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CONVOLUTION-CONTINUOUS BILINEAR OPERATORS
ACTING ON HILBERT SPACES OF INTEGRABLE FUNCTIONS
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Communicated by M. D. Contreras

Abstract. We study bilinear operators acting on a product of Hilbert spaces
of integrable functions—zero-valued for couples of functions whose convolution
equals zero—that we call convolution-continuous bilinear maps. We prove a
factorization theorem for them, showing that they factor through `1. We also
present some applications for the case when the range space has some relevant
properties, such as the Orlicz or Schur properties. We prove that `1 is the only
Banach space for which there is a norming bilinear map which equals zero
exactly in those couples of functions whose convolution is zero. We also show
some examples and applications to generalized convolutions.

1. Introduction

A main outcome of classical harmonic analysis is the deep result that estab-
lishes that the convolution ∗ of two functions in L2(G) of a compact group G
has absolutely convergent Fourier series, and functions having this property are
exactly the ones that can be written as a convolution of two functions in L2(G).
Moreover, if we write R(G) for the space of functions with absolutely convergent
Fourier series and we define its norm as the `1-norm of the corresponding Fourier
coefficients, then the resulting space is isometric to `1. Its proof goes back to
Hewitt and former results, and can already be found in the classical book by
Hewitt and Ross [12, Corollary 34.7]. Also, the characterization of convolution

Copyright 2018 by the Tusi Mathematical Research Group.
Received Jan. 9, 2017; Accepted Mar. 2, 2017.
First published online Dec. 6, 2017.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 47H60; Secondary 43A25, 46G25.
Keywords. convolution, bilinear operator, factorization, Fourier transform, summability.

166

https://doi.org/10.1215/20088752-2017-0034
http://projecteuclid.org/afa


CONVOLUTION-CONTINUOUS BILINEAR OPERATORS ON HILBERT SPACES 167

by means of its properties as a bilinear operator acting on spaces of continu-
ous functions is due to Edwards [7], who observed in his classical paper that
certain commutation properties for a positive bilinear map imply that it is in
fact the convolution operator. On the other hand, some new linearization proce-
dures for analyzing summability and other properties of multilinear maps have
been recently introduced. Concretely, factorization of bilinear maps through linear
operators acting on classical Banach spaces has proved to be a useful technique
for such an analysis (see, e.g., [13] and the references therein).

Bringing together these ideas, in the present paper we study bilinear maps
acting on products of L2-spaces that equal zero on convolution-null couples of
functions. We will say that these bilinear operators are ∗-continuous, providing
classical and current examples. We show that this apparently weak requirement
for a bilinear map implies that it has to be necessarily the composition of con-
volution with a linear operator. Our main result (Theorem 3.1) proves this fact,
opening in this way the door for providing some applications that have the speci-
ficity of convolution as an essential foundation.

Among them, we prove a characterization of `1—up to isomorphisms—as the
unique space in which there exists a norming bilinear map with the same null-
couples of that convolution (see Corollary 4.5). We also give some results about
summability and topological properties of ∗-continuous maps when some Banach
space properties are assumed on the range space Y . In particular, we consider
finite cotype, the Orlicz property, and the Schur property for Y, showing that
under these assumptions both summability and compactness properties improve.
Finally, we explain some consequences of our results in a more applied context.
We provide some applications to what are known as generalized convolutions of
integral transforms of Fourier type. This topic has been recently developed to
provide a unified context for studying integral equations of convolution type (see
[9] and the references therein).

2. Preliminaries

Let X1, X2, Y be Banach spaces. We will say that a continuous bilinear map
B : X1 × X2 → Y is weakly compact if the set B(BX1 × BX2) ⊂ Y is relatively
weakly compact. As usual, we will write BY for the closed unit ball of the Banach
space Y . If A ⊆ Y , we will denote by A the (norm) closure of A in Y . We will
say that the bilinear map B is equivalently norming (or norming for short) for Y
if there is a constant k > 0 such that

BY ⊆ kB(BX1 ×BX2).

In the same direction, we will consider that a set A ⊆ (BX1 ×BX2) is norming if

BY ⊆ kB(A).

Let 1 ≤ p, q ≤ ∞, and let X and Y be Banach spaces. As usual, we write
L(X,Y ) for the space of linear and continuous operators from X to Y . Recall
that an operator T : X → Y is said to be (p, q)-summing if there is a constant
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k > 0 such that for every x1, . . . , xn ∈ X,( n∑
i=1

∥∥T (xi)∥∥p

Y

)1/p

≤ k sup
x∗∈BX∗

( n∑
i=1

∣∣〈xi, x∗〉∣∣q)1/q

.

We will write Πp,q(X,Y ) (Πp(X,Y ) if p = q) for the operator ideal of all (p, q)-
summing operators (see [5, Section 32]).

Throughout this article, we will repeatedly consider bilinear maps B : L2(T)×
L2(T) → Y . A relevant example of such a bilinear operator is the convolution map
that is defined for Banach spaces Y containing the space of absolutely convergent
Fourier series R(T). If G is a locally compact Abelian group with Haar measure
η, convolution is defined by the formula

f ∗ g(x) =
∫
G

f(x− y)g(y) dη(y), f, g ∈ L1(G),

and is well defined and continuous among several domain and range function
spaces of integrable functions. The study of the properties of convolution as a
bilinear map—and in fact, its characterization by means of these properties—goes
back to Edwards [7]. In that early paper, Edwards showed that the behavior with
respect to invariance with respect to translations and other essential properties
for a positive bilinear map actually determines that it must be the convolution
operator (see [7, Theorem 1]; see also [8, Section 3.1]). That article assumed the
domain space to be a space of continuous functions with compact support, but
the main idea is the same one that we develop here; considerably more is now
known about the topic.

We will say that a bilinear map B : L2(T) × L2(T) → Y is continuous with
respect to convolution (or ∗-continuous for short) if for every f, g ∈ L2(T),

f ∗ g = 0 implies that B(f, g) = 0.

Also, we will say that such a bilinear map is ∗-equivalent if f ∗ g = 0 if and only
if B(f, g) = 0 for every f, g ∈ L2(T).

Let us recall some Banach space properties that we will use in the article; `1

satisfies all of them. A Banach space Y has the Dunford–Pettis property if every
weakly compact linear operator T : Y → Z into another Banach space Z—or
only for Z = c0—is completely continuous (i.e., it transforms weakly compact
sets in Y into norm-compact sets in Z; see, e.g., [6, Section VI]). A Banach space
Y has the Schur property if weakly convergent sequences and norm-convergent
sequences coincide in it. The results on this property that we use can be found
in [14]; the interested reader can find updated information about variants of this
property in [15]. A Banach space has the Orlicz property if the identity map in
it is (2, 1)-summing.

Let us finish this section by providing some information about the space R(G)
of functions with absolutely summing Fourier coefficients. Consider the family
R(G) of the linear combinations (closure) of continuous positive definite functions
on a topological group G. Recall that a function φ defined on G is said to be pos-
itive definite if the inequality

∑N
n,m=1 cncmφ(xn − xm) ≥ 0 holds for every choice

of x1, x2, . . . , xN in G and for every choice of complex numbers c1, c2, . . . , cN . It
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is known that this family and the space of functions with absolutely summing
Fourier coefficients are exactly the same for a compact group G (see [12, Theo-
rem 34.13]).

For a compact group G, L2(G) ∗ L2(G) gives the space R(G) (see [12, Corol-
lary 34.16]). Moreover, if G is a compact Abelian group, L2(G) ∗L2(G) gives the
space of functions which has absolutely convergent Fourier series. Under point-
wise operations and with an appropriate norm, R(G) is a commutative Banach
algebra (see [12, Remark 34.34(a)]) with unit, and so for the compact Abelian
group G with character group Γ we get that R(G) is isomorphic to the Banach
algebra `1(Γ) via the Fourier transform (see also [12, Corollary 34.7]). Recall that
the Fourier transform̂is a linear isometry from L2(G) onto L2(Γ) and that the
inverse Fourier transform is a linear isometry from L2(Γ) onto L2(G); these two
transformations are inverses of each other (see [12, Theorem 31.18]).

In particular, consider the compact Abelian group G as T—the real line mod
2π. Then R(T) is the unital Banach algebra known as the Wiener algebra. By the
isomorphism given by Fourier transform, it is isomorphic to the Banach algebra
`1(Z).

We note here the obvious fact that the range of a bilinear map is not in general
a linear space. However, concerning this aspect, convolution is also a special
bilinear map. Indeed, as we said before, for a compact Abelian group G we have
that L2(G) ∗L2(G) = R(G) holds, and so L2(G) ∗L2(G) is a linear space. Let us
recall also the following known fact about the normability of convolution for the
algebra R(G). This result is fundamental for our purposes.

Remark 2.1. Let G be a compact Abelian group. Convolution is norming for
R(G) with equivalence constants equal to 1. That is, ∗(BL2(G)×BL2(G)) = BR(G).
Following the notation of [12], recall that the norm in R(G) is defined by

‖f‖ϕ1 := ‖f̂‖1, f ∈ R(G).

Proof. If (f, g) ∈ BL2(G) × BL2(G), we get ‖f ∗ g‖ϕ1 ≤ ‖f‖2‖g‖2 ≤ 1 (see, e.g.,
[12, Theorem 34.14]). So, f ∗ g ∈ BR(G). For the converse inequality, assume that
f ∈ BR(G). Then there are h, g ∈ L2(G) such that f = h∗g; this fact can be found
in [12, Theorem 34.15(i)]. By using [12, Theorem 34.15(iv)], we also obtain that
these functions h and g can be chosen in such a way that 1 ≥ ‖f‖ϕ1 = ‖g‖22 =
‖h‖22; that is, (h, g) ∈ BL2(G) ×BL2(G). �

3. A commutative factorization diagram through convolution

This section is devoted to showing our main result: a factorization theorem
for ∗-continuous bilinear operators. We start by providing some examples of this
class of operators. For the sake of clarity, we will write our results for T; the same
proofs work for any compact Abelian group G with the usual changes.

(1) The first example is constructed by using translation-invariant linear oper-
ators, sometimes called convolution operators or multipliers—the opera-
tors that commute with translations. Because the bibliography on this
topic is deep and wide, we mention here only the classical paper by Cowl-
ing and Fournier [4]. Thus, consider an operator T : L2(T) → L2(T) that
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satisfies that Tf ∗ g = T (f ∗ g). For example, we can take a convolution
operator Tk : L2(T) → L2(T) with convolution kernel k ∈ L2(T), that is,
Tkf := k ∗ f . Consider now the bilinear map Bk : L

2(T)×L2(T) → L2(T)
defined by convolution of Bk(·, ·) := Tk(·) ∗ (·). Then we have

Bk(f, g) = Tk(f) ∗ g = (k ∗ f) ∗ g = k ∗ (f ∗ g) = Tk(f ∗ g),
for f, g ∈ L2(T). Although we note that for the convolution map defined in
products of spaces of continuous functions, these arguments for translation-
invariant bilinear maps can already be found in the paper by Edwards [7,
proof of Proposition 1]. If P (D) is a linear partial differential operator,
then bilinear maps as P (D)(f ∗ g) are also usual in applications of har-
monic analysis.

(2) Consider a Banach space Z and a Bochner 2-integrable function Φ :
[0, 2π] → Z. Consider the vector-valued kernel bilinear operator B :
L2(T)× L2(T) → Z defined by

B(f, g) :=

∫ 2π

0

∫ 2π

0

Φ(x)f(x− y)g(y) dy dx.

Indeed, it can be written as (f, g) 7→
∫ 2π

0
Φ(x)(f ∗ g)(x) dx, and then it is

zero when f ∗ g = 0.

Theorem 3.1. Let T be the real line mod 2π, and let Y be an arbitrary Banach
space. For a bilinear continuous operator B : L2(T) × L2(T) → Y , the following
statements are equivalent.

(i) B is ∗-continuous.
(ii) There is a linear and continuous map T : R(T) → Y such that B = T ◦∗.

Proof. Assume first that B is ∗-continuous. Since the linear map
̂
: `2(Z) →

L2(T) is an isometric isomorphism, we can define the bilinear operator

B̃
(
(an), (bn)

)
:= B

(
(an)

̂
, (bn)

̂)
, (an), (bn) ∈ `2(Z), (3.1)

which clearly provides B̃(f̂ , ĝ) = B(f, g) and the commutativity of the diagram

L2(T)× L2(T) B //

̂×̂
��

Y

`2(Z)× `2(Z)
B̃

99 (3.2)

Now, we prove that there is a bounded linear map T̃ : `1(Z) → Y such that the
following diagram commutes:

`2(Z)× `2(Z) B̃ //

�
��

Y

`1(Z)
T̃

99 (3.3)

where � is the pointwise product of sequences.
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For each N ∈ N, we define the linear map T̃N : `1(Z) → Y by

T̃N
(
(an)

)
:= B̃

(
(an), χ[−N,N ]∩Z

)
, (an) ∈ `1(Z). (3.4)

We claim that, since B is ∗-continuous, we have that B̃(χ{i}, χ{j}) = 0 when
i 6= j. Indeed, since

0 = χ{i} · χ{j} =
̂̂χ{i} ·̂̂χ{j} = (χ̂{i} ∗ χ̂{j})̂ ,

the ∗-continuity of B together with (3.2) gives B̃(χ{i}, χ{j}) = B(χ̂{i}, χ̂{j}) = 0.
Using this remark, it is easy to see that

T̃N
(
(an)

)
=

∑
|j|≤N

ajB̃(χ{j}, χ{j}). (3.5)

Therefore∥∥T̃N((an))∥∥Y
≤

∑
|j|≤N

∥∥ajB̃(χ{j}, χ{j})
∥∥
Y
=

∑
|j|≤N

∥∥B̃(ajχ{j}, χ{j})
∥∥
Y

≤ ‖B̃‖
∑
|j|≤N

‖ajχ{j}‖`2(Z)‖χ{j}‖`2(Z)

= ‖B̃‖
∑
|j|≤N

|aj| ≤ ‖B̃‖
∥∥(an)∥∥`1(Z),

and so T̃N is continuous; in fact, the family {T̃N : N ∈ N} is uniformly bounded,

since ‖T̃N‖ ≤ ‖B̃‖ for allN ∈ N. Moreover, for each fixed (an) ∈ `1(Z), (T̃N((an)))
is a Cauchy sequence in the Banach space Y , and so it is convergent. Indeed, for

a given ε > 0, there exists k ∈ N such that
∑

|j|>N |aj| < ε/‖B̃‖ for all N ≥ k.

By using (3.5), we have, for all M > N ≥ k,∥∥T̃M(
(an)

)
− T̃N

(
(an)

)∥∥
Y
=

∥∥∥ ∑
|j|≤M

ajB̃(χ{j}, χ{j})−
∑
|j|≤N

ajB̃(χ{j}, χ{j})
∥∥∥
Y

≤
∑

N<|j|≤M

∥∥B̃(ajχ{j}, χ{j})
∥∥
Y

≤ ‖B̃‖
∑
|j|>N

|aj| < ε.

Therefore, by using the Banach–Steinhaus theorem—the uniform boundedness

principle—the map T̃ : `1(Z) → Y given by

T̃
(
(an)

)
:= lim

N→∞
T̃N

(
(an)

)
(3.6)

is linear and bounded. Finally, by the continuity of B̃ and again (3.5), we have

B̃
(
(an), (bn)

)
=

∞∑
j=−∞

ajbjB̃(χ{j}, χ{j})
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= lim
N→∞

∑
|j|≤N

ajbjB̃(χ{j}, χ{j})

= lim
N→∞

T̃N
(
(anbn)

)
= T̃ ◦ �

(
(an), (bn)

)
,

and so the commutativity of (3.3) follows.

On the other hand, given a linear map T̃ : `1(Z) → Y , we can use the fact
that the Fourier transform ̂ : R(T) → `1(Z) is an isometric isomorphism (see
[12, Corollary 34.7]) to define an operator T : R(T) → Y by

T (f) := T̃ (f̂), f ∈ R(T). (3.7)

This gives the factorization

`1(Z) T̃ //̂
��

Y

R(T)
T

== (3.8)

Finally, the classical identity f̂ ∗ g = f̂ · ĝ that works in general for f, g ∈ L1(T)
allows us to write ∗ =

̂
◦ � ◦ (̂ × )̂. Hence, we obtain the commutativity of the

diagram

L2(T)× L2(T) ̂×̂ //

∗

33`2(Z)× `2(Z) � // `1(Z)
̂

// R(T), (3.9)

and (ii) holds.
Conversely, assume that there is a linear and continuous operator T : R(T) →

Y such that B = T ◦ ∗. Then if f ∗ g = 0, obviously B(f, g) = T (f ∗ g) = 0 and
B is ∗-continuous. The proof is done. �

Remark 3.2. Seeing the proof of our result, we can give an explicit formula for
the operator T in terms of the classical Dirichlet kernel. We claim that the map
T of the theorem is given by

T (f) = lim
N→∞

B(f,DN),

where DN stands for the Dirichlet kernel which is given by the formula

DN(x) =
∑
|j|≤N

eijx.

Indeed, just observe that

(χ[−N,N ]∩Z)
̂
=

∑
|j|≤∞

χ[−N,N ]∩Z(j)e
ijx = DN(x),

and use (3.7), (3.6), (3.4), and (3.1) to obtain

T (f) = T̃ (f̂) = lim
N→∞

T̃N(f̂) = lim
N→∞

B̃(f̂ , χ[−N,N ]∩Z)

= lim
N→∞

B
(
f, (χ[−N,N ]∩Z)

̂)
= lim

N→∞
B(f,DN).
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Actually, putting together the commutativity of diagrams (3.2), (3.3), (3.8),
and (3.9), we have proof of the following.

Corollary 3.3. Let T be the real line mod 2π, and let Y be an arbitrary Banach
space. For a bilinear continuous operator B : L2(T) × L2(T) → Y , the following
statements are equivalent.

(i) B is ∗-continuous.
(ii) There are linear and bilinear continuous operators such that the following

diagram commutes:

L2(T)× L2(T)

∗

""

B //

̂×̂
��

Y

`2(Z)× `2(Z)

�
��

B̃

99

`1(Z)̂
��

T̃

BB

R(T)

T

FF

where ̂ and
̂
stand for the Fourier and the inverse Fourier transforms,

respectively, and � is the pointwise product of sequences.

We show now two examples of ∗-continuous bilinear operators concerning two
recent developments in bilinear Fourier analysis.

(A) Let us explain some relations of our class with a genuine bilinear version
of convolution, that is, given by the so-called translation-invariant bilinear
operators. A considerable effort has been made recently for understanding
this class of maps in the setting of multilinear harmonic analysis; we refer
to [10] and the references therein for information on the topic. They are
given—in the case in which we consider R as measurable space and the
operator is defined by a nonnegative regular Borel measure µ—by the
formula

Bµ(f, g) :=

∫
R

∫
R
f(x− y)g(x− z) dµ(y, z), f, g ∈ L2(R)

(see [10] and the references therein). We consider the “compact group
version” (see [10, (1)]) of this definition with a slight modification. Take
µ = k(z) dy dz for k ∈ L2[0, 2π], and consider the map

Bk(f, g) :=

∫ 2π

0

∫ 2π

0

f(y − x)g(x− z)k(z) dy dz

=

∫ 2π

0

f(y − x)(k ∗ g)(x) dy, f, g ∈ L2[0, 2π].
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Using this, and if Ψ is a Z-valued Bochner 2-integrable function—Z is a
Banach space—then we can define the Z-valued kernel bilinear map by

BΨ,k(f, g) =

∫ 2π

0

Ψ(y)
(∫ 2π

0

f(y − x)(k ∗ g)(x) dx
)
dy, f, g ∈ L2[0, 2π].

Clearly,

BΨ,k(f, g) =

∫ 2π

0

Ψ(y)
(
k ∗ (f ∗ g)

)
(y) dy,

and this is zero if f ∗ g = 0.
(B) Let 1 < p <∞, and consider the continuous bilinear map u : `p× `p′ → `1

given by the pointwise product u((ai), (bi)) := (ai)�(bi) = (aibi) ∈ `1. We
will use for this example the u-convolution for spaces of Bochner integrable
functions defined by Blasco in [1] (see also [2] and Blasco and Calabuig
[3]). Following [1] and the notation in this paper, the u-convolution can
be defined as a bilinear map ∗u : L1(T, `p)×L1(T, `p′) → L1(T, `1) by the
formula

φ ∗u ψ(t) =
∫ 2π

0

u
(
φ(eis), ψ(ei(t−s))

) ds
2π

∈ L1(T, `1),

for φ ∈ L1(T, `p), ψ ∈ L1(T, `p′). Consider now two sequences of integrable
functions (ki) and (vi), and assume that the linear maps T1 : L2(T) →
L1(T, `p) and T2 : L2(T) → L1(T, `p′) given by

T1(f)(w) :=
∞∑
i=1

(ki ∗ f)(w)ei ∈ `p, T2(g)(w) :=
∞∑
i=1

(vi ∗ g)(w)ei ∈ `p
′

are well defined for all f, g ∈ L2(T) and continuous. We consider the
bilinear map B := ∗u ◦ (T1, T2) : L2(T)× L2(T) → L1(T, Z). Let us show
that it is ∗-continuous. Indeed, for a fixed couple of functions f, g ∈ L2(T),
we have

B(f, g)(t) =

∫ 2π

0

( ∞∑
i=1

(ki ∗ f)(eis)(vi ∗ g)(ei(t−s))ei

) ds
2π

=
∞∑
i=1

(∫ 2π

0

(ki ∗ f)(eis)(vi ∗ g)(ei(t−s))
) ds
2π
, ei ∈ `1.

Thus, B(f, g) =
∑∞

i=1(ki ∗ vi) ∗ (f ∗ g)ei, and so it is ∗-continuous.

4. Properties of ∗-continuous bilinear operators and applications

Some direct consequences on the properties of ∗-continuous bilinear maps can
be fixed by using some classical properties. We will analyze separately the two
main cases that are reasonable to consider in our context: when Y is a reflex-
ive space, and when Y is a Banach space with the Schur property. In the first
case, it will be shown that ∗-continuous operators have good summability prop-
erties in the event that Y has some suitable geometric properties. The second
case—regarding topological properties—will provide some information in the case
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in which B is weakly compact. We will finish the section—and the article—by
showing an application of our results to what is called generalized convolution.

4.1. Summability properties of ∗-continuous bilinear maps: Hilbert
spaces, finite cotype spaces, and `p-spaces. Consider a ∗-continuous bilinear
map B : L2(T)×L2(T) → Y . In this case, the factorization given by Theorem 3.1
gives that, for all f1, . . . , fn, g1, . . . , gn ∈ L2(T),

n∑
i=1

∥∥B(fi, gi)
∥∥
Y
≤ k

n∑
i=1

‖f̂i · ĝi‖`1 = k
n∑

i=1

∞∑
j=1

|aijbij|,

where (aij) and (bij) are the sequences of Fourier coefficients of fi and gi, respec-
tively. This summability can be improved when we consider Y as some particular
spaces.

The first application that we will show is when Y is a Hilbert space H; for
instance, H = L2(T). In this case, an integral domination can even be obtained.
By Grothendieck’s theorem we have that L(`1, H) = Π1(`

1, H), and so we directly
obtain the following.

Corollary 4.1. If H is a Hilbert space and B : L2(T) × L2(T) → H is
∗-continuous, then B factors through a summing operator T as B = T ◦ ∗. Con-
sequently, there is a constant k > 0 such that the following equivalent assertions
hold.

(i) For f1, . . . , fn, g1, . . . , gn ∈ L2(T),
n∑

i=1

∥∥B(fi, gi)
∥∥
H
≤ k sup

ϕ∈B`∞

n∑
i=1

∣∣〈f̂i · ĝi, ϕ〉∣∣ = k sup
(ϕj)∈B`∞

n∑
i=1

∣∣∣ ∞∑
j=1

aijb
i
jϕj

∣∣∣,
where (aij) and (bij) are the sequences of Fourier coefficients of fi and gi,
respectively.

(ii) For f, g ∈ L2(T),∥∥B(f, g)
∥∥
H
≤ k

∫
B`∞

∣∣〈f̂ · ĝ, ϕ〉
∣∣ dη(ϕ) = k

∫
B`∞

∣∣∣ ∞∑
j=1

ajbjϕj

∣∣∣ dη(ϕ),
where η is a regular probability measure on the unit ball of `∞ given
by Pietsch’s domination theorem, and (aj) and (bj) are the sequences of
Fourier coefficients of f and g, respectively.

Some similar (but weaker) results can also be obtained if we consider some
cotype-related properties for the space Y . For instance, recall that cotype 2 for
a Banach space implies the Orlicz property (see [5, Section 8.9]); if we ask Y to
have the Orlicz property, we get a domination for any ∗-continuous bilinear map
as follows: for f1, . . . , fn, g1, . . . , gn ∈ L2(T),( n∑

i=1

∥∥B(fi, gi)
∥∥2

Y

)1/2

≤ k sup
εi∈{−1,1}

∥∥∥ n∑
i=1

εif̂i · ĝi
∥∥∥
`1
.
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The second case that we may consider is the one given when Y is an `p-space.
We have that for 1 ≤ p ≤ ∞ and r such that 1/r = 1 − |1/p − 1/2|, L(`1, `p) =
Πr,1(`

1, `p). This result can be found in [5, Section 34.11]. We can use it to directly
prove the following.

Corollary 4.2. Let 1 ≤ p ≤ ∞, and take r such that 1/r = 1−|1/p−1/2|. Take
a ∗-continuous bilinear map B : L2(T) × L2(T) → `p. Then there is a constant
k > 0 such that for f1, . . . , fn, g1, . . . , gn ∈ L2(T),( n∑

i=1

∥∥B(fi, gi)
∥∥r

`p

)1/r

≤ k sup
εi∈{−1,1}

∥∥∥ n∑
i=1

εif̂i · ĝi
∥∥∥
`1
= k sup

(ϕj)∈B`∞

n∑
i=1

∣∣∣ ∞∑
j=1

aijb
i
jϕj

∣∣∣,
where (aij) and (bij) are the sequences of Fourier coefficients of fi and gi, respec-
tively.

Note that for the case p = 2, we obtain the result given in Corollary 4.1.
Another interesting case is the one provided by the classical Littlewood inequality,
which can be written as L(`1, `4/3) = Π4/3,1(`

1, `4/3) (see [5, Section 34.12]): if B

is defined on `4/3, we obtain that( n∑
i=1

∥∥B(fi, gi)
∥∥4/3

`4/3

)3/4

≤ k sup
ϕ∈B`∞

n∑
i=1

∣∣〈f̂i · ĝi, ϕ〉∣∣.
4.2. Weak compactness and bilinear maps on spaces with the Schur
property. In this section, we analyze some properties for Y that are typical for
nonreflexive spaces, ones that would imply some concrete consequences on the
factorization through the convolution map. (The assumption in this section is
that B : L2(T) × L2(T) → Y is weakly compact ; that is, B(BL2(T) × BL2(T)) is a
relatively weakly compact set in Y .)

Let us introduce some notation. We will say that a subset A ⊆ L2(T)× L2(T)
is ∗-relatively weakly compact if the set {f ∗ g : (f, g) ∈ A} ⊆ R(T) is relatively
weakly compact. The following result shows that ∗-continuous operators satisfy
a certain kind of Dunford–Pettis property.

Corollary 4.3. Let B : L2(T) × L2(T) → Y be a ∗-continuous weakly com-
pact bilinear map, and let A be a ∗-relatively weakly compact set. Then B(A)
is relatively compact. Moreover, if there is a ∗-relatively weakly compact bilinear
operator B for Y , then Y is finite-dimensional.

Proof. This is just a consequence of the fact that `1 has the Dunford–Pettis
property. Since we have the factorization though `1 of B, and such factorization
satisfies that

∗(BL2(T) ×BL2(T)) = BR(T),

we have that (̂∗(BL2(T) × BL2(T))) = B`1 . Therefore, T ◦
̂
: `1 → Y is weakly

compact. Take a ∗-relatively weakly compact set A. We have that (̂∗A) is then a
relatively weakly compact set of `1. The Dunford–Pettis property of `1 then gives
that T ◦

̂
◦̂◦ ∗(A) = T ◦ ∗(A) = B(A) is relatively compact. The last statement

is then clear. �
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This theorem can be improved for the case in which Y has the Schur property;
recall that this means that weakly and norm-convergent sequences coincide in it.
Notice that there are spaces other than `1 that have the Schur property (e.g.,
some discrete Nakano spaces; see (IV) in [11]). The same kind of arguments that
we use in the following result—with slightly more restrictive requirements on
B—will be used in Corollary 4.5 to then prove that ∗-continuous bilinear maps
can indeed characterize `1.

Corollary 4.4. Let B : L2(T) × L2(T) → Y be a ∗-continuous weakly compact
bilinear map. Let Y be a Banach lattice with the Schur property. Then B(BL2(T)×
BL2(T)) is a relatively compact set in Y . Consequently, if B is norming for Y , then
Y is finite-dimensional.

Proof. We use Theorem 2 in [14], establishing that a Banach space Y has the
Schur property if and only if every weakly compact operator from `1 to Y is
compact. As we showed in the proof of Corollary 4.3, we have that (̂∗(BL2(T) ×
BL2(T))) = B`1 . Therefore, T ◦

̂
: `1 → Y is weakly compact, and so the Schur

property for Y gives that it is also compact. Then obviously normability of B
implies that Y has finite dimension. �

Recall that a bilinear map B is ∗-equivalent if for every f, g ∈ L2(T),
f ∗ g = 0 ⇐⇒ B(f, g) = 0.

Corollary 4.5. A Banach space Y is isomorphic to `1 if and only if it admits a
∗-equivalent norming bilinear map B : L2(T)× L2(T) → Y .

Proof. The direct implication is obvious: if R : `1 → Y is an isomorphism, just
take B = R ◦̂◦ ∗.

For the converse implication, suppose that B satisfies the requirements. Now
take into account that we have a factorization of B as B = T ◦∗ as a consequence
of Theorem 3.1. Since we also have that B(f, g) = 0 implies f ∗ g = 0, we have

that T (and so T̃ ) is injective. But B is norming, and so we have that

T̃ (B`1) ⊆ kBY ⊆ kKB(BL2(T) ×BL2(T)) = kKT̃ (B`1).

This gives the result. �

4.3. Applications: ∗-continuous generalized convolutions. Let us finish
the article by remarking on a new construction that has shown itself to be useful
for applications. It concerns what is called generalized convolution (we direct the
reader to [9] for relevant information, as well as to references in this article for
the original definitions). Let U1, U2, and U3 be linear spaces (may be different)
on the same field of scalars, and let V be a commutative algebra. Suppose that
K1 ∈ L(U1, V ), K2 ∈ L(U2, V ), and K3 ∈ L(U3, V ) are the linear operators from
U1, U2, and U3 to V , respectively.

Definition 4.6 ([9, Definition 2.3]). A bilinear map ∗ : U1 ×U2 → U3 is called the
convolution with weight-element δ—an element of the algebra V—for K3, K1, K2

(in that order) if the identity

K3

(
∗(f, g)

)
= δK1(f)K2(g)
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holds for any f ∈ U1 and g ∈ U2. The equality above is called the factorization
identity of the convolution.

Fix U1 = U2 = L2(T), U3 = V = R(T), and K3 = id, and consider ∗ as
the usual convolution bilinear map. Let us now write a characterization of when
a bilinear map—defined as a product in the algebra of two linear operators—
defines a generalized convolution associated to ∗. Indeed, as a consequence of
Theorem 3.1, we directly obtain the following.

Corollary 4.7. Consider two operators S1, S2 : L2(T) → R(T) and δ ∈ R(T),
and consider the bilinear map B : L2(T) × L2(T) → R(T) given by B(·, ·) =
δS1(·)S2(·). Then the following assertions are equivalent.

(i) B is ∗-continuous.
(ii) There is an operator T : R(T) → R(T) such that ∗ is a convolution with

weight δ for T , S1, S2.

In this case, the factorization identity is T ◦ ∗ = B = δS1S2.
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