Ann. Funct. Anal. 9 (2018), no. 2, 151-165
https://doi.org/10.1215/20088752-2017-0035
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

BEREZIN TRANSFORM OF THE ABSOLUTE VALUE OF AN OPERATOR

NAMITA DAS ${ }^{1^{*}}$ and MADHUSMITA SAHOO ${ }^{2}$

Communicated by R. Mortini

Abstract

In this article, we concentrate on the Berezin transform of the absolute value of a bounded linear operator T defined on the Bergman space $L_{a}^{2}(\mathbb{D})$ of the open unit disk. We establish some sufficient conditions on T which guarantee that the Berezin transform of $|T|$ majorizes the Berezin transform of $\left|T^{*}\right|$. We have shown that T is self-adjoint and $T^{2}=T^{3}$ if and only if there exists a normal idempotent operator S on $L_{a}^{2}(\mathbb{D})$ such that $\rho(T)=\rho\left(|S|^{2}\right)=$ $\rho\left(\left|S^{*}\right|^{2}\right)$, where $\rho(T)$ is the Berezin transform of T. We also establish that if T is compact and $\left|T^{n}\right|=|T|^{n}$ for some $n \in \mathbb{N}, n \neq 1$, then $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for all $n \in \mathbb{N}$. Further, if $T=U|T|$ is the polar decomposition of T, then we present necessary and sufficient conditions on T such that $|T|^{1 / 2}$ intertwines with U and a contraction X belonging to $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let $d A(z)=\frac{1}{\pi} d x d y$ denote the normalized Lebesgue area measure on \mathbb{D} in the complex plane \mathbb{C}. For $1 \leq p<\infty$ and $f: \mathbb{D} \longrightarrow \mathbb{C}$ Lebesgue measurable, let $\|f\|_{p}=\left(\int_{\mathbb{D}}|f|^{p} d A\right)^{1 / p}$. The Bergman space $L_{a}^{p}(\mathbb{D})$ is the Banach space of analytic functions $f: \mathbb{D} \longrightarrow \mathbb{C}$ such that $\|f\|_{p}<\infty$. The Bergman space $L_{a}^{2}(\mathbb{D})$ is a Hilbert space; it is a closed subspace (see [4]) of the Hilbert space $L^{2}(\mathbb{D}, d A)$, with the inner product given by $\langle f, g\rangle=$ $\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z), f, g \in L^{2}(\mathbb{D}, d A)$. Let P denote the orthogonal projection of

[^0]$L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. Let $K(z, \bar{w})$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by $K(z, \bar{w})=$ $\overline{K_{z}(w)}=\frac{1}{(1-z \bar{w})^{2}}$. The function $K(z, \bar{w})$ is called the reproducing kernel of $L_{a}^{2}(\mathbb{D})$. For any $n \geq 0, n \in \mathbb{Z}$, let $e_{n}(z)=\sqrt{n+1} z^{n}$; then $\left\{e_{n}\right\}$ forms an orthonormal basis for $L_{a}^{2}(\mathbb{D})$. Let $k_{a}(z)=\frac{K(z, \bar{a})}{\sqrt{K(a, \bar{a})}}=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}$. These functions k_{a} are called the normalized reproducing kernels of $L_{a}^{2}(\mathbb{D})$; it is clear that they are unit vectors in $L_{a}^{2}(\mathbb{D})$. Let $L^{\infty}(\mathbb{D}, d A)$ be the Banach space of all essentially bounded measurable functions f on \mathbb{D} with $\|f\|_{\infty}=\operatorname{ess} \sup \{|f(z)|: z \in \mathbb{D}\}$, and let $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D}. Let $\mathcal{L}(H)$ be the space of all bounded linear operators from the separable Hilbert space H into itself, and let $\mathcal{L C}(H)$ be the space of all compact operators in $\mathcal{L}(H)$. An operator $A \in \mathcal{L}(H)$ is called positive if $\langle A x, x\rangle \geq 0$ holds for every $x \in H$, in which case we write $A \geq 0$. The absolute value of an operator A is the positive operator $|A|$ defined as $|A|=\left(A^{*} A\right)^{1 / 2}$. If H is infinite-dimensional, then the map $|\cdot|$ on $\mathcal{L}(H)$ is not Lipschitz-continuous. We define $\rho: \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right) \longrightarrow L^{\infty}(\mathbb{D})$ by $\rho(T)(z)=\widetilde{T}(z)=$ $\left\langle T k_{z}, k_{z}\right\rangle, z \in \mathbb{D}$. A function $g(x, \bar{y})$ on $\mathbb{D} \times \mathbb{D}$ is called of positive type (or positive definite), written $g \gg 0$, if
\[

$$
\begin{equation*}
\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} g\left(x_{j}, \overline{x_{k}}\right) \geq 0 \tag{1.1}
\end{equation*}
$$

\]

for any n-tuple of complex numbers c_{1}, \ldots, c_{n} and points $x_{1}, \ldots, x_{n} \in \mathbb{D}$. We write $g \gg h$ if $g-h \gg 0$. We say that $\Upsilon \in \mathcal{A}$ if $\Upsilon \in L^{\infty}(\mathbb{D})$, and it is such that

$$
\begin{equation*}
\Upsilon(z)=\Theta(z, \bar{z}) \tag{1.2}
\end{equation*}
$$

where $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$, meromorphic in x and conjugatemeromorphic in y and there exists a constant $c>0$ such that

$$
c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0 \quad \text { for all } x, y \in \mathbb{D}
$$

The function Θ given in (1.2), if it exists, is uniquely determined by Υ. (For more details, see [8] and [10].)

2. Majorization of Berezin transform

In this section, we present certain sufficient conditions on $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ which guarantee that the Berezin transform of $|T|$ majorizes the Berezin transform of $\left|T^{*}\right|$.
Theorem 2.1. If $\phi \in \mathcal{A}$ and $0 \leq \phi$, then there exists a positive operator $S \in$ $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\widetilde{S}(z)$ for all $z \in \mathbb{D}$.
Proof. To prove the theorem, it suffices to show that $0 \leq \phi \in \mathcal{A}$ if and only if there exists a positive operator $S \in \mathcal{L}\left(L_{a}^{2}\right)$ such that $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. So let $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ be a positive operator. Let $\Theta(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$, where $K_{x}=K(\cdot, \bar{x})$ is the unnormalized reproducing kernel at x. Then $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$, meromorphic in x, and conjugate-meromorphic in y. Let $\phi(z)=\Theta(z, \bar{z})$.

Then $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$ and $\phi \in L^{\infty}(\mathbb{D})$, as S is bounded. Now let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where c_{j} are constants and $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Since S is bounded and positive, there exists a constant $c>0$ such that $0 \leq\langle S f, f\rangle \leq$ $c\|f\|^{2}$. But

$$
\begin{aligned}
\langle S f, f\rangle & =\left\langle S\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{j=1}^{n} c_{j} K_{x_{j}}\right\rangle \\
& =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\left\langle S K_{x_{j}}, K_{x_{k}}\right\rangle \\
& =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right)
\end{aligned}
$$

and $c\|f\|^{2}=c\langle f, f\rangle=c \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)$. Hence we get

$$
c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0
$$

Thus $\phi \in \mathcal{A}$.
Now let $\phi \in \mathcal{A}$ and $\phi(z)=\Theta(z, \bar{z})$, where $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$, meromorphic in x, and conjugate-meromorphic in y. We will prove the existence of a positive, bounded operator $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$. Let

$$
\begin{equation*}
S f(x)=\int_{\mathbb{D}} f(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z) \tag{2.1}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
S f(x) & =\left\langle S f, K_{x}\right\rangle \\
& =\left\langle f, S^{*} K_{x}\right\rangle \\
& =\int_{\mathbb{D}} f(z) \overline{\left\langle S^{*} K_{x}, K_{z}\right\rangle} d A(z) \\
& =\int_{\mathbb{D}} f(z)\left\langle S K_{z}, K_{x}\right\rangle d A(z) \\
& =\int_{\mathbb{D}} f(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\langle S K_{y}, K_{x}\right\rangle & =\int_{\mathbb{D}} K_{y}(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z) \\
& =\int_{\mathbb{D}} K_{y}(z) \Theta(x, \bar{z}) \overline{K_{x}(z)} d A(z) \\
& =\overline{\left\langle\overline{\Theta(x, \bar{z})} K_{x}, K_{y}\right\rangle} \\
& =\overline{\overline{\Theta(x, \bar{y})}\left\langle K_{x}, K_{y}\right\rangle} \\
& =\Theta(x, \bar{y})\left\langle K_{y}, K_{x}\right\rangle .
\end{aligned}
$$

Hence $\Theta(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$ and $\phi(z)=\Theta(z, \bar{z})=\left\langle S k_{z}, k_{z}\right\rangle$. We will now prove that S is positive and bounded. That is, there exists a constant $c>0$ such that $0 \leq\langle S f, f\rangle \leq c\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. Since $\phi \in \mathcal{A}$, there exists a constant $c>0$ such that for all $x, y \in \mathbb{D}$,

$$
\begin{equation*}
c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0 \tag{2.2}
\end{equation*}
$$

Let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$, where c_{j} are constants, $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Then from (2.2) it follows that $\langle S f, f\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \geq 0$ and that

$$
\begin{aligned}
\langle S f, f\rangle & =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \\
& \leq c \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right) \\
& =c\|f\|^{2} .
\end{aligned}
$$

Since the set of vectors $\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1,2, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, we have $0 \leq\langle S f, f\rangle \leq c\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and thus S is bounded and positive.

Theorem 2.2. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Then

$$
\begin{equation*}
|\langle T f, g\rangle|^{2} \leq\langle | T|f, f\rangle\langle | T|g, g\rangle \tag{2.3}
\end{equation*}
$$

where $f, g \in \mathbb{B}=\left\{\sum_{j=1}^{n} c_{j} K_{y_{j}}, c_{j}, j=1,2, \ldots, n\right.$ are constants, $y_{j} \in \mathbb{D}, j=$ $1, \ldots, n\}$ if and only if

$$
\begin{equation*}
\Theta_{|T|}(x, \bar{y}) K(x, \bar{y}) \gg \Theta_{\left|T^{*}\right|}(x, \bar{y}) K(x, \bar{y}) \tag{2.4}
\end{equation*}
$$

holds for all $x, y \in \mathbb{D}$. If either (2.3) or (2.4) holds, then $\rho\left(\left|T^{*}\right|\right) \leq \rho(|T|)$.
Proof. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Suppose that (2.3) holds for all $f, g \in \mathbb{B}$. Let $f=$ $\sum_{j=1}^{n} c_{j} K_{y_{j}}$, where c_{j} are constants, $y_{j} \in \mathbb{D}$, for $j=1,2, \ldots, n$ and $g=$ $\sum_{i=1}^{m} d_{i} K_{x_{i}}$, where d_{i} are constants, $x_{i} \in \mathbb{D}$ for $i=1,2, \ldots, m$. Then by (2.3),

$$
|\langle T f, g\rangle| \leq\langle | T|f, f\rangle^{1 / 2}\langle | T|g, g\rangle^{1 / 2}
$$

Since the set of vectors $\left\{\sum c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1,2, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, we have

$$
\begin{equation*}
|\langle T f, g\rangle|^{2} \leq\langle | T|f, f\rangle\langle | T|g, g\rangle \tag{2.5}
\end{equation*}
$$

for all $f, g \in L_{a}^{2}(\mathbb{D})$. It is straightforward to see that (2.5) implies (2.3). Thus (2.3) holds if and only if (2.5) holds. Now suppose that, for all $x, y \in \mathbb{D}$,

$$
\Theta_{|T|}(x, \bar{y}) K(x, \bar{y}) \gg \Theta_{\left|T^{*}\right|}(x, \bar{y}) K(x, \bar{y})
$$

This then implies that $\langle | T\left|K_{y}, K_{x}\right\rangle \geq\langle | T^{*}\left|K_{y}, K_{x}\right\rangle$ for all $x, y \in \mathbb{D}$. Thus

$$
\sum_{i, j=1}^{n} c_{j} \overline{c_{i}}\langle | T\left|K_{x_{j}}, K_{x_{i}}\right\rangle \geq \sum_{i, j=1}^{n} c_{j} \overline{c_{i}}\langle | T^{*}\left|K_{x_{j}}, K_{x_{i}}\right\rangle .
$$

Hence

$$
\langle | T\left|\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right),\left(\sum_{i=1}^{n} c_{i} K_{x_{i}}\right)\right\rangle \geq\langle | T^{*}\left|\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right),\left(\sum_{i=1}^{n} c_{i} K_{x_{i}}\right)\right\rangle,
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{D}$ and $c_{j}, j=1, \ldots, n$ are constants. Since

$$
\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1, \ldots, n\right\}
$$

is dense in $L_{a}^{2}(\mathbb{D})$, we have

$$
\begin{equation*}
\langle | T|g, g\rangle \geq\langle | T^{*}|g, g\rangle \tag{2.6}
\end{equation*}
$$

for all $g \in L_{a}^{2}(\mathbb{D})$. Thus (2.4) implies (2.6). Now suppose that (2.6) holds. Then

$$
\langle | T\left|\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right),\left(\sum_{i=1}^{n} c_{i} K_{x_{i}}\right)\right\rangle \geq\langle | T^{*}\left|\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{i=1}^{n} c_{i} K_{x_{i}}\right\rangle
$$

where $x_{1}, \ldots, x_{n} \in \mathbb{D}$ and $c_{j}, j=1, \ldots, n$ are constants. This implies that

$$
\sum_{i, j=1}^{n} c_{j} \overline{c_{i}}\langle | T\left|K_{x_{j}}, K_{x_{i}}\right\rangle \geq \sum_{i, j=1}^{n} c_{j} \bar{c}_{i}\langle | T^{*}\left|K_{x_{j}}, K_{x_{i}}\right\rangle .
$$

Thus $\langle | T\left|K_{y}, K_{x}\right\rangle \geq\langle | T^{*}\left|K_{y}, K_{x}\right\rangle$ for all $x, y \in \mathbb{D}$. Hence (2.6) implies (2.4). Now we will show that (2.5) holds if and only if (2.6) holds. Let $T=U|T|$ be the polar decomposition of T. Then, since $\left|T^{*}\right|=U|T| U^{*}$, we obtain

$$
\begin{aligned}
|\langle T f, g\rangle|^{2} & \left.=|\langle U| T|^{1 / 2}|T|^{1 / 2} f, g\right\rangle\left.\right|^{2} \\
& \left.=|\langle | T|^{1 / 2} f,|T|^{1 / 2} U^{*} g\right\rangle\left.\right|^{2} \\
& \leq\left\||T|^{1 / 2} f\right\|^{2}\left\||T|^{1 / 2} U^{*} g\right\|^{2} \\
& =\langle | T|f, f\rangle\langle | T^{*}|g, g\rangle ;
\end{aligned}
$$

for all $f, g \in L_{a}^{2}(\mathbb{D})$. Now if (2.6) holds, then $|\langle T f, g\rangle|^{2} \leq\langle | T|f, f\rangle\langle | T|g, g\rangle$ for all $f, g \in L_{a}^{2}(\mathbb{D})$. Thus (2.6) implies (2.5). If (2.5) holds, then we have

$$
\begin{aligned}
\left.\left|\langle | T^{*}\right| f, f\right\rangle\left.\right|^{2} & \left.=|\langle U| T| U^{*} f, f\right\rangle\left.\right|^{2} \\
& =\left|\left\langle T U^{*} f, f\right\rangle\right|^{2} \leq\langle | T\left|U^{*} f, U^{*} f\right\rangle\langle | T|f, f\rangle \\
& =\langle U| T\left|U^{*} f, f\right\rangle\langle | T|f, f\rangle=\langle | T^{*}|f, f\rangle\langle | T|f, f\rangle
\end{aligned}
$$

Hence $\langle | T^{*}|f, f\rangle \leq\langle | T|f, f\rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$. This also implies that $\widetilde{\left|T^{*}\right|}(z) \leq$ $\widetilde{T} \mid(z)$ for all $z \in \mathbb{D}$. That is, $\rho\left(\left|T^{*}\right|\right) \leq \rho(|T|)$.

Lemma 2.3. If $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ are normal and $S^{*} S=T^{*} T$, then $\rho(|S|)=$ $\rho(|T|)$.

Proof. Let $S^{*} S=T^{*} T$. Let $S=U|S|$ and $T=V|T|$ be the polar decompositions of S and T. Since S and T are normal, it holds that U and V are unitary operators. Now $S^{*} S=T^{*} T$ implies that $|S| U^{*} U|S|=|T| V^{*} V|T|$. Thus $|S|^{2}=|T|^{2}$. Since $|S|^{2}$ and $|T|^{2}$ are positive and they have unique positive square roots $|S|$ and $|T|$, we have $|S|=|T|$, and therefore $\rho(|S|)=\rho(|T|)$.

If T is normal, then $T^{*} T=T T^{*}$. That is, $\langle | T^{*}|f, f\rangle \leq\langle | T|f, f\rangle$ for all $f \in$ $L_{a}^{2}(\mathbb{D})$. Hence (2.3) holds. But (2.3) does not imply that T is normal. But when $T \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$, that means that (2.3) implies that T is normal.

Theorem 2.4. Let $T \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$. Then (2.3) holds for all $x, y \in \mathbb{D}$ if and only if T is normal. In this case, $\rho(|T|)=\rho\left(\left|T^{*}\right|\right)$.

Proof. Let $T=U|T|$ be the polar decomposition of T. We will show that if $\langle | T^{*}|f, f\rangle \leq\langle | T|f, f\rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$ then T is normal. Let $S=U|T|^{1 / 2}$. Then

$$
S S^{*}=U|T| U^{*}=\left|T^{*}\right| \leq|T|=|T|^{1 / 2} U^{*} U|T|^{1 / 2}=S^{*} S .
$$

Thus S is hyponormal. Now S is compact as T is compact. It follows from [3] that a compact hyponormal operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is normal. Thus S is normal and $U U^{*}=U^{*} U$ and $U|T|^{1 / 2}=|T|^{1 / 2} U$. Thus $U|T|=|T| U$, and hence T is normal. From Lemma 2.3, it follows that $\rho(|T|)=\rho\left(\left|T^{*}\right|\right)$.
Theorem 2.5. Let $A, B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, and assume that $\operatorname{Range}(A)$ and $\operatorname{Range}(B)$ are closed. Then

$$
\begin{equation*}
|\langle C f, g\rangle|^{2} \leq\langle A f, f\rangle\langle B g, g\rangle \tag{2.7}
\end{equation*}
$$

where $f, g \in \mathbb{B}$ if and only if $A \geq 0, B \geq 0$ and there exists a contraction $K \in$ $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\rho(C)=\rho\left(B^{1 / 2} K A^{1 / 2}\right)$.

Proof. Suppose that (2.7) holds for all $f, g \in \mathbb{B}$. Let $f=\sum_{j=1}^{n} c_{j} K_{y_{j}}$ and $g=$ $\sum_{i=1}^{m} d_{i} K_{x_{i}}$, where c_{j} and d_{i} are constants and $x_{i}, y_{j} \in \mathbb{D}$ for all $i=1, \ldots, m$ and $j=1, \ldots, n$. Then

$$
|\langle C f, g\rangle| \leq\langle A f, f\rangle^{1 / 2}\langle B g, g\rangle^{1 / 2}
$$

Since the set of vectors $\left\{\sum c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, we have $|\langle C f, g\rangle|^{2} \leq\langle A f, f\rangle\langle B g, g\rangle$ for all $f, g \in L_{a}^{2}(\mathbb{D})$. Now for $f, g \in L_{a}^{2}(\mathbb{D})$, we have

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)\binom{f}{g},\binom{f}{g}\right\rangle & =\langle A f, f\rangle+\left\langle C^{*} g, f\right\rangle+\langle C f, g\rangle+\langle B g, g\rangle \\
& =\langle A f, f\rangle+\langle B g, g\rangle+2 \operatorname{Re}\langle C f, g\rangle \\
& \geq 2\langle A f, f\rangle^{1 / 2}\langle B g, g\rangle^{1 / 2}+2 \operatorname{Re}\langle C f, g\rangle \\
& \geq 2|\langle C f, g\rangle|+2 \operatorname{Re}\langle C f, g\rangle \\
& \geq 2|\langle C f, g\rangle|-2|\langle C f, g\rangle|=0 .
\end{aligned}
$$

Thus $D=\left(\begin{array}{c}A_{C}^{A} C_{B}^{*}\end{array}\right)$ is a positive operator in $B\left(L_{a}^{2} \oplus L_{a}^{2}\right)$. This impllies that $D=E^{*} E$ for some $E \in \mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)$. Let $E=R \oplus S$, where $R, S \in \mathcal{L}\left(L_{a}^{2}, L_{a}^{2} \oplus L_{a}^{2}\right)$. That is, if $f, g \in L_{a}^{2}(\mathbb{D})$, then

$$
(R \oplus S)(f \oplus g)=R f \oplus S g=E(f \oplus 0)+E(0 \oplus g)=E(f \oplus g)
$$

Then

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)=E^{*} E \\
& =\binom{R^{*}}{S^{*}}\left(\begin{array}{ll}
R & S
\end{array}\right) \\
& =\left(\begin{array}{cc}
R^{*} R & R^{*} S \\
S^{*} R & S^{*} S
\end{array}\right) .
\end{aligned}
$$

Thus it follows that $A=R^{*} R \geq 0, B=S^{*} S \geq 0$, and $C^{*}=R^{*} S$. Since Range (A) is closed, Range (B) is closed; since Range $(A)=\operatorname{Range} A^{1 / 2}$ and Range $(B)=$ Range $B^{1 / 2}$, it holds that Range R and Range S are closed. Since $A=R^{*} R$ and $B=S^{*} S$, there exist partial isometries U_{1} and U_{2} in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $R=$ $U_{1} A^{1 / 2}$ and $S=U_{2} B^{1 / 2}$ and $U_{1} U_{1}^{*}=P_{\operatorname{Range}(R)}, U_{2}^{*} U_{2}=P_{\mathcal{M}}$, where $P_{\operatorname{Range}(R)}$ denotes the projection onto Range (R) and $P_{\mathcal{M}}$ denotes an orthogonal projection onto a closed subspace \mathcal{M} of $L_{a}^{2}(\mathbb{D})$. Thus $C^{*}=R^{*} S=A^{1 / 2} U_{1}^{*} U_{2} B^{1 / 2}$. Let $K^{*}=U_{1}^{*} U_{2}$. Then

$$
\begin{aligned}
K K^{*} & =U_{2}^{*} U_{1} U_{1}^{*} U_{2}=U_{2}^{*} P_{\operatorname{Range}(R)} U_{2} \\
& \leq U_{2}^{*} I_{\mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)} U_{2}=U_{2}^{*} U_{2}=P_{\mathcal{M}} \\
& \leq I_{\mathcal{L}\left(L_{a}^{2}\right)} .
\end{aligned}
$$

Hence $C^{*}=A^{1 / 2} K^{*} B^{1 / 2}$. That is, $C=B^{1 / 2} K A^{1 / 2}$ and therefore, $\rho(C)=$ $\rho\left(B^{1 / 2} K A^{1 / 2}\right)$ for some contraction $K \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Let $A, B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, where $A \geq 0, B \geq 0$, and $\rho(C)=\rho\left(B^{1 / 2} K A^{1 / 2}\right)$ for some contraction $K \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. This implies that $C=B^{1 / 2} K A^{1 / 2}$ and $\left\|K^{*}\right\|=\|K\| \leq 1$. That is, $K K^{*} \geq 0$ and $\left\langle K K^{*} f, f\right\rangle \leq\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. Hence

$$
\left|\left\langle K^{*} f, g\right\rangle\right|^{2} \leq\left\|K^{*} f\right\|^{2}\|g\|^{2} \leq\|f\|^{2}\|g\|^{2}
$$

Now

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
I_{\mathcal{L}\left(L_{a}^{2}\right)} & K \\
K^{*} & I_{\mathcal{L}\left(L_{a}^{2}\right)}
\end{array}\right)\binom{f}{g},\binom{f}{g}\right\rangle & =\langle f, f\rangle+\langle K g, f\rangle+\left\langle K^{*} f, g\right\rangle+\langle g, g\rangle \\
& =\langle f, f\rangle+\langle g, g\rangle+2 \operatorname{Re}\left\langle K^{*} f, g\right\rangle \\
& \geq 2\langle f, f\rangle^{1 / 2}\langle g, g\rangle^{1 / 2}+2 \operatorname{Re}\left\langle K^{*} f, g\right\rangle \\
& \geq 2\left|\left\langle K^{*} f, g\right\rangle\right|+2 \operatorname{Re}\left\langle K^{*} f, g\right\rangle \\
& \geq 2\left|\left\langle K^{*} f, g\right\rangle\right|-2\left|\left\langle K^{*} f, g\right\rangle\right|=0 .
\end{aligned}
$$

$\operatorname{Thus}\left(\begin{array}{cc}I_{\mathcal{L}\left(L_{\alpha}^{2}\right)} & K \\ K^{*} & I_{\mathcal{L}\left(L_{a}^{2}\right)}\end{array}\right) \geq 0$. It then follows from

$$
\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)=\left(\begin{array}{cc}
A^{1 / 2} & 0 \\
0 & B^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
I_{\mathcal{L}\left(L_{a}^{2}\right)} & K^{*} \\
K & I_{\mathcal{L}\left(L_{a}^{2}\right)}
\end{array}\right)\left(\begin{array}{cc}
A^{1 / 2} & 0 \\
0 & B^{1 / 2}
\end{array}\right)
$$

that $\left(\begin{array}{cc}A & C_{B}^{*} \\ C & B\end{array}\right) \geq 0$ in $\mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)$. Now from [1], it follows that

$$
\begin{aligned}
& \left|\left\langle\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)\binom{f}{0},\binom{0}{g}\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)\binom{f}{0},\binom{f}{0}\right\rangle\left\langle\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)\binom{0}{g},\binom{0}{g}\right\rangle
\end{aligned}
$$

for all $f, g \in L_{a}^{2}(\mathbb{D})$. A direct computation of these inner products now yields $|\langle C f, g\rangle|^{2} \leq\langle A f, f\rangle\langle B g, g\rangle$ for all $f, g \in L_{a}^{2}(\mathbb{D})$, and therefore (2.7) holds for all $f, g \in \mathbb{B} \subset L_{a}^{2}(\mathbb{D})$.

Theorem 2.6. Let A, B, and C be operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that A and B are positive and $B C=C A$. If

$$
\begin{equation*}
|\langle C u, v\rangle|^{2} \leq\langle A u, u\rangle\langle B v, v\rangle \tag{2.8}
\end{equation*}
$$

for all $u, v \in \mathbb{B}$, then

$$
\begin{equation*}
|\langle C u, v\rangle|^{2} \leq\left\langle f(A)^{2} u, u\right\rangle\left\langle g(B)^{2} v, v\right\rangle \tag{2.9}
\end{equation*}
$$

for all $u, v \in \mathbb{B}$, where f and g are nonnegative continuous functions on $[0, \infty)$ that satisfy the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$.

Proof. From the proof of Theorem 2.5, it follows that the conditions (2.8) and (2.9) are equivalent to the fact that $\left(\begin{array}{cc}A & C^{*} \\ C\end{array}\right) \geq 0$ and $\left(\begin{array}{cc}f(A)^{2} & C^{*} \\ C & g(B)^{2}\end{array}\right) \geq 0$ in $\mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)$. Suppose that A and B are invertible. The proof follows from the following observations:
(i)

$$
\begin{aligned}
\left(\begin{array}{cc}
f(A)^{2} & C^{*} \\
C & g(B)^{2}
\end{array}\right)= & \left(\begin{array}{cc}
f(A) A^{-1 / 2} & 0 \\
0 & g(B) B^{-1 / 2}
\end{array}\right) \\
& \times\left(\begin{array}{cc}
A & C^{*} \\
C & B
\end{array}\right)\left(\begin{array}{cc}
f(A) A^{-1 / 2} & 0 \\
0 & g(B) B^{-1 / 2}
\end{array}\right) .
\end{aligned}
$$

(ii) Since $B C=C A$, it follows that $h(B) C=C h(A)$ for all continuous functions h on $[0, \infty)$.
(iii) Since $f(t) g(t)=t$ for all $t \in[0, \infty)$, we obtain $f(D) g(D)=D$ for any positive operator $D \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Thus $g(B) B^{-1 / 2} C f(A) A^{-1 / 2}=C$. This last statement can be verified as follows. From (ii) it follows that

$$
g(B) C A^{1 / 2}=C g(A) A^{1 / 2}=C A^{1 / 2} g(A)
$$

Now

$$
\begin{aligned}
C A^{1 / 2} g(A) & =g(B) C A^{1 / 2} \\
& =g(B) B^{1 / 2} C=g(B) B^{-1 / 2} B C \\
& =g(B) B^{-1 / 2} C A
\end{aligned}
$$

Thus $g(B) B^{-1 / 2} C f(A)=C A^{1 / 2}$. Hence $g(B) B^{-1 / 2} C f(A) A^{-1 / 2}=C$.

We therefore have $\left(\begin{array}{cc}A & C^{*} \\ C & B\end{array}\right) \geq 0$ if and only if $\left(\begin{array}{cc}f(A)^{2} & C^{*} \\ C & g(B)^{2}\end{array}\right) \geq 0$. For the general case, apply the argument above to the invertible operators $A_{\epsilon}=A+\epsilon$ and $B_{\epsilon}=B+\epsilon$ for $\epsilon>0$ and then let $\epsilon \longrightarrow 0$.

For a self-adjoint operator $T \in \mathcal{L}(H)$, it follows from the spectral theorem that $-|T| \leq T \leq|T|$ or, equivalently, that $|\langle T x, x\rangle| \leq\langle | T|x, x\rangle$ for all $x \in H$. But this is not true for arbitrary operators. For example, let $T=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), x=\binom{2}{1}$. Then $|\langle T x, x\rangle|=2$ and $\langle | T|x, x\rangle=1$.
Lemma 2.7. If T is an operator in $\mathcal{L}(H)$, then $\left(\begin{array}{cc}|T| & T^{*} \\ T & \left|T^{*}\right|\end{array}\right)$ is a positive operator in $\mathcal{L}(H \oplus H)$, where $|T|=\left(T^{*} T\right)^{1 / 2}$ and $\left|T^{*}\right|=\left(T T^{*}\right)^{1 / 2}$.

Proof. On $H \oplus H$, let $S=\left(\begin{array}{cc}0 & T^{*} \\ T & 0\end{array}\right)$. Then S is self-adjoint and $S^{*} S=\left(\begin{array}{cc}T^{*} T & 0 \\ 0 & T T^{*}\end{array}\right)$. By the uniqueness of the square root of a positive operator, it follows that $|S|=$ $\left(\begin{array}{cc}|T| & 0 \\ 0 & \left|T^{*}\right|\end{array}\right)$. Since S is self-adjoint, it follows by the spectral theorem that $S+|S|$ is positive. Therefore, $\left(\begin{array}{c}|T| \\ T\end{array}\left|T^{*}\right|\right)$ is positive.
Corollary 2.8. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, and let f and g be as in the preceding theorem. Then

$$
|\langle T u, v\rangle|^{2} \leq\left\langle f(|T|)^{2} u, u\right\rangle\left\langle f\left(\left|T^{*}\right|\right)^{2} v, v\right\rangle
$$

for all $u, v \in \mathbb{B}$. In this case, $\rho\left(f\left(\left|T^{*}\right|\right)\right) \leq \rho(f(|T|))$.
Proof. Since $T|T|^{2}=\left|T^{*}\right|^{2} T$, it follows that $T|T|=\left|T^{*}\right| T$. From Lemma 2.7 it follows that $\left(\begin{array}{cc}|T| & T^{*} \\ T & \left|T^{*}\right|\end{array}\right) \geq 0$ in $\mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)$. This is true if and only if

$$
|\langle T u, v\rangle|^{2} \leq\langle | T|u, u\rangle\langle | T^{*}|v, v\rangle
$$

for all $u, v \in \mathbb{B}$. From Theorem 2.6 it follows that

$$
|\langle T u, v\rangle|^{2} \leq\left\langle f(|T|)^{2} u, u\right\rangle\left\langle f\left(\left|T^{*}\right|\right)^{2} v, v\right\rangle
$$

for all $u, v \in \mathbb{B}$. Proceeding similarly as in Theorem 2.2 , one can show that $\rho\left(f\left(\left|T^{*}\right|\right)\right) \leq \rho(f(|T|))$.

3. Absolute value of an operator in $L_{a}^{2}(\mathbb{D})$

In this section, we again concentrate on the Berezin transform of the absolute value of a bounded linear operator defined on $L_{a}^{2}(\mathbb{D})$. We have established that T is self-adjoint and $T^{2}=T^{3}$ if and only if there exists a normal idempotent operator S on $L_{a}^{2}(\mathbb{D})$ such that $\rho(T)=\rho\left(|S|^{2}\right)=\rho\left(\left|S^{*}\right|^{2}\right)$, where $\rho(T)$ is the Berezin transform of T. We also establish that if T is compact and $\left|T^{n}\right|=|T|^{n}$ for some $n \in \mathbb{N}, n \neq 1$, then $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for all $n \in \mathbb{N}$. Further, if $T=U|T|$ is the polar decomposition of T then we present necessary and sufficient conditions on T such that $|T|^{1 / 2}$ intertwines with U and a contraction X belonging to $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$.
Theorem 3.1. Let $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. The operator A is self-adjoint and $A^{2}=A^{3}$ if and only if there exists a normal idempotent operator $B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $|B|^{2}=\left|B^{*}\right|^{2}=A$. In this case, $\rho(A)=\rho\left(|B|^{2}\right)=\rho\left(\left|B^{*}\right|^{2}\right)$.

Proof. If $B B^{*}=A=B^{*} B$, then

$$
A^{3}=B^{*} B B B^{*} B^{*} B=B^{*} B^{2} B^{*^{2}} B=B^{*} B B^{*} B=A^{2}
$$

and A is self-adjoint. Now assume that $A=A^{*}$ and that $A^{3}=A^{2}$. Let \widetilde{P} and \widetilde{Q} be projections onto $\overline{\text { Range } A}$ and ker $A=(\overline{\text { Range } A})^{\perp}$, respectively. Then $A \widetilde{P} f=$ $\widetilde{P} A f=A f$ and $A \widetilde{Q} f=\widetilde{Q} A f=0$. Since $A^{3} f=A^{2} f$, it holds that $A\left(A^{2}-A\right) \times$ $f=0$. Thus the vector $\left(A^{2}-A\right) f \in \operatorname{ker} A$. This impllies that $\widetilde{P}\left(A^{2}-A\right) f=0$ or $\widetilde{P} A^{2}-A=0$. Hence by taking adjoints, we obtain $A^{2} \widetilde{P}-A=0$. Therefore $A(A \widetilde{P} f-f)=0$ for any $f \in L_{a}^{2}(\mathbb{D})$. Consequently, $A \widetilde{P} f-f \in \operatorname{ker} A$. That is, $\widetilde{P} A \widetilde{P} f-\widetilde{P} f=0$. Hence $\widetilde{P} A \widetilde{P}=\widetilde{P}$. Similarly, one can show that $(I-\widetilde{Q}) A(I-\widetilde{Q})=$ $I-\widetilde{Q}$. Now $A^{3}=A^{2}$ implies that $A^{3} \geq 0$. Since $A=A^{*}$, and $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, we obtain

$$
0 \leq\left\langle A^{2} f, f\right\rangle=\left\langle A^{3} f, f\right\rangle=\left\langle A^{2} f, A f\right\rangle=\langle A(A f), A f\rangle
$$

Thus, if $h \in \overline{\text { Range } A},\langle A h, h\rangle \geq 0$. Now let $f \in L_{a}^{2}(\mathbb{D})$. Then $f=g+h$, where $g \in \operatorname{ker} A$ and $h \in(\operatorname{ker} A)^{\perp}=\overline{\text { Range } A}$. Now

$$
\begin{aligned}
\langle A f, f\rangle & =\langle A(g+h), g+h\rangle \\
& =\langle A g, g\rangle+\langle A g, h\rangle+\langle A h, g\rangle+\langle A h, h\rangle \\
& =\langle A h, h\rangle \geq 0
\end{aligned}
$$

Thus $A \geq 0$. Now $\widetilde{P} A^{2} \widetilde{P}=\widetilde{P} A^{3} \widetilde{P}=\widetilde{P} A \widetilde{P} A \widetilde{P} A \widetilde{P}=\widetilde{P} A \widetilde{P}=A$. Similarly, one can establish that $(I-\widetilde{Q}) A^{2}(I-\widetilde{Q})=A$. Since \widetilde{P} is positive, we have $A \widetilde{P} A \geq 0$ and $(A \widetilde{P} A)^{2}=A \widetilde{P} A^{2} \widetilde{P} A=A A A=A^{2}$. Since each positive operator has a unique positive square root, it holds that $A \widetilde{P} A=A$. Similarly, it is not difficult to see that $A(I-\widetilde{Q}) A=A$. Now define the operator B by $B=\widetilde{P} A$. This implies that $B^{*}=A \widetilde{P}$. Since $B^{2}=\widetilde{P} A \widetilde{P} A=\widetilde{P} A=B$, the operator B is an idempotent. Also $B B^{*}=\widetilde{P} A^{2} \widetilde{P}=A$ and $B^{*} B=A \widetilde{P} A=A$. Thus B is normal. Since $|B|^{2}=B^{*} B=B B^{*}=\left|B^{*}\right|^{2}=A$, the result follows.

An operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is said to be hyponormal if $T^{*} T \geq T T^{*}$. It is p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ for a positive number p and log-hyponormal if T is invertible and $\log T^{*} T \geq \log T T^{*}$. The operator T is paranormal if $\left\|T^{2} f\right\| \geq$ $\|T f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. The operator T is said to be quasinormal if T commutes with $|T|^{2}$. Let $T=V|T|$ be the polar decomposition of T. If T is quasinormal, then it is not difficult to see that $V|T|=|T| V$. Let $f:[0, \infty) \longrightarrow \mathbb{R}$ be a continuous function. The function f is called operatormonotone if $A, B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right), 0 \leq A \leq B$, implies that $f(A) \leq f(B)$.

Lemma 3.2. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ be invertible. Then the following hold.
(i) If T is log-hyponormal, then $\left|T^{2}\right| \geq|T|^{2}$.
(ii) If $\left|T^{2}\right| \geq|T|^{2}$, then T is paranormal.

Proof.
(i) Suppose that T is log-hyponormal. Then $\log |T|^{2} \geq \log \left|T^{*}\right|^{2}$. From [6] and [7], it follows that $|T|^{2 p} \geq\left(|T|^{p}\left|T^{*}\right|{ }^{2 p}|T|^{p}\right)^{1 / 2}$ for all $p \geq 0$. Let $p=1$. Then we get

$$
\begin{equation*}
|T|^{2} \geq\left(|T|\left|T^{*}\right|^{2}|T|\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Again from [6] and [7], it follows that (3.1) holds if and only if

$$
|T|^{2} \geq|T| T\left(T^{*}|T|^{2} T\right)^{-1 / 2} T^{*}|T|
$$

That is, if and only if $\left(T^{*}|T|^{2} T\right)^{1 / 2} \geq T^{*} T$. This is equivalent to say that $\left|T^{2}\right| \geq|T|^{2}$.
(ii) Suppose that $\left|T^{2}\right| \geq|T|^{2}$. Then for $f \in L_{a}^{2}(\mathbb{D})$ and $\|f\|=1$, we obtain from [12] that

$$
\begin{aligned}
\left\|T^{2} f\right\|^{2} & =\left\langle\left(T^{2}\right)^{*} T^{2} f, f\right\rangle \\
& \left.=\left.\langle | T^{2}\right|^{2} f, f\right\rangle \\
& \geq\langle | T^{2}|f, f\rangle^{2} \\
& \left.\geq\left.\langle | T\right|^{2} f, f\right\rangle^{2}=\|T f\|^{4} .
\end{aligned}
$$

Thus T is paranormal.
Theorem 3.3. Let $T \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$ and $\left|T^{n}\right|=|T|^{n}$ for some $n \in \mathbb{N}, n \neq 1$. Then (2.3) holds and $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for all $n \in \mathbb{N}$.

Proof. Let $T \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$, and let the spectral representation of T be as follows: $T=\sum_{i=1}^{\infty} \lambda_{i}\left(\psi_{i} \otimes \phi_{i}\right)$, where $\left\{\psi_{i}\right\}_{i=1}^{\infty}$ and $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ are two orthonormal bases for $L_{a}^{2}(\mathbb{D})$, where $\left|\lambda_{i}\right| \longrightarrow 0$ as $i \longrightarrow \infty$. Then

$$
|T|=\sum_{i=1}^{\infty}\left|\lambda_{i}\right| \phi_{i} \otimes \phi_{i}
$$

and

$$
\left|T^{*}\right|=\sum_{i=1}^{\infty}\left|\lambda_{i}\right| \psi_{i} \otimes \psi_{i}
$$

Since the eigenspace corresponding to $\left|\lambda_{1}\right|$ is finite-dimensional, there is a $k \in \mathbb{N}$ such that $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{k}\right|>\left|\lambda_{k+1}\right|$. Thus

$$
\begin{aligned}
|\lambda|^{2 m} & =\left\langle\left(T^{*} T\right)^{m} \phi_{1}, \phi_{1}\right\rangle=\left\langle T^{* m} T^{m} \phi_{1}, \phi_{1}\right\rangle \\
& =|\lambda|^{2}\left\langle\left(T^{*}\right)^{m-2} T^{m-2} T \psi_{1}, T \psi_{1}\right\rangle \\
& \leq\left|\lambda_{1}\right|^{2 m-2}\left\langle T \psi_{1}, T \psi_{1}\right\rangle \leq\left|\lambda_{1}\right|^{2 k}
\end{aligned}
$$

and therefore $\left\langle T^{*} T \psi_{1}, \psi_{1}\right\rangle=\left|\lambda_{1}\right|^{2}$. Hence $\left(\left|\lambda_{1}\right|^{2}-T^{*} T\right) \psi_{1}=0$ as $\left|\lambda_{1}\right|^{2}-T^{*} T \geq 0$. Proceeding similarly, one can show that $\left\{\psi_{1}, \ldots, \psi_{j}\right\} \subset \operatorname{ker}\left(T^{*} T-\left|\lambda_{1}\right|^{2}\right)$. Thus $\operatorname{ker}\left(T T^{*}-\left|\lambda_{1}\right|^{2}\right)=\operatorname{ker}\left(T^{*} T-\left|\lambda_{1}\right|^{2}\right)=M$ (let) and M reduces T to the normal operator. That is, $T^{*} T \psi_{i}=T T^{*} \psi_{i}$ for $1 \leq i \leq m$. Repeating this procedure to the other restrictions of T, one can derive that $T^{*} T \psi_{i}=T T^{*} \psi_{i}$ for all $i \in \mathbb{N}$.

From Theorem 2.4 it follows that T satisfies (2.3). Further, since T is normal, it holds that $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for all $n \in \mathbb{N}$.
Theorem 3.4. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Then the following are equivalent:
(i) $\rho\left(T|T|^{2}\right)=\rho\left(|T|^{2} T\right)$;
(ii) $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for all $n \in \mathbb{N}$;
(iii) there are integers k and m such that $\rho\left(\left|T^{n}\right|\right)=\rho\left(|T|^{n}\right)$ for $n=k, k+1, m$ and $m+1$, where $1 \leq k<m$.

Proof. From Theorem 3.3 it is not difficult to verify that (i) implies (ii) and that (ii) implies (iii). We will only verify that (iii) implies (i). From (iii), it follows that $\left|T^{n}\right|=|T|^{n}$ for $n=k, k+1, m$, and $m+1$ for $1 \leq k \leq m$. Hence using mathematical induction, one can show that

$$
T^{*}\left(T^{*} T\right)^{m} T=T^{*}\left(T^{* m} T^{m}\right) T=\left(T^{*} T\right)^{m+1}=T^{*}\left(T T^{*}\right)^{m} T
$$

Thus it follows that

$$
\widetilde{Q}\left(T^{*} T\right)^{m} \widetilde{Q}=\widetilde{Q}\left(T T^{*}\right)^{m} \widetilde{Q}=\left(T T^{*}\right)^{m}
$$

where \widetilde{Q} is the projection map from $L_{a}^{2}(\mathbb{D})$ onto $\overline{(\text { Range } T)}$. Similarly, it follows that $\widetilde{Q}\left(T^{*} T\right)^{k} \widetilde{Q}=\left(T T^{*}\right)^{k}$, and hence

$$
\left(\widetilde{Q}\left(T^{*} T\right)^{m} \widetilde{Q}\right)^{\frac{k}{m}}=\widetilde{Q}\left(T^{*} T\right)^{k} \widetilde{Q}=\widetilde{Q}\left(\left(T^{*} T\right)^{m}\right)^{\frac{k}{m}} \widetilde{Q}
$$

Since $f(t)=t^{\frac{k}{m}}$ is an operator-monotone function, it follows from Theorem 3.3 and [1] that \widetilde{Q} commutes with $\left(T^{*} T\right)^{m}$ and hence with $T^{*} T$. Hence $\left(\widetilde{Q} T^{*} T \widetilde{Q}\right)^{m}=$ $\left(T T^{*}\right)^{m}$ and therefore $\widetilde{Q} T^{*} T \widetilde{Q}=T T^{*}$. Thus

$$
T^{*} T T=T^{*} T \widetilde{Q} T=\widetilde{Q} T^{*} T \widetilde{Q} T=T T^{*} T
$$

and therefore $|T|^{2} T=T|T|^{2}$ and $\rho\left(|T|^{2} T\right)=\rho\left(T|T|^{2}\right)$.
Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Suppose that

$$
\begin{equation*}
\Theta_{|T|}(x, \bar{y}) K(x, \bar{y}) \gg\left|\Theta_{T}(x, \bar{y}) K(x, \bar{y})\right| \tag{3.2}
\end{equation*}
$$

for all $x, y \in \mathbb{D}$. It is not difficult to see that (2.3) implies that (3.2). Thus if T is normal then (3.2) holds. Let $A, B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. The operator $X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ intertwines A and B if $A X=X B$. Let

$$
\begin{aligned}
\mathcal{B}= & \left\{X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right): X=2\left(I_{\mathcal{L}\left(L_{a}^{2}\right)}-C^{*} C\right)^{1 / 2} C\right. \\
& \text { where } \left.C \in \mathcal{L}\left(L_{a}^{2}\right) \text { and }\|C\| \leq 1\right\}
\end{aligned}
$$

For $X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, let

$$
w(X)=\sup \left\{|\langle X f, f\rangle|: f \in L_{a}^{2}(\mathbb{D}),\|f\|=1\right\}
$$

the numerical radius of X. It is well known (see [11]) that $w(|X|)=\|X\|$.

Theorem 3.5. Let $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T=U|T|$ be the polar decompositions of T. Then (3.2) holds for all $x, y \in \mathbb{D}$ if and only if $|T|^{1 / 2}$ intertwines with U and an operator $X \in \mathcal{B}$. In this case, there is a sequence of operators $T_{n} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ which converges to U strongly, and there is a sequence $S_{n} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ which converges to X weakly and $S_{n} \in \mathcal{B}$ for all n.

Proof. Suppose that (3.2) holds. Then

$$
\Theta_{|T|}(x, \bar{y}) K(x, \bar{y}) \gg\left|\Theta_{T}(x, \bar{y}) K(x, \bar{y})\right|
$$

for all $x, y \in \mathbb{D}$. This implies that

$$
\langle | T\left|\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{i=1}^{n} c_{i} K_{x_{i}}\right\rangle \geq\left|\left\langle T\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{i=1}^{n} c_{i} K_{x_{i}}\right\rangle\right|
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{D}$ and $c_{j}, j=1, \ldots, n$ are constants. Since $\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, it holds that $|\langle T f, f\rangle| \leq\langle | T|f, f\rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$. For $n \in \mathbb{N}$, define $S_{n} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ by

$$
S_{n}=\left(|T|+\frac{1}{n}\right)^{-1 / 2} U\left(|T|+\frac{1}{n}\right)^{1 / 2}
$$

and $T_{n}=T\left(|T|+\frac{1}{n}\right)^{-1}$. Let $\left\{E_{\lambda}\right\}$ be the spectral family for $|T|$. Then T_{n} strongly converges to $I-E_{0}$ as $n \longrightarrow \infty$. The reason is as follows.

Notice that $|T|=\int_{0}^{\infty} \lambda d E_{\lambda}$ is the spectral decomposition of $|T|$. Let

$$
V_{n}=|T|\left(|T|+\frac{1}{n}\right)^{-1}
$$

Then $V_{n} E_{0} f=\left(|T|+\frac{1}{n}\right)^{-1}|T| E_{0} f=0$ for $f \in L_{a}^{2}(\mathbb{D})$ and

$$
\begin{aligned}
\left\|V_{n} f-\left(I-E_{0}\right) f\right\|^{2} & =\left\|\left(V_{n}-I\right)\left(I-E_{0}\right) f\right\|^{2} \\
& =\int_{0}^{\infty}\left|\frac{\lambda}{\lambda+\frac{1}{n}}-1\right|^{2} d\left\|E_{\lambda}\left(I-E_{0}\right) f\right\|^{2} \\
& =\int_{0}^{\infty}\left|\frac{\frac{1}{n}}{\lambda+\frac{1}{n}}\right|^{2} d\left\|E_{\lambda}\left(I-E_{0}\right) f\right\|^{2}
\end{aligned}
$$

From Lebesgue's dominated convergence theorem, it follows that V_{n} strongly converges to $I-E_{0}$ as $n \longrightarrow \infty$. Thus we have $T_{n} \longrightarrow U\left(I-E_{0}\right)$ strongly as $n \longrightarrow \infty$. Since E_{0} is the projection onto the eigenspace $\left\{f \in L_{a}^{2}(\mathbb{D}): T f=0\right\}$, we get $U E_{0}=0$. Consequently, $T_{n} \longrightarrow U$ strongly as $n \longrightarrow \infty$. Further, for all $f \in L_{a}^{2}(\mathbb{D})$,

$$
\begin{aligned}
\left\langle S_{n} f, f\right\rangle= & \left\langle U\left(|T|+\frac{1}{n}\right)^{1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle \\
= & \left\langle U\left(|T|+\frac{1}{n}\right)\left(|T|+\frac{1}{n}\right)^{-1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle \\
= & \left\langle T\left(|T|+\frac{1}{n}\right)^{-1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle \\
& +\frac{1}{n}\left\langle U\left(|T|+\frac{1}{n}\right)^{-1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle .
\end{aligned}
$$

From (3.2), it follows that

$$
\begin{aligned}
\left\langle S_{n} f, f\right\rangle & \leq\langle | T\left|\left(|T|+\frac{1}{n}\right)^{-1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle+\frac{1}{n}\left\|\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\|^{2} \\
& =\left\langle\left(|T|+\frac{1}{n}\right)\left(|T|+\frac{1}{n}\right)^{-1 / 2} f,\left(|T|+\frac{1}{n}\right)^{-1 / 2} f\right\rangle \\
& =\langle f, f\rangle=\|f\|^{2}
\end{aligned}
$$

If $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right.$), then it is known (see [9]) that $\frac{1}{2}\|S\| \leq w(S) \leq\|S\|$, where $w(S)$ is the numerical radius of S. Thus, we get $w\left(S_{n}\right) \leq 1$ and $\left\|S_{n}\right\| \leq 2$. By the Banach Alaoglu theorem (see [5, Theorem 1.23]), one can construct a subnet $\left\{S_{j}\right\}_{j \in J}$ converging weakly to some $X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ with $\|X\| \leq 2$ from the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$. Thus, we have $w(X) \leq 1$ since

$$
\langle X f, f\rangle=\lim _{j}\left\langle S_{j} f, f\right\rangle \leq\langle f, f\rangle
$$

From [2], it follows that $X \in \mathcal{B}$ and $S_{n} \in \mathcal{B}$ for all n. Now, from the definition of $\left\{S_{j}\right\}_{j \in J}$, we get

$$
\begin{equation*}
U\left(|T|+\frac{1}{F(j)}\right)^{1 / 2}=\left(|T|+\frac{1}{F(j)}\right)^{1 / 2} S_{F(j)} \tag{3.3}
\end{equation*}
$$

for some mapping $F: J \longrightarrow \mathbb{N}$ (in fact, $S_{j}=S_{F(j)}$). Hence by taking weak limits of both sides of (3.3), we obtain $U|T|^{1 / 2}=|T|^{1 / 2} X$. Conversely, assume that $U|T|^{1 / 2}=|T|^{1 / 2} X$ for some $X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ with $w(X) \leq 1$. From [2], it follows that there exists a contraction $C \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $X=2\left(I_{\mathcal{L}\left(L_{a}^{2}\right)}-C^{*} C\right)^{1 / 2} C$. Then for all $f \in L_{a}^{2}(\mathbb{D})$, we get

$$
\begin{aligned}
|\langle T f, f\rangle| & \left.=|\langle U| T|^{1 / 2}|T|^{1 / 2} f, f\right\rangle \mid \\
& \left.=|\langle | T|^{1 / 2} X|T|^{1 / 2} f, f\right\rangle \mid \\
& \left.=|\langle X| T|^{1 / 2} f,|T|^{1 / 2} f\right\rangle \mid \\
& \left.\leq\left.\langle | T\right|^{1 / 2} f,|T|^{1 / 2} f\right\rangle \\
& =\langle | T|f, f\rangle .
\end{aligned}
$$

The result follows.

References

1. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 1, Pitman, Boston, 1981. Zbl 0467.47001. MR0615736. 158, 162
2. T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15. Zbl 0258.47001. MR0318920. 164
3. S. K. Berberian, A note on hyponormal operators, Pacific J. Math. 12 (1962), 1171-1175. Zbl 0129.08605. MR0149281. DOI 10.2140/pjm.1962.12.1171. 156
4. J. B. Conway, A Course in Functional Analysis, 2nd ed., Grad. Texts in Math. 96, Springer, New York, 1990. Zbl 0706.46003. MR1070713. 151
5. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Pure Appl. Math. 49, Academic Press, New York, 1972. Zbl 0247.47001. MR0361893. 164
6. M. Fujii, T. Furuta, and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179 (1993), 161-169. Zbl 0788.47012. MR1200149. DOI 10.1016/ 0024-3795(93)90327-K. 161
7. T. Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl. 59 (1992), 180-190. Zbl 0792.47015. MR1246815. 161
8. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 2nd ed., Nauka, Moscow, 1966. Zbl 0148.30603. MR0219714. 152
9. P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Grad Texts in Math. 19, Springer, New York, 1982. Zbl 0496.47001. MR0675952. 164
10. S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. Zbl 0471.32008. MR0635928. 152
11. M. E. Omidvar, M. S. Moslehian, and A. Niknam, Some numerical radius inequalities for Hilbert space operators, Involve 2 (2009), no. 4, 469-476. Zbl 1185.47004. MR2579564. DOI 10.2140/involve.2009.2.471. 162
12. K. Zhu, Operator Theory in Function Spaces, Pure Appl. Math. 139, Dekker, New York, 1990. Zbl 0706.47019. MR1074007. 161
${ }^{1}$ P.G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar751004, Odisha, India.

E-mail address: namitadas440@yahoo.co.in
${ }^{2}$ School of Applied Sciences (Mathematics), Kilt University, Campus-3 (Kathajori Campus), Bhubaneswar-751024, Odisha, India.

E-mail address: smita_782006@yahoo.co.in

[^0]: Copyright 2018 by the Tusi Mathematical Research Group.
 Received Aug. 24, 2016; Accepted Mar. 12, 2017.
 First published online Oct. 17, 2017.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 32A36; Secondary 47B32.
 Keywords. absolute value, Berezin transform, Bergman space, positive operators, reproducing kernel.

