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Abstract. In this article, we introduce a new class of noncyclic mappings
called generalized pointwise noncyclic contractions, and we prove a best prox-
imity pair theorem for this class of noncyclic mappings in the setting of strictly
convex Banach spaces. Our conclusions generalize a result due to Kirk and Roy-
alty. We also study convergence of iterates of noncyclic contraction mappings
in uniformly convex Banach spaces.

1. Introduction

Let (X, d) be a metric space. A self-mapping T : X → X is said to be nonexpan-
sive provided that d(Tx, Ty) ≤ d(x, y). It is well known that if A is a nonempty,
compact, and convex subset of a Banach space X, then every nonexpansive map-
ping of A into itself has a fixed point.

In 1965, Kirk proved that, if A is a nonempty, weakly compact, and convex
subset of a Banach space with a geometric property, called normal structure,
then every nonexpansive mapping T : A → A has a fixed point (see Kirk’s
fixed-point theorem [8]). Kirk and Royalty [9] replaced the geometric property of
normal structure with another assumption on the nonexpansive mapping T and
established the following interesting fixed-point theorem.

Theorem 1.1 ([9, Theorem 2.1], [10, Theorem 4.1]). Let A be a nonempty, weakly
compact, and convex subset of a Banach space X. If we suppose that T : A → A
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is a nonexpansive mapping such that for each x ∈ A there exist a positive integer
N(x) and an α(x) ∈ [0, 1) such that

‖TN(x)x− TN(x)y‖ ≤ α(x)‖x− y‖ for all y ∈ A,

then T has a unique fixed point.

Now suppose that (A,B) is a nonempty pair of subsets of a metric space (X, d).
A mapping T : A ∪ B → A ∪ B is said to be noncyclic relatively nonexpansive
if T is noncyclic; that is, T (A) ⊆ A, T (B) ⊆ B, and d(Tx, Ty) ≤ d(x, y) for
all (x, y) ∈ A × B. Under this weaker assumption over T , the existence of the
so-called best proximity pair, that is, a point (x?, y?) ∈ A×B such that x? = Tx?,
y? = Ty? and d(x?, y?) = dist(A,B) := inf{d(x, y) : (x, y) ∈ A × B}. The best
proximity pair was first studied in [2]. The next theorem is a main result of [2]
(see also [4] for a different approach to the same problem).

Theorem 1.2 ([2, Theorem 2.2]). Let (A,B) be a nonempty, weakly compact,
and convex pair of subsets of a strictly convex Banach space X, and suppose that
(A,B) has proximal normal structure. If we assume that T : A ∪ B → A ∪ B is
a noncyclic relatively nonexpansive mapping, then T has a best proximity pair.

This paper is organized as follows. In Section 2 we recall some definitions,
notions, and previous results we will need. In Section 3 we introduce a new class
of noncyclic mappings called generalized pointwise noncyclic contractions, and
we prove a best proximity pair theorem in strictly convex Banach spaces. In this
way, we extend a main result of [9]. In Section 4, we prove a convergence theorem
of Picard iterates for noncyclic contractions in the setting of uniformly convex
Banach spaces.

2. Preliminaries

To describe our results, we need some definitions and notation. We will say
that a pair (A,B) of subsets of a Banach space X satisfies a property if both A
and B satisfy that property. For example, (A,B) is convex if and only if both A
and B are convex; (A,B) ⊆ (C,D) ⇔ A ⊆ C, and B ⊆ D. We also adopt the
notation

δx(A) = sup
{
d(x, y) : y ∈ A

}
for all x ∈ X,

δ(A,B) = sup
{
δx(B) : x ∈ A

}
,

diam(A) = δ(A,A).

The closed and convex hull of a set A will be denoted by conv(A), and B(p, r)
will denote the closed ball in the space X centered at p ∈ X with radius r > 0.

If (A,B) is a pair of nonempty subsets of a Banach space, then its proximal
pair is the pair (A0, B0) given by

A0 =
{
x ∈ A : ‖x− y′‖ = dist(A,B) for some y′ ∈ B

}
,

B0 =
{
y ∈ B : ‖x′ − y‖ = dist(A,B) for some x′ ∈ A

}
.

Proximal pairs may be empty, but, if A and B are nonempty weakly compact
and convex, then (A0, B0) is a nonempty, weakly compact, convex pair in X.
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Definition 2.1. A pair (A,B) in a Banach space is said to be proximinal if A = A0,
and B = B0.

Definition 2.2. Let (A,B) be a nonempty pair of sets in a Banach space X.
A point (p, q) in A×B is said to be a diametral pair if

δp(B) = δq(A) = δ(A,B).

For a noncyclic mapping T : A∪B → A∪B, we consider that a pair (C,D) ⊆
(A,B) is T -invariant if T is noncyclic on C ∪D. We now state the following two
lemmas, which will be used in our main results.

Lemma 2.3 ([2, proof of Theorem 2.1]). Let (A,B) be a nonempty, weakly com-
pact, and convex pair of subsets of a Banach space X, and let T : A∪B → A∪B
be a noncyclic relatively nonexpansive mapping. Then there exists (K1, K2) ⊆
(A0, B0) ⊆ (A,B) which is minimal with respect to being a nonempty, closed,
convex, and T -invariant pair of subsets of (A,B) such that

dist(K1, K2) = dist(A,B).

Moreover, the pair (K1, K2) is proximinal.

Lemma 2.4 ([5, Lemma 3.8]). Let (A,B) be a nonempty, weakly compact, and
convex pair in a strictly convex Banach space X. Let T : A ∪ B → A ∪ B be
a noncyclic relatively nonexpansive mapping, and let (K1, K2) ⊆ (A,B) be a
minimal, weakly compact, and convex pair which is T -invariant such that

dist(K1, K2) = dist(A,B).

Then each point (p, q) ∈ K1 ×K2 with ‖p− q‖ = dist(A,B) is a diametral pair.

We finish this section by recalling the following useful geometric concepts of
Banach space.

Definition 2.5. A Banach space X is considered to be:

(i) uniformly convex if there exists a strictly increasing function δ : [0, 2] →
[0, 1] such that the following implication holds for all x, y, p ∈ X,R > 0,
and r ∈ [0, 2R]:

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

‖x− y‖ ≥ r

⇒
∥∥∥x+ y

2
− p

∥∥∥ ≤
(
1− δ

( r

R

))
R;

(ii) strictly convex if the following implication holds for x, y, p ∈ X, and R >
0: 

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

x 6= y

⇒
∥∥∥x+ y

2
− p

∥∥∥ < R.
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It is well known that Hilbert spaces and lp spaces (1 < p < ∞) are uniformly
convex Banach spaces and that the Banach space l1 with the norm

|x| =
√

‖x‖1 + ‖x‖2, ∀x ∈ l1,

where ‖ · ‖1 and ‖ · ‖2 are the norms on l1 and l2, respectively, is strictly convex,
which is not uniformly convex (see [12] for more details).

3. Generalized pointwise noncyclic contractions

A geometric notion of proximal normal structure on a nonempty and convex
pair in a Banach space X was introduced in [2] as below.

Definition 3.1 ([2, Definition 1.2]). A convex pair (K1, K2) in a Banach space X is
said to have proximal normal structure (PNS) if, for any bounded, closed, convex,
and proximinal pair (H1, H2) ⊆ (K1, K2) for which dist(H1, H2) = dist(K1, K2)
and δ(H1, H2) > dist(H1, H2), there exists (x1, x2) ∈ H1 ×H2 such that

max
{
δx1(H2), δx2(H1)

}
< δ(H1, H2).

It is worth noting that the pair (K,K) has PNS if and only if K has normal
structure in the sense of Brodskii and Milman ([1]). Very recently, an extension
version of Theorem 1.2 was proved for generalized pointwise noncyclic relatively
nonexpansive mappings.

Theorem 3.2 ([7, Theorem 4.2]). Let (A,B) be a nonempty, weakly compact,
and convex pair of subsets of a strictly convex Banach space X, and suppose that
(A,B) has PNS. Assume that T : A ∪ B → A ∪ B is a generalized pointwise
noncyclic relatively nonexpansive mapping, that is, that T is noncyclic on A ∪B
and that, for any (x, y) ∈ A × B, if ‖x − y‖ = dist(A,B), then ‖Tx − Ty‖ =
dist(A,B) and that otherwise there exists a function α : A×B → [0, 1] such that

‖Tx− Ty‖ ≤ α(x, y)‖x− y‖+
(
1− α(x, y)

)
min

{
‖x− Ty‖, ‖Tx− y‖

}
.

Hence T has a best proximity pair.

Motivated by Theorem 3.2, we introduce the following new class of noncyclic
mappings and survey the existence of best proximity pairs for such mappings
without using the geometric notion of PNS.

Definition 3.3. Let (A,B) be a nonempty pair of subsets of a Banach space X.
A mapping T : A ∪ B → A ∪ B is said to be a generalized pointwise noncyclic
contraction if T is noncyclic and if, for each (x, y) ∈ A × B, there exist positive
integers N(x), N(y) and α(x), α(y) ∈ [0, 1) such that

‖TN(x)x− TN(x)y‖ ≤ α(x)‖x− y‖+
(
1− α(x)

)
dist(A,B) for all y ∈ B,

‖TN(y)x− TN(y)y‖ ≤ α(y)‖x− y‖+
(
1− α(y)

)
dist(A,B) for all x ∈ A.

The next theorem is the main result of this section.

Theorem 3.4. Let (A,B) be a nonempty, weakly compact, and convex pair of
subsets of a strictly convex Banach space X, and suppose that T : A∪B → A∪B
is a noncyclic, relatively nonexpansive mapping. If T is a generalized pointwise
noncyclic contraction, then T has a best proximity pair.
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Proof. It follows from Lemma 2.3 that there exists a proximinal pair (K1, K2)
in (A,B) which is minimal with respect to being nonempty, closed, convex, and
T -invariant such that dist(K1, K2) = dist(A,B). Furthermore, by Lemma 2.4, for
each (p, q) ∈ K1 ×K2 with ‖p− q‖ = dist(A,B) we have

δp(K2) = δq(K1) = δ(K1, K2).

Suppose that δ(K1, K2) = dist(A,B). If (x, y) ∈ K1 ×K2, then

dist(A,B) = dist(K1, K2) ≤ ‖x− y‖ ≤ δ(K1, K2) = dist(A,B).

If x′ is another element of K1, then ‖x− y‖ = ‖x′ − y‖ = dist(A,B), and, by the
strict convexity of X and the fact that (A,B) is a convex pair, we obtain

dist(A,B) ≤
∥∥∥x+ x′

2
− y

∥∥∥ <
1

2

(
‖x− y‖+ ‖x′ − y‖

)
= dist(A,B),

which is a contradiction. This implies thatK1 is singleton. Similarly,K2 is also sin-
gleton, and the result follows. We therefore assume that δ(K1, K2) > dist(A,B).
Let (x, y) ∈ K1 × K2, let N1 = N1(x), N2 = N2(y), and let N = max{N1, N2}.
Next put

r1 := α(x)δ(K1, K2) +
(
1− α(x)

)
dist(A,B),

r2 := α(y)δ(K1, K2) +
(
1− α(y)

)
dist(A,B).

We may assume that r2 ≤ r1. Define

F1 :=
{
v ∈ K2 : ‖v − T iNx‖ ≤ r1 for almost all i ≥ 1

}
,

E1 :=
{
u ∈ K1 : ‖u− T iNy‖ ≤ r1 for almost all i ≥ 1

}
,

F2 :=
{
v ∈ K2 : ‖v − T [iN+1]x‖ ≤ r1 for almost all i ≥ 1

}
,

E2 :=
{
u ∈ K1 : ‖u− T [iN+1]y‖ ≤ r1 for almost all i ≥ 1

}
,

...

FN :=
{
v ∈ K2 : ‖v − T [(i+1)N−1]x‖ ≤ r1 for almost all i ≥ 1

}
,

EN :=
{
u ∈ K1 : ‖u− T [(i+1)N−1]y‖ ≤ r1 for almost all i ≥ 1

}
.

Note that TNy ∈ F1. Indeed, since T is a noncyclic, relatively nonexpansive, and
generalized pointwise noncyclic contraction, we have

‖TNy − T iNx‖ ≤ ‖TN2y − T iN2x‖ =
∥∥TN2y − TN2(T (i−1)N2x)

∥∥
≤ α(y)‖y − T (i−1)N2x‖+

(
1− α(y)

)
dist(A,B)

≤ α(y)δ(K1, K2) +
(
1− α(y)

)
dist(A,B) ≤ r1.

Moreover, if v ∈ F1, then

‖Tv − T (iN+1)x‖ ≤ ‖v − T iNx‖ ≤ r1;

that is, Tv ∈ F2; hence T (F1) ⊆ F2. Similarly, we can see that T (Fi) ⊆ Fi+1

for all i = 1, 2, . . . , N − 1. If we now let v ∈ FN , then ‖v − T [(i+1)N−1]x‖ ≤ r1
for almost all i ≥ 1. This implies that ‖Tv − T iNx‖ ≤ r1 for almost all i ≥ 1;
that is, Tv ∈ F1; thus T (FN) ⊆ F1. We also observe that {Fj}Nj=1 is a finite
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family of nonempty and convex subsets of K2. Equivalently, {Ej}Nj=1 is a finite
family of nonempty and convex subsets of K1, and we have T (Ei) ⊆ Ei+1 for all
i = 1, 2, . . . , N − 1, and T (EN) ⊆ E1. Suppose that i ≥ j ≥ N . If we say that
j = N + k and that i = N + k + s, then

‖T iy − T jx‖ = ‖TN+k+sy − TN+kx‖ ≤ ‖TN+sy − TNx‖
=

∥∥TN(T sy)− TNx
∥∥ ≤ α(x)‖x− T sy‖+

(
1− α(x)

)
dist(A,B)

≤ α(x)δ(K1, K2) +
(
1− α(x)

)
dist(A,B) ≤ r1.

Thus T i(y) ∈ [B(T jx; r1) ∩ K2] for each i ≥ j ≥ N ; hence the family of
{B(T jx; r1) ∩ K2}j≥N has the finite intersection property. It now follows from
the weak compactness of K2 that

⋂∞
j=N [B(T jx; r1) ∩ K2] is nonempty. Using a

similar approach, we can see that
⋂∞

j=N [B(T jy; r1)∩K1] is also nonempty; hence

the pair (
⋂N

j=1Ej,
⋂N

j=1 Fj) is nonempty. If we set

E :=
[ N⋂
j=1

Ej

]
∩K1, F :=

[ N⋂
j=1

Fj

]
∩K2,

then (E,F ) ⊆ (K1, K2) is a nonempty, closed, convex, and T -invariant pair.
Minimality of (K1, K2) implies that E = K1, F = K2. In particular, E1 = K1 and
F1 = K2; thus, if v ∈ K2, and if ε > 0 is chosen such that r1 + ε < δ(K1, K2),
then we have

‖v − T iNx‖ ≤ r1 + ε < δ(K1, K2),

for i is sufficiently large. Specifically, if {v1, v2, . . . , vj} is a subset of K2, then by
the recent relation for each l = 1, 2, . . . , j we have ‖vl−T iNx‖ ≤ r1+ε for almost

all i ≥ 1. Consequently, T iNx ∈ [
⋂j

l=1 B(vl; r1)]∩K1 for i is sufficiently large; that

is, [
⋂j

l=1 B(vl; r1)]∩K1 6= ∅. Hence the family {B(v; r1+ε)∩K1 : v ∈ K2} consisting
of weakly compact sets has the finite intersection property, and, accordingly,
[
⋂

v∈K2
B(v; r1 + ε)] ∩K1 is nonempty. Assume that

x? ∈
[ ⋂
v∈K2

B(v; r1 + ε)
]
∩K1.

Since (K1, K2) is a proximinal pair, there exists an element y? ∈ K2 such that
‖x? − y?‖ = dist(A,B). On the other hand, for each v ∈ K2 we have

‖x? − v‖ ≤ r1 + ε < δ(K1, K2);

hence δx?(K2) < δ(K1, K2). That is, the point (x?, y?) is not a diametral pair,
and this is a contradiction, by Lemma 2.4. �

The following fixed-point theorem is an extension of a theorem by Kirk and
Royalty in the setting of strictly convex Banach spaces.

Theorem 3.5 ([9, Theorem 2.1]). Let (A,B) be a nonempty, weakly compact, and
convex pair of subsets of a strictly convex Banach space X, and let T : A ∪B →
A∪B be a noncyclic, relatively nonexpansive mapping. If we suppose that, for each
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(x, y) ∈ A × B, there exist positive integers N(x), N(y) and α(x), α(y) ∈ [0, 1)
such that

‖TN(x)x− TN(x)y‖ ≤ α(x)‖x− y‖ for all y ∈ B,

‖TN(y)x− TN(y)y‖ ≤ α(y)‖x− y‖ for all x ∈ A,

then A ∩B is nonempty, and T has a unique fixed point in A ∩B.

Note that in the special case of A = B, we do not need to require the strict
convexity of the Banach space X.

It is possible to reformulate Theorem 3.5 as a common fixed-point theorem for
two mappings as follows.

Corollary 3.6. Let (A,B) be a nonempty, weakly compact, and convex pair of
subsets of a strictly convex Banach space X, and let f : A → A and g : B → B
be two self-mappings. If, for each (x, y) ∈ A × B, there exist positive integers
N(x), N(y) and α(x), α(y) ∈ [0, 1) such that

‖fN(x)x− gN(x)y‖ ≤ α(x)‖x− y‖ for all y ∈ B,

‖fN(y)x− gN(y)y‖ ≤ α(y)‖x− y‖ for all x ∈ A,

then there exists a unique x? ∈ A ∩B such that

fx? = gx? = x?.

The next theorem follows immediately from Theorem 3.4.

Theorem 3.7. Let (A,B) be a nonempty, weakly compact, and convex pair of
subsets of a strictly convex Banach space X, and suppose that T : A∪B → A∪B
is a pointwise noncyclic contraction; that is, for each (x, y) ∈ A × B there exist
α(x), α(y) ∈ [0, 1) such that

‖Tx− Ty‖ ≤ α(x)‖x− y‖+
(
1− α(x)

)
dist(A,B) for all y ∈ B,

‖Tx− Ty‖ ≤ α(y)‖x− y‖+
(
1− α(y)

)
dist(A,B) for all x ∈ A.

Consequently, T has a best proximity pair.

As a result of Theorem 3.7 we obtain the following corollary.

Corollary 3.8 ([5, Theorem 3.10]). Let (A,B) be a nonempty, weakly compact,
and convex pair of subsets of a strictly convex Banach space X, and suppose that
T : A∪B → A∪B is a noncyclic contraction mapping, that is, that T is noncyclic
on A ∪B and that

‖Tx− Ty‖ ≤ r‖x− y‖+ (1− r) dist(A,B),

for some r ∈ [0, 1) and for all (x, y) ∈ A×B. In that case, T has a best proximity
pair.

Let us illustrate Theorem 3.4 with the following example.
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Example 3.9. Let A = [0, 1] and B = [2, 3] be subsets of R endowed with the
Euclidean metric. Define a noncyclic mapping T : A ∪B → A ∪B as follows:

T (x) =


√
x if x ∈ Q ∩ (A− {0}),

1 if x ∈ (Qc ∩ A) ∪ {0},
2 if x ∈ B.

Then

• T is a noncyclic, relatively nonexpansive mapping.
Case 1. If x ∈ Q ∩ A, and y ∈ B, then

|Tx− Ty| ≤ 2−
√
x ≤ |x− y|.

Case 2. If x ∈ Qc ∩ A, and y ∈ B, then

|Tx− Ty| = 1 ≤ |x− y|.

• T is a generalized pointwise noncyclic contraction.
Case 1. If y ∈ B, then for each x ∈ Q ∩ A, by the definition of T , there
exists N(x) ∈ N so that TN(x)x = 1. Now for all α ∈ [0, 1), we have

|TN(x)x− TN(x)y| = |1− 2| ≤ α|x− y|+ (1− α) dist(A,B).

It is clear that, if x ∈ Qc ∩A, then the above relation holds for N(x) = 1.
Case 2. If x ∈ A, then there exists N(x) ∈ N such that TN(x)x = 1. Now
for any y ∈ B and α ∈ [0, 1), if we set N(y) := N(x), then we obtain

|TN(y)x− TN(y)y| = |1− 2| ≤ α|x− y|+ (1− α) dist(A,B).

• T is not a noncyclic contraction. If we suppose the contrary, then there
exists α ∈ [0, 1) such that

|Tx− Ty| ≤ α|x− y|+ (1− α), ∀(x, y) ∈ A×B.

Now, if x = 1
n2 for n ∈ N, and y = 2, then we have

2− 1

n
≤ α

(
2− 1

n2

)
+ (1− α) = 1 + α

(
1− 1

n2

)
.

Thus we conclude that n
n+1

≤ α for any n ∈ N, which is a contradiction.
We note that all of the conditions of Theorem 3.4 hold; therefore T has a
best proximity pair.

The next example shows that the strict convexity of the underlying space is
just a sufficient condition in Theorem 3.4.

Example 3.10. Let X be the Banach space R3 endowed with the supremum norm,
let {e1, e2, e3} be the canonical basis of R3, and let e0 be the zero of R3. We note
that the Banach space X is not strictly convex. Let

A := conv
(
{e0, e1, e3}

)
and B := {te2 : 0 ≤ t ≤ 1}.
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It is clear that (A,B) is a bounded, closed, and convex pair in X. If we define a
noncyclic mapping T : A ∪B → A ∪B as follows:

Tx =

{
e0 if x 6= e1,

e3 if x = e1,

then T is noncyclic, relatively nonexpansive on A∪B. Moreover, for each (x, y) ∈
A×B and α ∈ [0, 1) we have

‖T 2x− T 2y‖∞ = 0 ≤ α‖x− y‖∞.

We note that A ∩B is nonempty and that T has a unique fixed point in A ∩B.

4. Convergence of iterate sequences for noncyclic contractions
in uniformly convex Banach spaces

In this section, we establish a best proximity pair theorem for noncyclic contrac-
tions defined on unbounded pairs of subsets of a uniformly convex Banach space
X. To this end, we recall the following inequality which is a characterization of
uniformly convex Banach spaces.

Proposition 4.1 (see [11]). A Banach space X is uniformly convex if and only if,
for each fixed number r > 0, there exits a continuous function ϕ : [0,∞) → [0,∞)
with ϕ(t) = 0 ⇔ t = 0 such that∥∥λx+ (1− λ)y

∥∥2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ
(
‖x− y‖

)
,

for all λ ∈ [0, 1] and all x, y ∈ X so that ‖x‖ ≤ r, and ‖y‖ ≤ r.

We also need the following auxiliary lemmas.

Lemma 4.2 ([3, Lemma 3.7]). Let (A,B) be a nonempty, closed, and convex
pair in a uniformly convex Banach space X. If we assume that {xn} and {zn} are
sequences in A and that {yn} is a sequence in B such that limn→∞ ‖zn − yn‖ =
dist(A,B), and we assume that, for any ε > 0, there exists N0 ∈ N such that for
all m > n ≥ N0, ‖xm − yn‖ ≤ dist(A,B) + ε, then there exists N1 ∈ N such that,
for all m > n ≥ N1, ‖xm − zn‖ < ε.

Lemma 4.3 ([3, Lemma 3.8]). Let (A,B) be a nonempty, closed, and convex
pair in a uniformly convex Banach space X. If we assume that {xn} and {zn} are
sequences in A and that {yn} is a sequence in B such that limn→∞ ‖xn − yn‖ =
dist(A,B), and limn→∞ ‖zn − yn‖ = dist(A,B), then limn→∞ ‖xn − zn‖ = 0.

Lemma 4.4 ([6, Remark 4.2]). Let (A,B) be a nonempty pair of subsets of a
metric space (X, d). Suppose that T : A∪B → A∪B is a noncyclic contraction.
If, for an arbitrary element (x0, y0) ∈ A×B, we define xn = T nx0 and yn = T ny0
for every n ∈ N, then limn d(xn, yn) = dist(A,B). Moreover, {xn} and {yn} are
bounded.

Next we state the main result of this section.
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Theorem 4.5. Let (A,B) be a nonempty, closed, and convex pair of subsets of a
uniformly convex Banach space X such that B is bounded. If we let T : A∪B →
A ∪ B be a noncyclic contraction mapping, then T has a best proximity pair.
Moreover, for x0 ∈ A, if we define xn = T nx0, then {xn} converges to a fixed
point of T in A.

Proof. Let x0 ∈ A be a fixed element, and define a function f : B → [0,∞) by

f(y) := lim sup
n→∞

‖T nx0 − y‖2, ∀y ∈ B.

In view of the fact that X is uniformly convex and that B is bounded, closed,
and convex, f attains its minimum in exactly one point in B, namely v ∈ B. For
all m,n, l ∈ N ∪ {0}, by Proposition 4.1 we have∥∥∥T (l+m+n)x0 −

1

2
(T lv + Tmv)

∥∥∥2

=
∥∥∥T (l+m+n)x0 − T lv

2
+

T (l+m+n)x0 − Tmv

2

∥∥∥2

≤ 1

2
‖T (l+m+n)x0 − T lv‖2 + 1

2
‖T (l+m+n)x0 − Tmv‖2 − 1

4
ϕ
(
‖Tmz − T lv‖

)
≤ 1

2
‖T (m+n)x0 − v‖2 + 1

2
‖T (l+n)x0 − v‖2 − 1

4
ϕ
(
‖Tmv − T lv‖

)
.

Taking lim sup with respect to n and l = 1, m = 0, we obtain

f(v) ≤ f
(Tv + v

2

)
≤ f(v)− 1

4
ϕ
(
‖v − Tv‖

)
,

which implies that v = Tv. Due to the fact that T is a noncyclic contraction,

‖xn − v‖ = ‖T nx0 − T nv‖ ≤ αn‖x0 − v‖+ (1− αn) dist(A,B), ∀n ∈ N;

hence limn→∞ ‖xn−v‖ = dist(A,B). Besides, by Lemma 4.4 the sequence {T nx0}
is bounded. If we assume that {xn} does not converge, then there exists a subse-
quence {xnk

} such that infi 6=j ‖xni
− xnj

‖ > 0. Passing to a next subsequence, we
can assume that {xnk

} converges weakly to some u0 ∈ A. Since X is uniformly
convex, X has the Kadec–Klee property; thus

‖u0 − v‖ < lim inf
k→∞

‖xnk
− v‖ = dist(A,B),

which is a contradiction. Hence, {xn} converges in norm to some u ∈ A. Note
that

‖u− v‖ = lim
n→∞

‖xn − v‖ = dist(A,B).

Moreover, ‖Tu−Tv‖ ≤ ‖u− v‖ = dist(A,B). Now, if u 6= Tu, then by the strict
convexity of X,

dist(A,B) ≤
∥∥∥Tu− v + Tv

2

∥∥∥ <
1

2

(
‖Tu− v‖+ ‖Tu− Tv‖

)
= dist(A,B),

which is impossible, and the result follows. �
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Remark 4.6. It is worth noting that the existence of a best proximity pair for
the noncyclic contraction mapping T in Theorem 4.5 cannot be concluded from
Corollary 3.8 because of the fact that the considered pair (A,B) in Theorem 4.5
may not necessarily be bounded. Another observation about Theorem 4.5 is that
the convergence of the iterate sequence xn+1 = T nx0 to the fixed point of T is
concluded without the continuity of the mapping T .

Proposition 4.7. Under the assumptions of Theorem 4.5 the proximal pair
(A0, B0) is a nonempty, bounded, closed, and convex pair, and T is noncyclic
on A0 ∪B0.

Proof. From Theorem 4.5 the pair (A0, B0) is nonempty, and it is easy to verify
that (A0, B0) is also closed and convex and that T is noncyclic on A0 ∪ B0. We
prove that A0 is bounded. If we suppose the contrary, then there exists a sequence
{xn} in A0 such that ‖xn‖ ≥ n for all n ∈ N. Since X is strictly convex, for all
n ∈ N, there exists a unique element yn ∈ B0 such that ‖xn − yn‖ = dist(A,B).
We now have

n ≤ ‖xn‖ ≤ ‖yn‖+ dist(A,B), ∀n ∈ N,

which is a contradiction by the fact that B0 is bounded. �

The next convergence result is a straightforward consequence of Theorem 4.5
and Proposition 4.7.

Corollary 4.8. Under the assumptions of Theorem 4.5, if xn+1 = T nx0, and
yn+1 = T ny0 for an arbitrary element (x0, y0) ∈ A0×B0, then the iterate sequence
{(xn, yn)} in A0 ×B0 converges to a best proximity pair for the mapping T .

Let us illustrate Theorem 4.5 with the following examples.

Example 4.9. Consider the Hilbert space X = l2 with the canonical basis {en}.
If we let

A = {te1 : t ≥ 0}, B = {se2 + e3 : 0 ≤ s ≤ 1},

then (A,B) is a closed, convex, and unbounded pair in X, and it is clear that
dist(A,B) = 1. Define the mapping T : A ∪B → A ∪B with

T (te1) =

{
t
2
e1 if t ∈ Q ∩ [0,∞),

t
4
e1 if t ∈ Qc ∩ [0,∞),

T (se2 + e3) =
s

2
e2 + e3.

Obviously, T is noncyclic on A ∪ B, and, for x = te1, y = se2 + e3, and α = 1
2
if

t ∈ Qc ∩ [0,∞), then

‖Tx− Ty‖2 =
∥∥T (te1)− T (se1 + e2)

∥∥
2
=

∥∥∥ t
4
e1 −

s

2
e2 − e3

∥∥∥
2

=

√
t2

16
+

s2

4
+ 1 ≤ 1

2

√
t2 + s2 + 1 +

1

2
= α‖x− y‖2 + (1− α) dist(A,B).
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Moreover, if t ∈ Q ∩ [0,∞), then

‖Tx− Ty‖2 =
∥∥T (te1)− T (se1 + e2)

∥∥
2
=

∥∥∥ t
2
e1 −

s

2
e2 − e3

∥∥∥
2

=

√
t2

4
+

s2

4
+ 1 ≤ 1

2

√
t2 + s2 + 1 +

1

2
= α‖x− y‖2 + (1− α) dist(A,B).

It follows from Theorem 4.5 that T has a best proximity pair which is the point
(x∗, y∗) = (0, e3). Moreover, if x = te1 with t ≥ 0, then the iterate sequence
T n(x) converges to the fixed point of T |A. It is interesting to note that T |A is not
continuous.

Next we give an example to show that the existence of best proximity pairs for
noncyclic contractions in Theorem 4.5 cannot be established when the Banach
space X is not strictly convex.

Example 4.10. Consider the Banach space X = l∞ with the supremum norm. We
know that X is not a strictly convex Banach space. If we let

A = {te1 : 0 ≤ t ≤ 1}, B = {se2 : 1 ≤ s ≤ 2},
then (A,B) is a compact and convex pair in X, and dist(A,B) = 1. Clearly,
A0 = A, and B0 = {e2}. If we assume that T : A ∪B → A ∪B defined as

T (te1) =

{√
2
2
e1 if t ∈ Q ∩ [0, 1],

0 if t ∈ Qc ∩ [0, 1],
T (se2) =

s+ 1

2
e2,

where t ∈ [0, 1], and s ∈ [1, 2], then, for any (x,y) = (te1, se2) ∈ A × B and for
α = 1

2
, we have

‖Tx− Ty‖∞ =
s+ 1

2
=

1

2
s+

1

2
= α‖x− y‖∞ + (1− α) dist(A,B);

that is, T is a noncyclic contraction. Notice that T does not have any best prox-
imity pair because the fixed-point set of T |A is empty.
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