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Abstract. In this short note, we further Ng’s work by extending Bekka
amenability and weak Bekka amenability to general locally compact quantum
groups, and we generalize some of Ng’s results to the general case. In partic-
ular, we show that a locally compact quantum group G is coamenable if and
only if the contra-corepresentation of its fundamental multiplicative unitary
WG is Bekka-amenable, and that G is amenable if and only if its dual quantum
group’s fundamental multiplicative unitary WĜ is weakly Bekka-amenable.

1. Introduction

The notion of amenability essentially begins with Lebesgue (1904). In 1929,
von Neumann introduced and studied the class of amenable groups and used it to
explain why the Banach–Tarski paradox occurs only for dimensions greater than
or equal to 3. In 1950, Dixmier extended the concept of amenability to topological
groups (see [12] and [14]). In the 1970s, the ideas of amenability and coamenability
for Kac algebras were introduced by Voiculescu [16], studied further by Enock and
Schwartz [5], and later researched by Ruan [13]. In [10], following a work by Bekka
[4], Ng introduced Bekka amenability and weak Bekka amenability for unitary
corepresentations of Kac algebras, and used them to characterize amenability
and coamenability for Kac algebras. Later, Ng [9], [11] investigated amenability

Copyright 2018 by the Tusi Mathematical Research Group.
Received Jan. 23, 2017; Accepted May 5, 2017.
First published online Dec. 7, 2017.
2010 Mathematics Subject Classification. Primary 20G42; Secondary 46L89, 22D25.
Keywords. locally compact quantum group, Bekka amenability, weak Bekka amenability,

coamenability, amenability.
210

https://doi.org/10.1215/20088752-2017-0044
http://projecteuclid.org/afa


BEKKA-TYPE AMENABILITIES FOR UNITARY COREPRESENTATIONS 211

and coamenability for Hopf C∗-algebras. In 2003, Bédos and Tuset [3] (and then
Bédos, Conti, and Tuset [2] in 2005) extended amenability and coamenability to
algebraic quantum groups and locally compact quantum groups.

In this short note, we give some remarks on Ng’s work in [10]. We extend
Bekka amenability and weak Bekka amenability to general locally compact quan-
tum groups. Furthermore, we prove that a locally compact quantum group G is
coamenable if and only if the contra-corepresentation of its fundamental multi-
plicative unitaryWG is Bekka-amenable, and that G is amenable if and only if its
dual group’s fundamental multiplicative unitary WĜ is weakly Bekka-amenable.
These results generalize Ng’s corresponding propositions for Kac algebras in [10].

The notions of Bekka-type amenabilities studied in this note originate from
Bekka’s work in [4]. In the case of locally compact groups, all Bekka-type
amenabilities for unitary corepresentations are equal to amenability (introduced
by Bekka in [4]) for unitary representations. Remarkably, Bekka [4] showed that
amenability for a locally compact group is equivalent to the fact that every unitary
representation is amenable. These results justify the use of the term “Bekka-type
amenabilities.”

This note is organized as follows. After some preliminaries in Section 2, we dis-
cuss Bekka amenability and weak Bekka amenability for locally compact quantum
groups in Section 3.

2. Notation and definitions

2.1. Some notation. In this note, we use the convention that the inner product
〈·, ·〉 of a complex Hilbert space H is conjugate-linear in the second variable. We
denote by L(H) and K(H) the set of bounded linear operators and that of compact
operators on H, respectively. For any x, y ∈ H and T ∈ L(H), we denote by ωx,y

the normal functional given by

ωx,y(T ) := 〈Tx, y〉.

The symbol ⊗ denotes either a minimal C∗-algebraic tensor product or a tensor
product of Hilbert spaces, ⊗̄ denotes a von Neumann algebraic tensor product,
and id denotes the identity map. Finally, if X and Y are C∗-algebras or Hilbert
spaces, we use the symbol Σ to denote the canonical flip map from X ⊗ Y to
Y ⊗X sending x⊗ y onto y ⊗ x for all x ∈ X and y ∈ Y . Note that Σ2 = id.

For a C∗-algebra A, we use Rep(A) to denote the collection of unitary equiv-
alence classes of nondegenerate ∗-representations of A. Let us also recall some
notation concerning Rep(A). Suppose that (µ,H), (ν,K) ∈ Rep(A). We write
ν ≺ µ if kerµ ⊂ ker ν.

2.2. Locally compact quantum group. Let (C0(G),∆, ϕ, ψ) be a reduced
locally compact quantum group as introduced in [7, Definition 4.1] (for simplicity,
we denote it by G). The dual locally compact quantum group of G is denoted by

(C0(Ĝ), ∆̂, ϕ̂, ψ̂) (or simply, Ĝ). We use L2(G) to denote the Hilbert space given
by the GNS construction of the left-invariant Haar weight ϕ, and we consider both

C0(G) and C0(Ĝ) as C∗-subalgebras of L(L2(G)). Note that L2(G) = L2(Ĝ).
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Let 1 be the identity of M(C0(G)). There is a unitary

WG ∈M
(
C0(G)⊗ C0(Ĝ)

)
⊆ L

(
L2(G)⊗ L2(G)

)
,

called the fundamental multiplicative unitary, that implements the comultiplica-
tion

∆(x) = W ∗
G(1⊗ x)WG

(
x ∈ C0(G)

)
.

We denote by WĜ the fundamental multiplicative unitary for the dual quantum

group Ĝ given by ΣW ∗
GΣ, where Σ is the flip map as defined above. (Interested

readers may refer to [7] and [15] for more details.)
The von Neumann subalgebra L∞(G) generated by C0(G) in L(L2(G)) is a

Hopf–von Neumann algebra under a comultiplication ∆̃ defined by WG as in the
above (see [8], [15, Section 8.3.4]). We usually call L∞(G) the von Neumann
algebraic quantum group of G. Then L1(G) denotes the predual of L∞(G), and
L1
∗(G) := {ω ∈ L1(G) | ∃η ∈ L1(G) s.t. (ω⊗ id)(WG)

∗ = (η⊗ id)(WG)} is a dense
∗-subalgebra of L1(G) as introduced in [6, pp. 294–295].

2.3. Corepresentation. For any Hilbert space HU , a unitary U ∈ M(K(HU)⊗
C0(G)) is called a unitary corepresentation of G on HU if

(id⊗∆)(U) = U12U13, (2.1)

where Uij is the usual “leg notation” (see [7, p. 13], [15, Section 7.1.2]). Let
Corep(G) denote the collection of unitary corepresentations of G. For U, V ∈
Corep(G), T is called an intertwiner between U and V , and we write T ∈
Intw(U, V ), if T ∈ L(HU ,HV ) such that

T (id ⊗ ω)(U) = (id⊗ ω)(V )T for any ω ∈ L1
∗(G).

We say that U is unitarily equivalent to V and we write U ∼= V if there exists
T ∈ Intw(U, V ) such that T is a unitary.

2.4. Universal quantum group. The universal quantum group C∗-algebra of

Ĝ is denoted by (Cu
0 (Ĝ), ∆̂u) (see [6, Sections 4 and 5]). As shown in [6, Propo-

sition 5.2], there exists a unitary

V u
G ∈M

(
Cu

0 (Ĝ)⊗ C0(G)
)

that implements a bijection between unitary corepresentations U of G on H and

nondegenerate ∗-representations πU of Cu
0 (Ĝ) on H through the correspondence

U = (πU ⊗ id)(V u
G ).

The identity 1G = 1⊗ 1 of L(C)⊗M(C0(G)) ∼= M(K(C)⊗C0(G)) ∼= M(C0(G))

is a trivial unitary corepresentation of G on C, and π1G is a character of Cu
0 (Ĝ).

As in the literature, we write U ≺ W when πU ≺ πW (see, e.g., [3, Section 5] and
Section 2.1).
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2.5. Contra-corepresentation. Let U be a unitary corepresentation of G on a
Hilbert space HU . As in [3, p. 871], we define the contra-corepresentation U of U
by

U := (τ ⊗R)(U),

where τ is the canonical anti-isomorphism from L(HU) to L(HU) (with HU being
the conjugate Hilbert space of HU) and R is the unitary antipode on C0(G).
Then U is a unitary corepresentation of G on HU . Note that it is unique up to
equivalence ∼= and that

U ∼= U.

If W is another unitary corepresentation of G on a Hilbert space K, then we
denote by U >○W the unitary corepresentation U13W23 on H ⊗ K and call it the
tensor product of U and W . In this case,

πU >○W = (πU ⊗ πW ) ◦ ∆̂u. (2.2)

3. Amenability, coamenability, and Bekka-type amenabilities

Let us first recall the following definitions of amenability and coamenability of
a locally compact quantum group.

Definition 3.1 ([3, Definitions 3.1, 3.2]). Let G be a locally compact quantum
group.

(a) We say that G is coamenable if there exists a state ε of C0(G)) such that
(id⊗ ε)∆ = id.

(b) A left-invariant mean for a locally compact quantum group G is a state m
on L∞(G) such thatm(ω ⊗ id)∆ = ω(1)m, for all ω ∈ L1(G). We say that
a locally compact quantum group G is amenable if it has a left-invariant
mean.

Remark 3.2. Similarly, we can also define the following. A right-invariant mean
for G is a state m on L∞(G) such that m(id ⊗ ω)∆ = ω(1)m for all ω ∈ L1(G).
Clearly, m is a right-invariant mean if and only if m ◦R is a left-invariant mean.
Thus, G is amenable if and only if it has a right-invariant mean.

Coamenability may be characterized by the following equivalent formulations,
which were obtained by Bédos and Tuset in [3].

Theorem 3.3 ([3, Theorem 3.1]). For a locally compact quantum group G, the
following statements are equivalent.

(a) G is coamenable.
(b) The canonical surjective homomorphism Λ : Cu

0 (G) → C0(G) is an iso-
morphism.

(c) There exists a ∗-character on the C∗-algebra C0(G).
(d) There exists a net of unit vectors {ξi} in L2(G) such that

lim
i

∥∥WG(ξi ⊗ v)− (ξi ⊗ v)
∥∥ = 0, ∀v ∈ L2(G).
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Remark 3.4. Comparing Theorem 3.3 with [10, Theorem 2.3], we easily see that
the presumed “amenability” for a Kac algebra in Ng [9] is actually the coamenabil-
ity for its dual in the sense of Definition 3.1.

We now extend Bekka amenability and weakly Bekka amenability introduced
in [10] to the general case.

Definition 3.5. For any U ∈ Corep(G), we say that

(a) U has the weak containment property (WCP) if 1G ≺ U (equivalently,
π1G ≺ πU ; see Sections 2.1 and 2.4); the WCP is actually the property
(A) introduced in [10, Proposition and Definition 2.4];

(b) U is Bekka-amenable if π1G ≺ πU >○U (equivalently, 1G ≺ U >○U), that is,

U >○U has the WCP;
(c) U is weakly Bekka-amenable if there exists a positive functional M on

L(HU) with M(idHU
) = 1 such that

M
[
(idHU

⊗ ω)
(
αU(T )

)]
=M(T ),

for any positive functional ω ∈ L1(G) with ω(1) = 1 and T ∈ L(HU),
where

αU(T ) := U(T ⊗ 1)U∗

is called a coaction of G on L(HU); thoseM satisfying the above condition
are called αU -invariant means.

Remark 3.6.

(a) Let G be a locally compact quantum group of Kac type, and let U be an
arbitrary finite-dimensional unitary corepresentation of G. Ng [10, Propo-
sition 3.10] proved that U is Bekka-amenable. Clearly, so is U , since U is
also finite-dimensional.

(b) When G is actually a locally compact group G, its reduced C∗-algebraic
quantum group C0(G) is commutative. It can be obviously seen from the
commutativity that, for any two U, V ∈ Corep(G), we have U >○V =
V >○U . So, we have U >○U = U >○U , which implies that U is Bekka-
amenable if and only if U is Bekka-amenable. In this case, Bekka amenabil-
ity is in fact the amenability for unitary representations in Bekka [4].

Theorem 3.7 ([3, Theorem 5.2], [10, Proposition and Definition 2.4]). Let G be a

locally compact quantum group, and consider U ∈ Corep(Ĝ). Then the following
are equivalent.

(a) U has the WCP.
(b) There exists a state ψ on L(HU) such that ψ(id ⊗ ω)(U) = ω(1), for

ω ∈ L1(Ĝ).
(c) There exists a net {ξi} of unit vectors in HU such that

lim
i

∥∥U(ξi ⊗ v)− (ξi ⊗ v)
∥∥ = 0, for all v ∈ L2(G).

Corollary 3.8. A locally compact quantum group G is coamenable if and only if

WG has the WCP as a unitary corepresentation of Ĝ.
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Proof. Since WG can be viewed as an element in Corep(Ĝ), the corollary easily
follows from Theorem 3.3(d) and Theorem 3.7(c). �

The WCP is stable under some operations, for example, contragredient and
tensor product. For any U ∈ Corep(G), we denote by 1U the trivial unitary
corepresentation idHU

⊗ 1 of G on HU .

Proposition 3.9 ([3, Proposition 5.3]). Suppose that G is a locally compact quan-
tum group, and consider U, V ∈ Corep(G).

(a) If U has the WCP, then so does U .
(b) If both of U and V have the WCP, then so does U >○V .
(c) If U >○1V or 1V >○U has the WCP, then so does U .

Next, we present a lemma and a proposition. These results are probably known.
Since we have not found them or their proof explicitly stated in the literature,
we give complete arguments for the benefit of the reader.

Lemma 3.10. Let U and V be two unitary corepresentations of G. Then one has

U >○V ∼= V >○U.

Proof. Since the unitary antipode R is a ∗-antiautomorphism, one has

U >○V = (τ ⊗ τ ⊗R)(U13V23)

= (τ ⊗R)(V )23(τ ⊗R)(U)13

= V 23U13 = (Σ12 ⊗ 1)V 13U23(Σ12 ⊗ 1)

= (Σ12 ⊗ 1)(V >○U)(Σ12 ⊗ 1).

So, it follows that for any ω ∈ L1
∗(G), we have

Σ(id⊗ ω)(U >○V ) = (id⊗ ω)(V >○U)Σ,

since Σ2 = id. This implies that the unitary Σ lies in Intw(U >○V , V >○U). Hence,
the lemma holds. �

The following proposition is usually called the absorption principle, which is
the generalization of Fell’s absorption principle for locally compact groups. Bédos,
Conti, and Tuset [2, Proposition 3.4] proved the analogue in algebraic quantum
groups.

Proposition 3.11. Let G be a locally compact quantum group. For any U ∈
Corep(Ĝ), one has

U >○WG ∼= 1U >○WG.

Proof. Let U be an arbitrary unitary corepresentation of Ĝ. Set T to be the image
of U on L(HU ⊗ L2(G)).

For any ω ∈ L1
∗(Ĝ), one has

T (id⊗ ω)(U >○WG) = (id⊗ id⊗ ω)
(
U12U13(WG)23

)
= (id⊗ id⊗ ω)

(
(WG)23U12

)
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= (id⊗ id⊗ ω)
(
(idHU

⊗ 1)13(WG)23U12

)
= (id⊗ ω)(1U >○WG)T,

where the second = comes from the pentagonal relation (see [1, Définition A.1]):
U12U13(WG)23 = (WG)23U12 for any U ∈ Corep(G). The above calculation implies
that T is a unitary intertwiner between U >○WG and 1U >○WG. Hence, the equiv-

alence of U >○WG and 1U >○WG, as two elements in Corep(Ĝ), is obtained. �

Corollary 3.12. Let G be a locally compact quantum group. For any U ∈
Corep(Ĝ), one has

WG >○U ∼= WG >○1U .

Proof. For any U ∈ Corep(Ĝ), it is obvious that U is also in Corep(Ĝ). By
Proposition 3.11, one has

U >○WG ∼= 1U >○WG.

Hence, since 1U
∼= 1U , by Lemma 3.10, we have

WG >○U ∼= U >○WG ∼= 1U >○WG ∼= 1U >○WG ∼= WG >○1U . �

Corollary 3.13. Let G be a locally compact quantum group. If WG is Bekka-

amenable as a unitary corepresentation of Ĝ, then WG is also Bekka-amenable.

Proof. ConsiderWG as a unitary corepresentation of Ĝ. IfWG is Bekka-amenable,
thenWG >○WG hasWCP. Hence, combining Corollary 3.12 and Proposition 3.9(c),

we have that WG has WCP as a unitary corepresentation of Ĝ. Hence, by Propo-
sition 3.9(a) and (b), both WG and WG >○WG also have the WCP; that is, WG is
Bekka-amenable. �

Using the above results and the concept of the WCP, we can get a characteri-
zation of coamenability for locally compact quantum groups.

Proposition 3.14. Let G be a locally compact quantum group. The following
statements are equivalent.

(a) G is coamenable.

(b) WG is Bekka-amenable as a unitary corepresentation of Ĝ.

Proof. First, assume that G is coamenable, that is, that WG has the WCP by
Corollary 3.8. Using assertions (a) and (b) of Proposition 3.9, we know that
WG has the WCP and so does WG >○WG. Hence, by Definition 3.5(b), WG is

Bekka-amenable as a unitary corepresentation of Ĝ.
Conversely, if WG is Bekka-amenable, then WG >○WG has the WCP. Consid-

ering WG as a unitary corepresentation of Ĝ, it follows from Proposition 3.11
that 1WG

>○WG has the WCP. Consequently, by Proposition 3.9(c), we know that
WG has the WCP. Therefore, using Corollary 3.8 again, we know that G is coa-
menable. �

Corollary 3.15. Let G be a locally compact quantum group. If G is coamenable,

then WG is Bekka-amenable as a unitary corepresentation of Ĝ.
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Proof. The proof follows directly from Corollary 3.13 and Proposition 3.14. �

Ng [10], using Bekka amenability of the fundamental multiplicative unitary,
gave a characterization of amenability of a Kac algebra. Using our terminology,
we rewrite Ng’s proposition as follows.

Proposition 3.16 ([10, Proposition 3.6]). Let G be a locally compact quantum
group of Kac type. Then G is coamenable if and only if WG is Bekka-amenable

as a unitary corepresentation of Ĝ.

As a direct consequence of Propositions 3.14 and 3.16, the following corollary
implies that, in the Kac case, WG is Bekka-amenable if and only if WG is Bekka-
amenable. Note that the equivalence of (a) and (b) in this corollary is in fact
Proposition 3.16 proved by Ng in [10, Proposition 3.6]. We list these statements
here just for comparison with the other results.

Corollary 3.17. Let G be a locally compact quantum group of Kac type. Consider

WG and WG as two unitary corepresentations of Ĝ. The following statements are
equivalent.

(a) G is coamenable.
(b) WG is Bekka-amenable.
(c) WG is Bekka-amenable.

In the following, we focus on weak Bekka amenability of unitary corepresen-
tations. Using this property, we give another characterization for amenability,
and generalize some of Ng’s results on weak Bekka amenability (see [10, Proposi-
tion 3.4]). Some proofs of the results shown below follow from lines of argument
similar to those of [10, Proposition 3.4]. For completeness, we present the argu-
ment here.

Proposition 3.18. Let G be a locally compact quantum group. The following
statements are equivalent.

(a) G is amenable.
(b) The fundamental multiplicative unitary WĜ of its dual group is weakly

Bekka-amenable as an element in Corep(G).
(c) Every U ∈ Corep(G) is weakly Bekka-amenable.

Proof. To obtain that (a) implies (c), we first note that, by Remark 3.2 and
amenability of G, there exists a right-invariant mean m on G. Let U be an arbi-
trary unitary corepresentation of G. For any positive functional ω on L(HU) with
ω(idHU

) = 1, we can define a linear map Φω from L(HU) to C0(G) by

Φω(T ) = (ω ⊗ id)αU(T ) for any T ∈ L(HU).

Furthermore, one can easily show that Φω is a completely positive map such that
∆ ◦Φω = (Φω ⊗ id) ◦αU and Φω(idHU

) = 1. Thus, we have that M = m ◦Φω is an
αU -invariant mean for U , and so U is weakly Bekka-amenable. By arbitrariness
of the choice of U , statement (c) holds.
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It is clear that (c) implies (b), since WĜ can be viewed as a unitary corepre-
sentation of G. To show that (b) implies (a), assume that WĜ is weakly Bekka-
amenable, and let ω be an αWĜ

-invariant mean. Hence, statement (a) follows from
the fact that the restriction ω|L∞(G) is indeed a left-invariant mean for G. �

As in the Kac case, Bekka amenability is still stronger than weak Bekka
amenability in the general case.

Proposition 3.19. Let G be a locally compact quantum group, and let U be
any unitary corepresentation of G. If U is Bekka-amenable, then U is weakly
Bekka-amenable.

Proof. (a) If U is Bekka-amenable, then we know that U >○U has the WCP.
Consequently, by Theorem 3.7(c), there exists a net of unit vectors {ξi} ⊂ HU >○U

such that, for any v ∈ L2(G),

lim
i

∥∥(U >○U)(ξi ⊗ v)− ξi ⊗ v
∥∥ = lim

i

∥∥(U >○U)∗(ξi ⊗ v)− ξi ⊗ v
∥∥ = 0. (∗)

Then the net of the vector states {ωξi,ξi} has a subnet weak∗-convergent to some
positive functional m ∈ L(HU >○U)

∗.

For any unit vector v ∈ L2(G) and T ∈ L(HU >○U), one has

m
[
(idHU >○U

⊗ ωv,v)
(
αU >○U(T )

)]
= lim

i
ωξi,ξi

[
(idHU

⊗ ωv,v)
(
αU >○U(T )

)]
= lim

i

〈
(T ⊗ idL2(G))(U >○U)∗(ξi ⊗ v), (U >○U)∗(ξi ⊗ v)

〉
= lim

i

〈
(T ⊗ idL2(G))(ξi ⊗ v), ξi ⊗ v

〉 (
by equation (∗)

)
= lim

i
ωξi,ξi(T )‖ξ‖2 = m(T ).

Because every ω ∈ L1(G) is a linear combination of ωv,v’s, the above equalities
imply that m is an αU >○U -invariant mean. Define the positive functional M on
L(HU) by M(T ) = m(T ⊗ idHU

) for any T ∈ L(HU). Then, we can obtain weak
Bekka amenability of U by checking that M is indeed an αU -invariant mean as
required. �

Finally, we conclude from the above results that for any locally compact quan-
tum group G, the following relation holds:

coamenability of Ĝ ⇔ Bekka amenability of W Ĝ ⇒ Bekka amenability of WĜ ⇒
weak Bekka amenability of WĜ ⇔ amenability of G,

where ⇔ means “equal to” and ⇒ means “imply.”
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tions en physique mathématique (Marseille, 1977), Colloq. Internat. CNRS N274, CNRS,
Paris, 1979, 451–457. Zbl 0503.46049. MR0560656. 210

School of Mathematics and Statistics, Shandong University, Weihai, Shandong
Province 264209, People’s Republic of China.

E-mail address: chenxiao@sdu.edu.cn

http://www.emis.de/cgi-bin/MATH-item?0804.46078
http://www.ams.org/mathscinet-getitem?mr=1235438
http://www.emis.de/cgi-bin/MATH-item?1068.46043
http://www.ams.org/mathscinet-getitem?mr=2113848
https://doi.org/10.4153/CJM-2005-002-8
http://www.emis.de/cgi-bin/MATH-item?1051.46047
http://www.ams.org/mathscinet-getitem?mr=2013149
https://doi.org/10.1142/S0129167X03002046
https://doi.org/10.1142/S0129167X03002046
http://www.emis.de/cgi-bin/MATH-item?0702.22010
http://www.ams.org/mathscinet-getitem?mr=1047140
https://doi.org/10.1007/BF01231192
http://www.emis.de/cgi-bin/MATH-item?0597.43002
http://www.ams.org/mathscinet-getitem?mr=0863532
http://www.emis.de/cgi-bin/MATH-item?1111.46311
http://www.ams.org/mathscinet-getitem?mr=1841517
https://doi.org/10.1142/S0129167X01000757
http://www.emis.de/cgi-bin/MATH-item?1034.46508
http://www.ams.org/mathscinet-getitem?mr=1832993
https://doi.org/10.1016/S0012-9593(00)01055-7
https://doi.org/10.1016/S0012-9593(00)01055-7
http://www.emis.de/cgi-bin/MATH-item?1034.46067
http://www.ams.org/mathscinet-getitem?mr=1951446
https://doi.org/10.7146/math.scand.a-14394
https://doi.org/10.7146/math.scand.a-14394
http://www.emis.de/cgi-bin/MATH-item?1032.46534
http://www.ams.org/mathscinet-getitem?mr=1770329
http://www.emis.de/cgi-bin/MATH-item?1013.46054
http://www.ams.org/mathscinet-getitem?mr=1867346
https://doi.org/10.1006/jfan.2001.3815
http://www.emis.de/cgi-bin/MATH-item?1146.46305
http://www.ams.org/mathscinet-getitem?mr=1908922
https://doi.org/10.1090/S0002-9939-02-06482-1
http://www.emis.de/cgi-bin/MATH-item?0621.43001
http://www.ams.org/mathscinet-getitem?mr=0767264
http://www.emis.de/cgi-bin/MATH-item?0896.46041
http://www.ams.org/mathscinet-getitem?mr=1402773
https://doi.org/10.1006/jfan.1996.0093
http://www.emis.de/cgi-bin/MATH-item?0999.46022
http://www.ams.org/mathscinet-getitem?mr=1874893
https://doi.org/10.1007/b82937
http://www.emis.de/cgi-bin/MATH-item?1162.46001
http://www.ams.org/mathscinet-getitem?mr=2397671
https://doi.org/10.4171/043
http://www.emis.de/cgi-bin/MATH-item?0503.46049
http://www.ams.org/mathscinet-getitem?mr=0560656
mailto:chenxiao@sdu.edu.cn

	1 Introduction
	2 Notation and definitions
	2.1 Some notation
	2.2 Locally compact quantum group
	2.3 Corepresentation
	2.4 Universal quantum group
	2.5 Contra-corepresentation

	3 Amenability, coamenability, and Bekka-type amenabilities
	Acknowledgments
	References
	Author's addresses

