2.7. Suppose that f1 and f2 peak at x0, f
(i)
k (x0) 6= 0 for all 0 ≤ i ≤

p, k = 1, 2, and Tf1 and Tf2 peak at y1 and y2, respectively. If f
(i)
1 (x0) 6 | f (i)

2 (x0)
for all 0 ≤ i ≤ p, then y1 = y2.
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Proof. Suppose on the contrary that y1 6= y2. Choose functions g1 and g2 with

disjoint support such that gk peaks at yk, 0 6= g
(j)
k (yk) | (Tfk)

(j)(yk) for all
0 ≤ j ≤ q, and k = 1, 2. We may also assume that ‖g1‖ = ‖g2‖ = 1.

Set hk = T−1gk for k = 1, 2, and h = h1 + h2 and g = Th. Observe that

‖hk‖ = ‖gk‖ = 1, ‖h‖ = ‖Th‖ = ‖g1 + g2‖ = 1 and g(j)(yk) | g
(j)
k (yk) for

0 ≤ j ≤ q, k = 1, 2 since g1 and g2 are disjoint. Since gk = Thk and Tfk peak
at yk and (Thk)

(j)(yk) | (Tfk)(j)(yk) for 0 ≤ j ≤ q, k = 1, 2, by Lemmas 2.4 and
2.5, we can derive that hk and fk peak at a common point, which must be x0,

and h
(i)
k (x0) | f (i)

k (x0) for 0 ≤ i ≤ p, k = 1, 2. As Th and Thk attain their norms
at yk and (Th)(j)(yk) | (Thk)

(j)(yk) for any 0 ≤ j ≤ q, k = 1, 2, by Lemma 2.4,
we have that hk and h attain their norms at a common point, which must be x0,

and h(i)(x0) | h(i)
k (x0) for any 0 ≤ i ≤ p, k = 1, 2.

Suppose that there exists i0 such that h(i0)(x0) 6= 0. Then we can derive that

h
(i0)
1 (x0) | h(i0)

2 (x0). By Lemma 2.5 applied to T−1, h
(i)
k (x0) 6= 0 for all 0 ≤ i ≤ p

and k = 1, 2. Therefore, f
(i0)
1 (x0) | f (i0)

2 (x0), contrary to the assumption. Thus
h(i)(x0) = 0 for all 0 ≤ i ≤ p. Since h attains its norm at x0, it would follow that
‖h‖ = 0, contradicting the fact that ‖h‖ = 1. �

Lemma 2.8. Assume that dimE > 1. Suppose that f1 and f2 peak at x0,

f
(i)
k (x0) 6= 0 for all 0 ≤ i ≤ p and k = 1, 2, and Tf1 and Tf2 peak at y1 and
y2, respectively. Then y1 = y2.

Proof. By Lemma 2.2, choose sequences (hkn) converging to hk in Cp
0 (X,E), k =

1, 2, such that hkn and hk peak at x0 for any n ∈ N, 0 6= h
(i)
k (x0) | f (i)

k (x0) for

0 ≤ i ≤ p and k = 1, 2, and h
(i)
1n(x0) 6 |h(i)

2n(x0) for all 0 ≤ i ≤ p and n ∈ N. By
Lemma 2.7, Th1n and Th2n peak at the same point, which we will denote by zn,
while Thk peaks at yk for k = 1, 2. Since (Thkn) converges to Thk, by Lemma 2.6,
(zn) converges to both y1 and y2. Therefore, y1 = y2. �

Lemma 2.9. Assume that dimE, dimF > 1. There exists a homeomorphism
τ : X → Y such that if f ∈ Cp

0 (X,E) peaks at x0 and f (i)(x0) 6= 0 for all
0 ≤ i ≤ p, then Tf peaks at τ(x0) and (Tf)(j)(τ(x0)) 6= 0 for all 0 ≤ j ≤ q.

Proof. By Lemmas 2.5 and 2.8, there exists a mapping τ : X → Y such that if
f ∈ Cp

0 (X,E) peaks at x0 and f (i)(x0) 6= 0 for all 0 ≤ i ≤ p, then Tf peaks at
τ(x0) and (Tf)(j)(τ(x0)) 6= 0 for all 0 ≤ j ≤ q. Obviously, τ is a bijection. It
suffices to show that τ is a homeomorphism from X onto Y .

Let x0 ∈ X and r > 0 such that I = (x0−2r, x0+2r) ⊆ X. Suppose that (xn) is
a sequence in X converging to x0. By Lemma 2.2, there exists H ∈ Cp

0 (R, E) such
that supp(H) ⊂ (x0−r, x0+r), H peaks at x0, and H(i)(x0) 6= 0 for all 0 ≤ i ≤ p.
Let Hn(x) = H(x− xn + x0). Observe that supp(Hn) ⊂ (xn − r, xn + r) ⊂ I and

Hn ∈ Cp
0 (X,E) for large n. Moreover, Hn peaks at xn and H

(i)
n (xn) 6= 0 for all

0 ≤ i ≤ p. By definition of τ , THn peaks at τ(xn) and TH peaks at τ(x0).
Since (Hn) converges to H in Cp

0 (X,E), (THn) converges to TH, which is a
nonzero function. By Lemma 2.6, (τ(xn)) converges to τ(x0). This proves that τ
is continuous. By symmetry, τ is a homeomorphism from X onto Y . �
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Lemma 2.10. Assume that dimE, dimF > 1. Let τ : X → Y be the homeomor-
phism given in Lemma 2.9. If f ∈ Cp

0 (X,E) and f (i)(x0) = 0 for all 0 ≤ i ≤ p at
some x0 ∈ X, then (Tf)(j)(τ(x0)) = 0 for all 0 ≤ j ≤ q.

Proof. Let y0 = τ(x0). Assume that (Tf)(j0)(y0) 6= 0 for some 0 ≤ j0 ≤ q. By
Lemma 2.2, there exists g ∈ Cq

0(Y, F ) such that g peaks at y0 and 0 6= g(j)(y0) |
(Tf)(j)(y0) for all 0 ≤ j ≤ q. By the definition of τ , T−1g peaks at x0 and
(T−1g)(i)(x0) 6= 0 for all 0 ≤ i ≤ p.

Let I be an open neighborhood of x0. By Lemma 2.2 again, there exists h ∈
Cp

0 (X,E), supported in I, such that h peaks at x0 and 0 6= h(i)(x0) | (T−1g)(i)(x0)
for all 0 ≤ i ≤ p. We may assume that ‖h‖ > ‖f‖. By Lemmas 2.4 and 2.5,
Th peaks at y0 and (Th)(j)(y0) | g(j)(y0) for all 0 ≤ j ≤ q. Thus (Th)(j)(y0) |
(Tf)(j)(y0) for all 0 ≤ j ≤ q. We have

‖f + h‖ = ‖Tf + Th‖
≥ σ

((∥∥(Tf)(j)(y0) + (Th)(j)(y0)
∥∥)

0≤j≤q

)
= σ

((∥∥(Tf)(j)(y0)∥∥)0≤j≤q

)
+ σ

((∥∥(Th)(j)(y0)∥∥)0≤j≤q

)
= σ

((∥∥(Tf)(j)(y0)∥∥)0≤j≤q
) + ‖h‖

> ‖h‖ > ‖f‖.

Since h(x) = 0 for any x /∈ I, f + h must attain its norm at a point x1 ∈ I. Then

(ρf)(x1) + ‖h‖ ≥ (ρf)(x1) + (ρh)(x1) ≥
(
ρ(f + h)

)
(x1) = ‖f + h‖

≥ σ
((∥∥(Tf)(j)(y0)∥∥)0≤j≤q

)
+ ‖h‖.

Hence (ρf)(x1) ≥ σ((‖(Tf)(j)(y0)‖)0≤j≤q). Since I is an arbitrary neighborhood of
x0, we conclude that 0 = (ρf)(x0) ≥ σ((‖(Tf)(i)(y0)‖)0≤j≤q) and (Tf)(j)(y0) = 0
for all 0 ≤ j ≤ q. �

In the rest of the article, we would like to show that p = q and τ is a
Cp-diffeomorphism.

Lemma 2.11. If f, g ∈ Cp
0 (X,E) and ‖f(x)‖ · ‖g(x)‖ = 0 for all x ∈ X, then

at any point x ∈ X, either f (i)(x) = 0 for all 0 ≤ i ≤ p or g(i)(x) = 0 for all
0 ≤ i ≤ p.

Proof. Let f and g be in Cp
0 (X,E) with ‖f(x)‖ · ‖g(x)‖ = 0 for all x ∈ X. Set

V = {x ∈ X : f(x) 6= 0}. Note that V is open in X and g|V = 0. Hence g
(i)
|V = 0

for all 0 ≤ i ≤ p. By continuity of g(i), we derive that g
(i)

|V = 0 for all 0 ≤ i ≤ p,

where V is the closure of V . By the definition of V , it is clear that f(x) = 0 for
all x /∈ V . Therefore, for each x /∈ V , we have f (i)(x) = 0 for all 0 ≤ i ≤ p. This
completes the proof of the lemma. �

Let us recall that a map S : Cp(X,E) → Cq(Y, F ) is said to be disjointness-
preserving if ‖Sf(y)‖·‖Sg(y)‖ = 0 for all y ∈ Y whenever f, g ∈ Cp(X,E) satisfy
‖f(x)‖·‖g(x)‖ = 0 for all x ∈ X. A map S is called biseparating if it is a bijection
and both S and S−1 are disjointness-preserving.
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Lemma 2.12. Assume that E and F are strictly convex Banach spaces with
dimE, dimF > 1. Let X and Y be open sets in R, and let p, q ∈ N. Then any
surjective linear isometry T : Cp

0 (X,E) → Cq
0(Y, F ) can be extended to a linear

biseparating map T̃ : Cp(X,E) → Cq(Y, F ).

Proof. For any x ∈ X and any a = (a0, a1, . . . , ap) ∈ Ep+1, choose hx,a ∈ Cp
0 (X,E)

so that h
(i)
x,a(x) = ai for all 0 ≤ i ≤ p. For any f ∈ Cp(X,E), define T̃ f on Y by

(T̃ f)(y) = Thx,a(y),

where x = τ−1(y) and ai = f (i)(x) for all 0 ≤ i ≤ p. It follows from Lemma 2.10

that T̃ is well defined. Let y0 ∈ Y and x0 = τ−1(y0). There are an open neigh-
borhood U of x0 and a function g ∈ Cp

0 (X,E) such that g = f on U . For any
x ∈ U ,

g(i)(x) = f (i)(x) = h(i)
x,a(x) for all 0 ≤ i ≤ p,

where ai = f (i)(x) for all 0 ≤ i ≤ p.

By Lemma 2.10, (Tg)(y) = (Thx,a)(y) for all y ∈ τ(U). Hence T̃ f = Tg on τ(U)
is q-times continuously differentiable on τ(U). Since y0 is an arbitrary point in Y ,

this implies that T̃ f ∈ Cq(Y, F ). Using Lemmas 2.10 and 2.11, one can derive that

T̃ is a linear disjointness-preserving map that extends T . By symmetry, one may

similarly define a linear disjointness-preserving map S̃ : Cq(Y, F ) → Cp(X,E)

such that S̃ extends T−1. By Lemma 2.10 and the definition of T̃ and S̃, we can

verify that T̃ and S̃ are mutual inverses. This proves that T̃ is a linear biseparating
map. �

Theorem 2.13. Assume that E and F are strictly convex Banach spaces with
dimE, dimF > 1. Let T : Cp

0 (X,E) → Cq
0(Y, F ) be a surjective linear isometry,

where X and Y are open sets in R and p, q ∈ N. Then p = q, and there exist a
Cp-diffeomorphism τ : X → Y and surjective linear isomorphisms Jy : E → F ,
y ∈ Y , such that

Tf(y) = Jy
(
f
(
τ−1(y)

))
for all f ∈ Cp

0 (X,E), y ∈ Y.

Proof. By Lemma 2.12, T can be extended to a linear biseparating map T̃ :
Cp(X,E) → Cq(Y, F ). By [1, Theorem 6.2], we have p = q, and there are a
Cp-diffeomorphism γ : X → Y and Banach space isomorphisms Jy : E → F for
all y ∈ Y such that

T̃ f(y) = Jy
(
f
(
γ−1(y)

))
for all f ∈ Cp(X,E), y ∈ Y.

If γ 6= τ , there exists x ∈ X such that y1 = γ(x) 6= τ(x) = y2. Choose g ∈
Cq

0(Y, F ) such that g(y1) 6= 0, g(i)(y2) = 0 for all 0 ≤ i ≤ q, and set f = T−1g. By
Lemma 2.10, f(x) = 0. Then, by the preceding formula,

g(y1) = (Tf)(y1) = (T̃ f)(y1) = Jy
(
f(x)

)
= 0,

contrary to the choice of g. �
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