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Abstract. The main concern of this article is the perturbation problem for
outer inverses of linear bounded operators in Banach spaces. We consider
the following perturbed problem. Let T ∈ B(X,Y ) with an outer inverse
T {2} ∈ B(Y,X) and δT ∈ B(X,Y ) with ‖δTT {2}‖ < 1. What condition on
the small perturbation δT can guarantee that the simplest possible expression
B = T {2}(I+δTT {2})−1 is a generalized inverse, Moore–Penrose inverse, group
inverse, or Drazin inverse of T +δT? In this article, we give a complete solution
to this problem. Since the generalized inverse, Moore–Penrose inverse, group
inverse, and Drazin inverse are outer inverses, our results extend and improve
many previous results in this area.

1. Introduction and preliminaries

Let X and Y be Banach spaces. Let B(X,Y ) denote the Banach space of all
bounded linear operators from X into Y . We write B(X) as B(X,X). For any
T ∈ B(X,Y ), we denote by N(T ) and R(T ) the null space and the range of T ,
respectively. The identity operator will be denoted by I.

Recall that an operator S ∈ B(Y,X) is said to be an inner inverse of T ∈
B(X,Y ) if TST = T and an outer inverse if STS = S. If S is both an inner
inverse and outer inverse of T , then S is called a generalized inverse of T , which
is denoted by T+. As is well known, the nonzero outer inverse of any bounded
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linear operator always exists, while an inner inverse or generalized inverse may
not exist and it is not unique even if it does exist. In order to force its uniqueness,
some further conditions have to be imposed. Let us recall some definitions.

Definition 1.1. Let X and Y be Hilbert spaces. An operator S ∈ B(Y,X) is called
the Moore–Penrose inverse of T ∈ B(X,Y ) if S satisfies the Penrose equations

(1) TST = T, (2) STS = S, (3) (TS)∗ = TS, (4) (ST )∗ = ST,

where T ∗ denotes the adjoint operator of T . The Moore–Penrose inverse of T is
always written by T †, which is uniquely determined if it exists.

Definition 1.2. Let X be a Banach space. An operator S ∈ B(X) is said to be
the Drazin inverse of T ∈ B(X) if S satisfies

(1k) T kST = T k, (2) STS = S, (5) TS = ST

for some positive integer k. The Drazin inverse of T is always denoted by TD, and
the least such k is called the index of T . When k = 1, the corresponding Drazin
inverse is called the group inverse, denoted by T ].

Let θ ⊂ {1, 2, 3, 4, 5} be a nonempty set. If S satisfies the equation (i) in
Definitions 1.1 and 1.2 for all i ∈ θ, then S is said to be a θ-inverse of T , which
is denoted by T θ. As we all know, each kind of θ-inverse has its own property,
and many important generalized inverses, such as the Moore–Penrose inverse,
the Drazin inverse, and the group inverse, belong to outer inverses which play
a prominent role in numerical analysis, optimization, mathematical statistics,
and so on (see [1], [9], [12]–[18]). The major reasons why the outer inverse has
important practical value include the existence of the nonzero outer inverse of
any bounded linear operator and the stability of the outer inverse. Nashed and
Chen [16] gave the following stability theorem of the outer inverses, and Nashed
[15] indicated the instability for the inner inverses.

Theorem 1.3 ([16, Lemma 2.2]). Let T ∈ B(X,Y ) with an outer inverse T {2} ∈
B(Y,X) and δT ∈ B(X,Y ) with ‖δTT {2}‖ < 1. Then

B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2}

is an outer inverse of T = T + δT with R(B) = R(T {2}) and N(B) = N(T {2}).

This says that the outer inverse of the perturbed operator T = T+δT possesses

the simplest possible expression T
{2}

= T {2}(I+δTT {2})−1 = (I+T {2}δT )−1T {2},

whose null space and range are identical with T {2}’s and obviously, T
{2} → T {2} as

δT → 0. Characterizations for the simplest possible expressions of the generalized
inverse, Moore–Penrose inverse, group inverse, and Drazin inverse appear in [2],
[4]–[6], [8], [9], and [12]. In particular, Castro-González and Vélez-Cerrada [2]
gave the equivalent conditions for B = [I + TD(T − T )]−1TD to be a generalized
inverse of T under the assumption that T is Drazin invertible.

Motivated by these results, we will consider the following perturbed problem.
Let T ∈ B(X,Y ) with an outer inverse T {2} ∈ B(Y,X) and δT ∈ B(X,Y ) with
‖δTT {2}‖ < 1. What condition on the small perturbation δT can guarantee that
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the simplest possible expression B = (I + T {2}δT )−1T {2} is a generalized inverse,
Moore–Penrose inverse, group inverse, or Drazin inverse of T = T +δT? It should

be pointed out that if 2 ∈ θ and the θ-inverse T
θ
preserves the null space and

range of T θ, then T
θ
= (I + T θδT )−1T θ (see [9]). This makes the above problem

more meaningful. We give a complete solution to this problem below. Since the
generalized inverse, Moore–Penrose inverse, group inverse, and Drazin inverse
are outer inverses, the results obtained in this article extend and improve many
previous results in this area.

2. Main results

The first theorem below gives the characterizations for B = (I+T {2}δT )−1T {2}

to be a generalized inverse of T = T+δT , which is an extension of the main results
in [3], [8], [9], [12], and [14].

Theorem 2.1. Let T ∈ B(X,Y ) with an outer inverse T {2} ∈ B(Y,X). If δT ∈
B(X,Y ) satisfies ‖δTT {2}‖ < 1, then the following statements are equivalent:

(1) B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2} is a generalized inverse of
T = T + δT ;

(2) R(T ) ∩N(T {2}) = {0};
(3) X = N(T )⊕R(T {2}) or X = N(T ) +R(T {2});
(4) Y = R(T )⊕N(T {2});
(5) R(T ) = R(TT {2}) or R(T ) ⊂ R(TT {2});
(6) N(T {2}T ) = N(T ) or N(T {2}T ) ⊂ N(T );
(7) (I + δTT {2})−1R(T ) = R(TT {2}) or (I + δTT {2})−1R(T ) ⊂ R(TT {2});
(8) (I + T {2}δT )−1N(T {2}T ) = N(T ) or (I + T {2}δT )−1N(T {2}T ) ⊂ N(T );
(9) (I + δTT {2})−1TN(T {2}T ) ⊂ R(TT {2}).

Proof. It follows from Theorem 1.3 that B = (I + T {2}δT )−1T {2} is an outer
inverse of T with R(B) = R(T {2}) and N(B) = N(T {2}). Then TB and BT are
projectors with R(BT ) = R(B), N(TB) = N(B), R(B) ∩ N(T ) = {0}, and X
and Y have the topological direct sum decompositions:

X = N(BT )⊕R(B) and Y = N(B)⊕R(TB).

(1) ⇒ (2). If B is a generalized inverse of T , then

Y = R(TB)⊕N(TB) = R(T )⊕N(B) = R(T )⊕N(T {2})

and thus R(T ) ∩N(T {2}) = {0}.
(2) ⇒ (1). If R(T ) ∩ N(T {2}) = {0}, then R(T ) ∩ N(B) = {0} and for all

x ∈ X,

TBTx− Tx ∈ R(T ) ∩N(B),

that is, TBTx = Tx, which implies that B is also an inner inverse of T . Thus B
is a generalized inverse of T .
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(1) ⇒ (3). If B is a generalized inverse of T , then

X = R(BT )⊕N(BT ) = N(T )⊕R(B) = N(T )⊕R(T {2}),

and therefore X = N(T ) +R(T {2}).
(3) ⇒ (1). If X = N(T ) + R(T {2}), then for all x ∈ X, x can be expressed by

x = x1 + x2, where x1 ∈ N(T ) and x2 ∈ R(T {2}). Hence x2 ∈ R(B) and

(TBT − T )x = (TBT − T )x2 = 0;

that is, B is an inner inverse of T . Thus B is a generalized inverse of T .
(1) ⇒ (4). See (1) ⇒ (2).
(4) ⇒ (2). This is obvious.
(3) ⇒ (5). We have R(T ) = T (X) = T [N(T ) + R(T {2})] = T [R(T {2})] =

R(TT {2}).
(5) ⇒ (1). If R(T ) ⊂ R(TT {2}), then

R(T ) ⊂ TR(T {2}) = TR(B) = R(TB) = N(I − TB),

and hence (I − TB)T = 0, which means that B is an inner inverse of T .
(1) ⇒ (6). If B is a generalized inverse of T , then

N(T ) = N(BT ) = N
(
(I + T {2}δT )−1T {2}T

)
= N(T {2}T ).

(6) ⇒ (1). If N(T {2}T ) ⊂ N(T ), then

R(I −BT ) = N(BT ) = N
(
(I + T {2}δT )−1T {2}T

)
= N(T {2}T ) ⊂ N(T )

and T (I −BT ) = 0, which implies that B is an inner inverse of T .
(1) ⇒ (7). If B is a generalized inverse of T , then

R(T ) = R(TB) = TR(B) = TR(T {2}) = TR(T {2}TT {2}) = TT {2}R(TT {2})

= (TT {2} + I − TT {2})R(TT {2}) = (I + δTT {2})R(TT {2}).

(7) ⇒ (8). Obviously, (I + T {2}δT )N(T ) = [I + T {2}(T − T )]N(T ) = (I −
T {2}T )N(T ) ⊂ N(T {2}T ). On the other hand, by (7), for any x ∈ N(T {2}T ), we
have

Tx ∈ R(T ) ⊂ (I + δTT {2})R(TT {2}) = TR(T {2}).

Then there exists a y ∈ R(T {2}) such that Ty = Tx. Hence x− y ∈ N(T ) and

(I + T {2}δT )(x− y) = (I − T {2}T )(x− y) = (I − T {2}T )x = x.

This implies that N(T {2}T ) ⊂ (I + T {2}δT )N(T ).
(8) ⇒ (2). Taking any y ∈ R(T ) ∩ N(T {2}), we can find an x ∈ X satisfying

y = Tx and T {2}Tx = 0. Hence

T {2}T (I + T {2}δT )x = T {2}Tx+ T {2}TT {2}δTx

= T {2}Tx+ T {2}Tx− T {2}Tx = 0,

implying that (I + T {2}δT )x ∈ N(T {2}T ). By (8), x ∈ N(T ) and so y = Tx = 0.
(7) ⇒ (9). This is obvious.
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(9) ⇒ (2). Let y ∈ R(T )∩N(T {2}). We can find an x ∈ X satisfying y = Tx and
T {2}Tx = 0. Since X = N(T {2}T )⊕ R(T {2}), x = x1 + x2, where x1 ∈ N(T {2}T )
and x2 ∈ R(T {2}). Then

(I + δTT {2})Tx2 =
[
I + (T − T )T {2}]Tx2 = TT {2}Tx2 = Tx2.

Hence

(I + δTT {2})−1Tx2 = Tx2 ∈ R(TT {2}),

and by (9),

(I + δTT {2})−1Tx1 ∈ R(TT {2}).

Noting that y ∈ N(T {2}), we get (I + δTT {2})y = y = Tx and

y = (I + δTT {2})−1Tx = (I + δTT {2})−1T (x1 + x2) ∈ R(TT {2}).

Thus y ∈ R(TT {2}) ∩ N(T {2}). It follows from R(TT {2}) ∩ N(T {2}) = {0} that
y = 0. �

Assuming that the outer inverse T {2} is also a generalized inverse T+, we get
the following.

Corollary 2.2. Let T ∈ B(X,Y ) with a generalized inverse T+ ∈ B(Y,X) and
δT ∈ B(X,Y ) with ‖δTT+‖ < 1. Then the following statements are equivalent:

(1) B = T+(I + δTT+)−1 = (I + T+δT )−1T+ is a generalized inverse of
T = T + δT ;

(2) R(T ) ∩N(T+) = {0};
(3) X = N(T )⊕R(T+) or X = N(T ) +R(T+);
(4) Y = R(T )⊕N(T+);
(5) R(T ) = R(TT+);
(6) N(T+T ) = N(T );
(7) (I + δTT+)−1R(T ) = R(T );
(8) (I + T+δT )−1N(T ) = N(T );
(9) (I + δTT+)−1TN(T ) ⊂ R(T ).

Proof. Noting that R(TT+) = R(T ) and N(T+T ) = N(T ), by Theorem 2.1, we
can get the desired result. �

Remark 2.3. Corollary 2.2 extends the main results in [3], [8], [9], and [12]. It is
worth mentioning that in [3], T is called a stable perturbation of T if T satisfies
R(T ) ∩ N(T+) = {0}. This notion of stable perturbation is an extension of
rank-preserving perturbation and has been used widely in perturbation theory
of generalized inverses (see [7]–[10], [12], [19]).

Corollary 2.4 ([2, Theorem 3.2]). Let T ∈ B(X) be a Drazin invertible with
ind(T ) = r. The following assertions on T such that ‖TD(T−T )‖ < 1 is invertible
are equivalent:

(1) B = [I+TD(T −T )]−1TD = TD[I+(T −T )TD]−1 is a generalized inverse
of T ;

(2) T [I + TD(T − T )]−1T π = 0 or T π[I + (T − T )TD]−1T = 0;
(3) R(T ) ∩N(T r) = {0};
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(4) X = N(T ) +R(T r);
(5) R(TTD) = R(T );
(6) N(TDT ) = N(T );
(7) T πN(T ) = N(T r).

Proof. Noting that N(T r) = N(TD) and that R(T r) = R(TD), by Theorem 2.1,
we can get the equivalence between (1), (3), (4), (5), and (6). It follows from (7)
and (8) in Theorem 2.1 and

T
[
I + TD(T − T )

]−1
T π = 0 ⇔ (I + TDδT )−1R(T π) ⊂ N(T )

⇔ (I + TDδT )−1N(TDT ) ⊂ N(T ),

T π
[
I + (T − T )TD

]−1
T = 0 ⇔ (I + δTTD)−1R(T ) ⊂ N(T π)

⇔ (I + δTTD)−1R(T ) ⊂ R(TTD),

T πN(T ) = N(T r)⇔ (I − TDT )N(T ) = N(TD)

⇔ (I + TDδT )N(T ) = N(TDT )

that (2) and (7) are equivalent to any one of the others. �

Remark 2.5. It should be noted that statement (2) above in [2, Theorem 3.2] is

T
[
I + TD(T − T )

]−1
T π = T π

[
I + (T − T )TD

]−1
T = 0.

If X and Y are Hilbert spaces and the orthogonal topological direct sum is
considered, we have the following.

Theorem 2.6. Let X and Y be Hilbert spaces. Let T ∈ B(X,Y ) with an outer
inverse T {2} ∈ B(Y,X). If δT ∈ B(X,Y ) satisfies ‖δTT {2}‖ < 1, then

B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2}

is a {1, 2, 3}-inverse of T = T + δT if and only if

Y = R(T ) +̇ N(T {2}),

where +̇ denotes the orthogonal topological direct sum.

Proof. If B is a {1, 2, 3}-inverse of T , then

Y = R(TB) +̇ N(TB) = R(T ) +̇ N(B) = R(T ) +̇ N(T {2}).

Conversely, if Y = R(T ) +̇ N(T {2}), then by Theorem 2.1, B is a generalized
inverse of T and Y = R(T ) +̇ N(B). Hence TB is the orthogonal projector from
Y onto R(T ). Thus (TB)∗ = TB and B is a {1, 2, 3}-inverse of T . �

Symmetrically, by Theorem 2.1(3), we can get the following result.

Theorem 2.7. Let X and Y be Hilbert spaces. Let T ∈ B(X,Y ) with an outer
inverse T {2} ∈ B(Y,X). If δT ∈ B(X,Y ) satisfies ‖δTT {2}‖ < 1, then

B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2}

is a {1, 2, 4}-inverse of T = T + δT if and only if

X = N(T ) +̇ R(T {2}).
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Utilizing Theorems 2.6 and 2.7, we can obtain the equivalent condition that
B = T {2}(I + δTT {2})−1 is the Moore–Penrose inverse of T .

Theorem 2.8. Let X and Y be Hilbert spaces. Let T ∈ B(X,Y ) with an outer
inverse T {2} ∈ B(Y,X). Let δT ∈ B(X,Y ) satisfy ‖δTT {2}‖ < 1. Then

B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2}

is the Moore–Penrose inverse of T = T + δT if and only if

X = N(T ) +̇ R(T {2}) and Y = R(T ) +̇ N(T {2}).

Corollary 2.9 ([4, Theorem 3.1]). Let X and Y be Hilbert spaces, and let T ∈
B(X,Y ) with the Moore–Penrose inverse T † ∈ B(Y,X). If δT ∈ B(X,Y ) satisfies
‖δTT †‖ < 1, then

B = T †(I + δTT †)−1 = (I + T †δT )−1T †

is the Moore–Penrose inverse of T = T + δT if and only if

R(T ) = R(T ) and N(T ) = N(T ).

Proof. Since T † is the Moore–Penrose inverse of T ,

X = N(T ) +̇ R(T †) and Y = R(T ) +̇ N(T †).

Then by Theorem 2.8, B is the Moore–Penrose inverse of T if and only if

X = N(T ) +̇ R(T †) and Y = R(T ) +̇ N(T †)

if and only if

N(T ) = N(T ) and R(T ) = R(T ). �

The next theorem concerns the characterization for B = T {2}(I + δTT {2})−1

to be the group inverse of T , which is an extension of the main results in [8], [9],
and [11].

Theorem 2.10. Let T ∈ B(X) with an outer inverse T {2} ∈ B(X). If δT ∈ B(X)
satisfies ‖δTT {2}‖ < 1, then the following statements are equivalent:

(1) B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2} is the group inverse of
T = T + δT ;

(2) R(T ) ∩N(T {2}) = {0} and T = T {2}TT = TTT {2};
(3) X = N(T ) +R(T {2}), R(T ) ⊆ R(T {2}) and N(T {2}) ⊆ N(T ).

Proof. It can be verified that

BT = TB ⇔ (I + T {2}δT )−1T {2}T = TT {2}(I + δTT {2})−1

⇔ T {2}T (I + δTT {2}) = (I + T {2}δT )TT {2}

⇔ T {2}T − T {2}TTT {2} = TT {2} − T {2}TTT {2}

(right multiply with TT {2} and left multiply with T {2}T )

⇔ TT {2} = T {2}TTT {2} and T {2}T = T {2}TTT {2}.
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(1) ⇒ (2). If B is the group inverse of T , then BT = TB and B is a generalized
inverse of T . By Theorem 2.1,

R(T ) ∩N(T {2}) = {0} and X = N(T ) +R(T {2}).

Hence for all x ∈ X, T {2}T (I − TT {2})x = 0 which implies that T (I − TT {2})x ∈
N(T {2}). Thus

T (I − TT {2})x ∈ R(T ) ∩N(T {2})

and so T = TTT {2}. Noting that

(I − T {2}T )TX = (I − T {2}T )T
[
N(T ) +R(T {2})

]
= (I − T {2}T )TR(T {2}) = {0},

we get T = T {2}TT .
(2) ⇒ (3). By Theorem 2.1, we have X = N(T ) + R(T {2}). If T = T {2}TT =

TTT {2}, then R(T ) ⊆ R(T {2}) and N(T {2}) ⊆ N(T ).
(3) ⇒ (1). It follows from Theorem 2.1 that B is a generalized inverse of T . By

R(T ) ⊆ R(T {2}) and N(T {2}) ⊆ N(T ), we can get T = T {2}TT and T = TTT {2},
respectively. Therefore, BT = TB. �

Corollary 2.11 ([9, Theorem 2.10]). Let T ∈ B(X) with the group inverse T ] ∈
B(X) and δT ∈ B(X) with ‖δTT ]‖ < 1. Then the following statements are
equivalent:

(1) B = T ](I+δTT ])−1 = (I+T ]δT )−1T ] is the group inverse of T = T+δT ;
(2) T = TT ]T = TT ]T ;
(3) R(T ) ⊆ R(T ) and N(T ) ⊆ N(T );
(4) R(T ) = R(T ) and N(T ) = N(T ).

Proof. Obviously, (4) ⇒ (3). Noting that R(T )∩N(T ]) = {0} and X = N(T ])⊕
R(T ]), we get that T = TT ]T implies R(T ) ⊆ R(T ) and R(T ) ∩ N(T ]) = {0},
N(T ]) ⊆ N(T ) implies X = N(T )+R(T ]). Thus by Theorem 2.10, we can obtain
the equivalence between (1), (2), and (3). To that end, we need to show (1) ⇒ (4).
In fact, if B is the group inverse of T , then R(T ) = R(B) = R(T ]) = R(T ) and
N(T ) = N(B) = N(T ]) = N(T ). �

Theorem 2.12. Let T ∈ B(X) with an outer inverse T {2} ∈ B(X). If δT ∈ B(X)
satisfies ‖δTT {2}‖ < 1, then

B = T {2}(I + δTT {2})−1 = (I + T {2}δT )−1T {2}

is the Drazin inverse of T = T + δT if and only if the following statements hold:

(1) TT {2} = T {2}TTT {2} and T {2}T = T {2}TTT {2};
(2) there exists a positive integer k ∈ N such that

T
k
(I − TT {2}) = 0 or (I − T {2}T )T

k
= 0.
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Proof. If B is the Drazin inverse of T , then BT = TB. As in the proof of The-
orem 2.10, we can obtain TT {2} = T {2}TTT {2} and T {2}T = T {2}TTT {2}. Let k
be the index of T . Then

0 = T
k
(I − TB) = T

k[
I − TT {2}(I + δTT {2})−1

]
= T

k
(I − TT {2})(I + δTT {2})−1

and hence T
k
(I − TT {2}) = 0. Similarly, it follows from (I − BT )T

k
= 0 that

(I−T {2}T )T
k
= 0. Conversely, if TT {2} = T {2}TTT {2} and T {2}T = T {2}TTT {2},

then BT = TB. Hence by T
k
(I − TT {2}) = 0 or by (I − T {2}T )T

k
= 0, we can

get T
k
= T

k
BT . Therefore, B is the Drazin inverse of T . �

As an application, we can obtain Theorem 2.11 in [8] and [9].

Corollary 2.13 ([8, Theorem 2.11], [9, Theorem 2.11]). Let T ∈ B(X) with the
Drazin inverse TD ∈ B(X) and δT ∈ B(X) with ‖δTTD‖ < 1. Then

B = TD(I + δTTD)−1 = (I + TDδT )−1TD

is the Drazin inverse of T = T + δT if and only if the following statements hold:

(1) TTD = TDTTTD, TDT = TDTTTD, and

(2) there exists a positive integer k ∈ N such that T
k
(I − TTD) = 0.
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