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Abstract. In this article, we concentrate on the Berezin transform of the
absolute value of a bounded linear operator T defined on the Bergman space
L2
a(D) of the open unit disk. We establish some sufficient conditions on T which

guarantee that the Berezin transform of |T | majorizes the Berezin transform
of |T ∗|. We have shown that T is self-adjoint and T 2 = T 3 if and only if there
exists a normal idempotent operator S on L2

a(D) such that ρ(T ) = ρ(|S|2) =
ρ(|S∗|2), where ρ(T ) is the Berezin transform of T . We also establish that if
T is compact and |Tn| = |T |n for some n ∈ N, n 6= 1, then ρ(|Tn|) = ρ(|T |n)
for all n ∈ N. Further, if T = U |T | is the polar decomposition of T , then we
present necessary and sufficient conditions on T such that |T |1/2 intertwines
with U and a contraction X belonging to L(L2

a(D)).

1. Introduction

Let D = {z ∈ C : |z| < 1}, and let dA(z) = 1
π
dx dy denote the normalized

Lebesgue area measure on D in the complex plane C. For 1 ≤ p < ∞ and
f : D −→ C Lebesgue measurable, let ‖f‖p = (

∫
D |f |

p dA)1/p. The Bergman
space Lp

a(D) is the Banach space of analytic functions f : D −→ C such that
‖f‖p < ∞. The Bergman space L2

a(D) is a Hilbert space; it is a closed subspace
(see [4]) of the Hilbert space L2(D, dA), with the inner product given by 〈f, g〉 =∫
D f(z)g(z) dA(z), f, g ∈ L2(D, dA). Let P denote the orthogonal projection of
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L2(D, dA) onto L2
a(D). LetK(z, w̄) be the function on D×D defined byK(z, w̄) =

Kz(w) =
1

(1−zw̄)2
. The function K(z, w̄) is called the reproducing kernel of L2

a(D).
For any n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn; then {en} forms an orthonormal

basis for L2
a(D). Let ka(z) =

K(z,ā)√
K(a,ā)

= 1−|a|2
(1−āz)2

. These functions ka are called the

normalized reproducing kernels of L2
a(D); it is clear that they are unit vectors in

L2
a(D). Let L∞(D, dA) be the Banach space of all essentially bounded measurable

functions f on D with ‖f‖∞ = ess sup{|f(z)| : z ∈ D}, and let H∞(D) be
the space of bounded analytic functions on D. Let L(H) be the space of all
bounded linear operators from the separable Hilbert space H into itself, and let
LC(H) be the space of all compact operators in L(H). An operator A ∈ L(H)
is called positive if 〈Ax, x〉 ≥ 0 holds for every x ∈ H, in which case we write
A ≥ 0. The absolute value of an operator A is the positive operator |A| defined
as |A| = (A∗A)1/2. If H is infinite-dimensional, then the map | · | on L(H) is not

Lipschitz-continuous. We define ρ : L(L2
a(D)) −→ L∞(D) by ρ(T )(z) = T̃ (z) =

〈Tkz, kz〉, z ∈ D. A function g(x, ȳ) on D×D is called of positive type (or positive
definite), written g � 0, if

n∑
j,k=1

cjckg(xj, xk) ≥ 0 (1.1)

for any n-tuple of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ D. We
write g � h if g − h� 0. We say that Υ ∈ A if Υ ∈ L∞(D), and it is such that

Υ(z) = Θ(z, z̄), (1.2)

where Θ(x, ȳ) is a function on D × D, meromorphic in x and conjugate-
meromorphic in y and there exists a constant c > 0 such that

cK(x, ȳ) � Θ(x, ȳ)K(x, ȳ) � 0 for all x, y ∈ D.

The function Θ given in (1.2), if it exists, is uniquely determined by Υ. (For more
details, see [8] and [10].)

2. Majorization of Berezin transform

In this section, we present certain sufficient conditions on T ∈ L(L2
a(D)) which

guarantee that the Berezin transform of |T | majorizes the Berezin transform
of |T ∗|.

Theorem 2.1. If φ ∈ A and 0 ≤ φ, then there exists a positive operator S ∈
L(L2

a(D)) such that φ(z) = S̃(z) for all z ∈ D.

Proof. To prove the theorem, it suffices to show that 0 ≤ φ ∈ A if and only
if there exists a positive operator S ∈ L(L2

a) such that φ(z) = 〈Skz, kz〉 for all

z ∈ D. So let S ∈ L(L2
a(D)) be a positive operator. Let Θ(x, ȳ) = 〈SKy ,Kx〉

〈Ky ,Kx〉 ,

where Kx = K(·, x̄) is the unnormalized reproducing kernel at x. Then Θ(x, ȳ)
is a function on D×D, meromorphic in x, and conjugate-meromorphic in y. Let
φ(z) = Θ(z, z̄).
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Then φ(z) = 〈Skz, kz〉 for all z ∈ D and φ ∈ L∞(D), as S is bounded. Now let
f =

∑n
j=1 cjKxj

where cj are constants and xj ∈ D for j = 1, 2, . . . , n. Since S

is bounded and positive, there exists a constant c > 0 such that 0 ≤ 〈Sf, f〉 ≤
c‖f‖2. But

〈Sf, f〉 =
〈
S
( n∑

j=1

cjKxj

)
,

n∑
j=1

cjKxj

〉
=

n∑
j,k=1

cjck〈SKxj
, Kxk

〉

=
n∑

j,k=1

cjckΘ(xk, xj)K(xk, xj)

and c‖f‖2 = c〈f, f〉 = c
∑n

j,k=1 cjckK(xk, xj). Hence we get

cK(x, ȳ) � Θ(x, ȳ)K(x, ȳ) � 0.

Thus φ ∈ A.
Now let φ ∈ A and φ(z) = Θ(z, z̄), where Θ(x, ȳ) is a function on D × D,

meromorphic in x, and conjugate-meromorphic in y. We will prove the existence
of a positive, bounded operator S ∈ L(L2

a(D)) such that φ(z) = 〈Skz, kz〉. Let

Sf(x) =

∫
D
f(z)Θ(x, z̄)K(x, z̄) dA(z). (2.1)

Indeed,

Sf(x) = 〈Sf,Kx〉
= 〈f, S∗Kx〉

=

∫
D
f(z)〈S∗Kx, Kz〉 dA(z)

=

∫
D
f(z)〈SKz, Kx〉 dA(z)

=

∫
D
f(z)Θ(x, z̄)K(x, z̄) dA(z).

Then

〈SKy, Kx〉 =
∫
D
Ky(z)Θ(x, z̄)K(x, z̄) dA(z)

=

∫
D
Ky(z)Θ(x, z̄)Kx(z) dA(z)

=
〈
Θ(x, z̄)Kx, Ky

〉
= Θ(x, ȳ)〈Kx, Ky〉
= Θ(x, ȳ)〈Ky, Kx〉.
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Hence Θ(x, ȳ) = 〈SKy ,Kx〉
〈Ky ,Kx〉 and φ(z) = Θ(z, z̄) = 〈Skz, kz〉. We will now prove

that S is positive and bounded. That is, there exists a constant c > 0 such that
0 ≤ 〈Sf, f〉 ≤ c‖f‖2 for all f ∈ L2

a(D). Since φ ∈ A, there exists a constant c > 0
such that for all x, y ∈ D,

cK(x, ȳ) � Θ(x, ȳ)K(x, ȳ) � 0. (2.2)

Let f =
∑n

j=1 cjKxj
, where cj are constants, xj ∈ D for j = 1, 2, . . . , n. Then

from (2.2) it follows that 〈Sf, f〉 =
∑n

j,k=1 cjckΘ(xk, xj)K(xk, xj) ≥ 0 and that

〈Sf, f〉 =
n∑

j,k=1

cjckΘ(xk, xj)K(xk, xj)

≤ c
n∑

j,k=1

cjckK(xk, xj)

= c‖f‖2.

Since the set of vectors {
∑n

j=1 cjKxj
, xj ∈ D, j = 1, 2, . . . , n} is dense in L2

a(D),
we have 0 ≤ 〈Sf, f〉 ≤ c‖f‖2 for all f ∈ L2

a(D) and thus S is bounded and
positive. �

Theorem 2.2. Let T ∈ L(L2
a(D)). Then∣∣〈Tf, g〉∣∣2 ≤ 〈

|T |f, f
〉〈
|T |g, g

〉
, (2.3)

where f, g ∈ B = {
∑n

j=1 cjKyj , cj, j = 1, 2, . . . , n are constants, yj ∈ D, j =

1, . . . , n} if and only if

Θ|T |(x, ȳ)K(x, ȳ) � Θ|T ∗|(x, ȳ)K(x, ȳ) (2.4)

holds for all x, y ∈ D. If either (2.3) or (2.4) holds, then ρ(|T ∗|) ≤ ρ(|T |).

Proof. Let T ∈ L(L2
a(D)). Suppose that (2.3) holds for all f, g ∈ B. Let f =∑n

j=1 cjKyj , where cj are constants, yj ∈ D, for j = 1, 2, . . . , n and g =∑m
i=1 diKxi

, where di are constants, xi ∈ D for i = 1, 2, . . . ,m. Then by (2.3),∣∣〈Tf, g〉∣∣ ≤ 〈
|T |f, f

〉1/2〈|T |g, g〉1/2.
Since the set of vectors {

∑
cjKxj

, xj ∈ D, j = 1, 2, . . . , n} is dense in L2
a(D), we

have ∣∣〈Tf, g〉∣∣2 ≤ 〈
|T |f, f

〉〈
|T |g, g

〉
(2.5)

for all f, g ∈ L2
a(D). It is straightforward to see that (2.5) implies (2.3). Thus

(2.3) holds if and only if (2.5) holds. Now suppose that, for all x, y ∈ D,

Θ|T |(x, ȳ)K(x, ȳ) � Θ|T ∗|(x, ȳ)K(x, ȳ).

This then implies that 〈|T |Ky, Kx〉 ≥ 〈|T ∗|Ky, Kx〉 for all x, y ∈ D. Thus
n∑

i,j=1

cjci
〈
|T |Kxj

, Kxi

〉
≥

n∑
i,j=1

cjci
〈
|T ∗|Kxj

, Kxi

〉
.
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Hence 〈
|T |

( n∑
j=1

cjKxj

)
,
( n∑

i=1

ciKxi

)〉
≥

〈
|T ∗|

( n∑
j=1

cjKxj

)
,
( n∑

i=1

ciKxi

)〉
,

where x1, x2, . . . , xn ∈ D and cj, j = 1, . . . , n are constants. Since{ n∑
j=1

cjKxj
, xj ∈ D, j = 1, . . . , n

}
is dense in L2

a(D), we have 〈
|T |g, g

〉
≥

〈
|T ∗|g, g

〉
(2.6)

for all g ∈ L2
a(D). Thus (2.4) implies (2.6). Now suppose that (2.6) holds. Then〈

|T |
( n∑

j=1

cjKxj

)
,
( n∑

i=1

ciKxi

)〉
≥

〈
|T ∗|

( n∑
j=1

cjKxj

)
,

n∑
i=1

ciKxi

〉
,

where x1, . . . , xn ∈ D and cj, j = 1, . . . , n are constants. This implies that

n∑
i,j=1

cjci
〈
|T |Kxj

, Kxi

〉
≥

n∑
i,j=1

cjci
〈
|T ∗|Kxj

, Kxi

〉
.

Thus 〈|T |Ky, Kx〉 ≥ 〈|T ∗|Ky, Kx〉 for all x, y ∈ D. Hence (2.6) implies (2.4). Now
we will show that (2.5) holds if and only if (2.6) holds. Let T = U |T | be the polar
decomposition of T . Then, since |T ∗| = U |T |U∗, we obtain∣∣〈Tf, g〉∣∣2 = ∣∣〈U |T |1/2|T |1/2f, g〉∣∣2

=
∣∣〈|T |1/2f, |T |1/2U∗g

〉∣∣2
≤

∥∥|T |1/2f∥∥2∥∥|T |1/2U∗g
∥∥2

=
〈
|T |f, f

〉〈
|T ∗|g, g

〉
;

for all f, g ∈ L2
a(D). Now if (2.6) holds, then |〈Tf, g〉|2 ≤ 〈|T |f, f〉〈|T |g, g〉 for all

f, g ∈ L2
a(D). Thus (2.6) implies (2.5). If (2.5) holds, then we have∣∣〈|T ∗|f, f

〉∣∣2 = ∣∣〈U |T |U∗f, f
〉∣∣2

=
∣∣〈TU∗f, f〉

∣∣2 ≤ 〈
|T |U∗f, U∗f

〉〈
|T |f, f

〉
=

〈
U |T |U∗f, f

〉〈
|T |f, f

〉
=

〈
|T ∗|f, f

〉〈
|T |f, f

〉
.

Hence 〈|T ∗|f, f〉 ≤ 〈|T |f, f〉 for all f ∈ L2
a(D). This also implies that |̃T ∗|(z) ≤

|̃T |(z) for all z ∈ D. That is, ρ(|T ∗|) ≤ ρ(|T |). �

Lemma 2.3. If S, T ∈ L(L2
a(D)) are normal and S∗S = T ∗T , then ρ(|S|) =

ρ(|T |).
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Proof. Let S∗S = T ∗T . Let S = U |S| and T = V |T | be the polar decompositions
of S and T . Since S and T are normal, it holds that U and V are unitary operators.
Now S∗S = T ∗T implies that |S|U∗U |S| = |T |V ∗V |T |. Thus |S|2 = |T |2. Since
|S|2 and |T |2 are positive and they have unique positive square roots |S| and |T |,
we have |S| = |T |, and therefore ρ(|S|) = ρ(|T |). �

If T is normal, then T ∗T = TT ∗. That is, 〈|T ∗|f, f〉 ≤ 〈|T |f, f〉 for all f ∈
L2
a(D). Hence (2.3) holds. But (2.3) does not imply that T is normal. But when

T ∈ LC(L2
a(D)), that means that (2.3) implies that T is normal.

Theorem 2.4. Let T ∈ LC(L2
a(D)). Then (2.3) holds for all x, y ∈ D if and only

if T is normal. In this case, ρ(|T |) = ρ(|T ∗|).

Proof. Let T = U |T | be the polar decomposition of T . We will show that if
〈|T ∗|f, f〉 ≤ 〈|T |f, f〉 for all f ∈ L2

a(D) then T is normal. Let S = U |T |1/2. Then

SS∗ = U |T |U∗ = |T ∗| ≤ |T | = |T |1/2U∗U |T |1/2 = S∗S.

Thus S is hyponormal. Now S is compact as T is compact. It follows from [3] that
a compact hyponormal operator in L(L2

a(D)) is normal. Thus S is normal and
UU∗ = U∗U and U |T |1/2 = |T |1/2U . Thus U |T | = |T |U , and hence T is normal.
From Lemma 2.3, it follows that ρ(|T |) = ρ(|T ∗|). �

Theorem 2.5. Let A,B ∈ L(L2
a(D)), and assume that Range(A) and Range(B)

are closed. Then ∣∣〈Cf, g〉∣∣2 ≤ 〈Af, f〉〈Bg, g〉, (2.7)

where f, g ∈ B if and only if A ≥ 0, B ≥ 0 and there exists a contraction K ∈
L(L2

a(D)) such that ρ(C) = ρ(B1/2KA1/2).

Proof. Suppose that (2.7) holds for all f, g ∈ B. Let f =
∑n

j=1 cjKyj and g =∑m
i=1 diKxi

, where cj and di are constants and xi, yj ∈ D for all i = 1, . . . ,m and
j = 1, . . . , n. Then ∣∣〈Cf, g〉∣∣ ≤ 〈Af, f〉1/2〈Bg, g〉1/2.
Since the set of vectors {

∑
cjKxj

, xj ∈ D, j = 1, . . . , n} is dense in L2
a(D), we

have |〈Cf, g〉|2 ≤ 〈Af, f〉〈Bg, g〉 for all f, g ∈ L2
a(D). Now for f, g ∈ L2

a(D), we
have 〈(

A C∗

C B

)(
f
g

)
,

(
f
g

)〉
= 〈Af, f〉+ 〈C∗g, f〉+ 〈Cf, g〉+ 〈Bg, g〉

= 〈Af, f〉+ 〈Bg, g〉+ 2Re〈Cf, g〉
≥ 2〈Af, f〉1/2〈Bg, g〉1/2 + 2Re〈Cf, g〉
≥ 2

∣∣〈Cf, g〉∣∣+ 2Re〈Cf, g〉
≥ 2

∣∣〈Cf, g〉∣∣− 2
∣∣〈Cf, g〉∣∣ = 0.

ThusD = ( A C∗
C B ) is a positive operator in B(L2

a⊕L2
a). This impllies thatD = E∗E

for some E ∈ L(L2
a ⊕L2

a). Let E = R⊕ S, where R,S ∈ L(L2
a, L

2
a ⊕L2

a). That is,
if f, g ∈ L2

a(D), then
(R⊕ S)(f ⊕ g) = Rf ⊕ Sg = E(f ⊕ 0) + E(0⊕ g) = E(f ⊕ g).
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Then

D =

(
A C∗

C B

)
= E∗E

=

(
R∗

S∗

)
(R S )

=

(
R∗R R∗S
S∗R S∗S

)
.

Thus it follows that A = R∗R ≥ 0, B = S∗S ≥ 0, and C∗ = R∗S. Since Range(A)
is closed, Range(B) is closed; since Range(A) = RangeA1/2 and Range(B) =
RangeB1/2, it holds that RangeR and RangeS are closed. Since A = R∗R and
B = S∗S, there exist partial isometries U1 and U2 in L(L2

a(D)) such that R =
U1A

1/2 and S = U2B
1/2 and U1U

∗
1 = PRange(R), U

∗
2U2 = PM, where PRange(R)

denotes the projection onto Range(R) and PM denotes an orthogonal projection
onto a closed subspace M of L2

a(D). Thus C∗ = R∗S = A1/2U∗
1U2B

1/2. Let
K∗ = U∗

1U2. Then

KK∗ = U∗
2U1U

∗
1U2 = U∗

2PRange(R)U2

≤ U∗
2 IL(L2

a⊕L2
a)
U2 = U∗

2U2 = PM

≤ IL(L2
a)
.

Hence C∗ = A1/2K∗B1/2. That is, C = B1/2KA1/2 and therefore, ρ(C) =
ρ(B1/2KA1/2) for some contraction K ∈ L(L2

a(D)). Let A,B ∈ L(L2
a(D)), where

A ≥ 0, B ≥ 0, and ρ(C) = ρ(B1/2KA1/2) for some contraction K ∈ L(L2
a(D)).

This implies that C = B1/2KA1/2 and ‖K∗‖ = ‖K‖ ≤ 1. That is, KK∗ ≥ 0 and
〈KK∗f, f〉 ≤ ‖f‖2 for all f ∈ L2

a(D). Hence∣∣〈K∗f, g〉
∣∣2 ≤ ‖K∗f‖2‖g‖2 ≤ ‖f‖2‖g‖2.

Now〈(
IL(L2

a)
K

K∗ IL(L2
a)

)(
f
g

)
,

(
f
g

)〉
= 〈f, f〉+ 〈Kg, f〉+ 〈K∗f, g〉+ 〈g, g〉

= 〈f, f〉+ 〈g, g〉+ 2Re〈K∗f, g〉
≥ 2〈f, f〉1/2〈g, g〉1/2 + 2Re〈K∗f, g〉
≥ 2

∣∣〈K∗f, g〉
∣∣+ 2Re〈K∗f, g〉

≥ 2
∣∣〈K∗f, g〉

∣∣− 2
∣∣〈K∗f, g〉

∣∣ = 0.

Thus (
IL(L2

a)
K

K∗ IL(L2
a)
) ≥ 0. It then follows from

(
A C∗

C B

)
=

(
A1/2 0
0 B1/2

)(
IL(L2

a)
K∗

K IL(L2
a)

)(
A1/2 0
0 B1/2

)
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that ( A C∗
C B ) ≥ 0 in L(L2

a ⊕ L2
a). Now from [1], it follows that∣∣∣∣〈(

A C∗

C B

)(
f
0

)
,

(
0
g

)〉∣∣∣∣2
≤

〈(
A C∗

C B

)(
f
0

)
,

(
f
0

)〉〈(
A C∗

C B

)(
0
g

)
,

(
0
g

)〉
for all f, g ∈ L2

a(D). A direct computation of these inner products now yields
|〈Cf, g〉|2 ≤ 〈Af, f〉〈Bg, g〉 for all f, g ∈ L2

a(D), and therefore (2.7) holds for all
f, g ∈ B ⊂ L2

a(D). �

Theorem 2.6. Let A,B, and C be operators in L(L2
a(D)) such that A and B are

positive and BC = CA. If ∣∣〈Cu, v〉∣∣2 ≤ 〈Au, u〉〈Bv, v〉 (2.8)

for all u, v ∈ B, then ∣∣〈Cu, v〉∣∣2 ≤ 〈
f(A)2u, u

〉〈
g(B)2v, v

〉
(2.9)

for all u, v ∈ B, where f and g are nonnegative continuous functions on [0,∞)
that satisfy the relation f(t)g(t) = t for all t ∈ [0,∞).

Proof. From the proof of Theorem 2.5, it follows that the conditions (2.8) and

(2.9) are equivalent to the fact that ( A C∗
C B ) ≥ 0 and ( f(A)2 C∗

C g(B)2
) ≥ 0 in

L(L2
a ⊕ L2

a). Suppose that A and B are invertible. The proof follows from the
following observations:

(i) (
f(A)2 C∗

C g(B)2

)
=

(
f(A)A−1/2 0

0 g(B)B−1/2

)
×
(
A C∗

C B

)(
f(A)A−1/2 0

0 g(B)B−1/2

)
.

(ii) Since BC = CA, it follows that h(B)C = Ch(A) for all continuous func-
tions h on [0,∞).

(iii) Since f(t)g(t) = t for all t ∈ [0,∞), we obtain f(D)g(D) = D for any
positive operator D ∈ L(L2

a(D)). Thus g(B)B−1/2Cf(A)A−1/2 = C. This
last statement can be verified as follows. From (ii) it follows that

g(B)CA1/2 = Cg(A)A1/2 = CA1/2g(A).

Now

CA1/2g(A) = g(B)CA1/2

= g(B)B1/2C = g(B)B−1/2BC

= g(B)B−1/2CA.

Thus g(B)B−1/2Cf(A) = CA1/2. Hence g(B)B−1/2Cf(A)A−1/2 = C.
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We therefore have ( A C∗
C B ) ≥ 0 if and only if ( f(A)2 C∗

C g(B)2
) ≥ 0. For the general

case, apply the argument above to the invertible operators Aε = A + ε and
Bε = B + ε for ε > 0 and then let ε −→ 0. �

For a self-adjoint operator T ∈ L(H), it follows from the spectral theorem that
−|T | ≤ T ≤ |T | or, equivalently, that |〈Tx, x〉| ≤ 〈|T |x, x〉 for all x ∈ H. But this
is not true for arbitrary operators. For example, let T = ( 0 1

0 0 ), x = ( 2
1 ). Then

|〈Tx, x〉| = 2 and 〈|T |x, x〉 = 1.

Lemma 2.7. If T is an operator in L(H), then ( |T | T ∗

T |T ∗| ) is a positive operator

in L(H ⊕H), where |T | = (T ∗T )1/2 and |T ∗| = (TT ∗)1/2.

Proof. On H ⊕H, let S = ( 0 T ∗
T 0 ). Then S is self-adjoint and S∗S = ( T ∗T 0

0 TT ∗ ).
By the uniqueness of the square root of a positive operator, it follows that |S| =
( |T | 0

0 |T ∗| ). Since S is self-adjoint, it follows by the spectral theorem that S + |S|
is positive. Therefore, ( |T | T ∗

T |T ∗| ) is positive. �

Corollary 2.8. Let T ∈ L(L2
a(D)), and let f and g be as in the preceding theorem.

Then ∣∣〈Tu, v〉∣∣2 ≤ 〈
f
(
|T |

)2
u, u

〉〈
f
(
|T ∗|

)2
v, v

〉
for all u, v ∈ B. In this case, ρ(f(|T ∗|)) ≤ ρ(f(|T |)).

Proof. Since T |T |2 = |T ∗|2T , it follows that T |T | = |T ∗|T . From Lemma 2.7 it

follows that ( |T | T ∗

T |T ∗| ) ≥ 0 in L(L2
a ⊕ L2

a). This is true if and only if∣∣〈Tu, v〉∣∣2 ≤ 〈
|T |u, u

〉〈
|T ∗|v, v

〉
for all u, v ∈ B. From Theorem 2.6 it follows that∣∣〈Tu, v〉∣∣2 ≤ 〈

f
(
|T |

)2
u, u

〉〈
f
(
|T ∗|

)2
v, v

〉
for all u, v ∈ B. Proceeding similarly as in Theorem 2.2, one can show that
ρ(f(|T ∗|)) ≤ ρ(f(|T |)). �

3. Absolute value of an operator in L2
a(D)

In this section, we again concentrate on the Berezin transform of the absolute
value of a bounded linear operator defined on L2

a(D). We have established that T is
self-adjoint and T 2 = T 3 if and only if there exists a normal idempotent operator
S on L2

a(D) such that ρ(T ) = ρ(|S|2) = ρ(|S∗|2), where ρ(T ) is the Berezin
transform of T . We also establish that if T is compact and |T n| = |T |n for some
n ∈ N, n 6= 1, then ρ(|T n|) = ρ(|T |n) for all n ∈ N. Further, if T = U |T | is the
polar decomposition of T then we present necessary and sufficient conditions on T
such that |T |1/2 intertwines with U and a contraction X belonging to L(L2

a(D)).

Theorem 3.1. Let A ∈ L(L2
a(D)). The operator A is self-adjoint and A2 = A3

if and only if there exists a normal idempotent operator B ∈ L(L2
a(D)) such that

|B|2 = |B∗|2 = A. In this case, ρ(A) = ρ(|B|2) = ρ(|B∗|2).
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Proof. If BB∗ = A = B∗B, then

A3 = B∗BBB∗B∗B = B∗B2B∗2B = B∗BB∗B = A2

and A is self-adjoint. Now assume that A = A∗ and that A3 = A2. Let P̃ and Q̃

be projections onto RangeA and kerA = (RangeA)⊥, respectively. Then AP̃f =

P̃Af = Af and AQ̃f = Q̃Af = 0. Since A3f = A2f , it holds that A(A2 − A)×
f = 0. Thus the vector (A2 − A)f ∈ kerA. This impllies that P̃ (A2 − A)f = 0

or P̃A2 − A = 0. Hence by taking adjoints, we obtain A2P̃ − A = 0. Therefore

A(AP̃f − f) = 0 for any f ∈ L2
a(D). Consequently, AP̃f − f ∈ kerA. That is,

P̃AP̃ f−P̃ f = 0. Hence P̃AP̃ = P̃ . Similarly, one can show that (I−Q̃)A(I−Q̃) =
I − Q̃. Now A3 = A2 implies that A3 ≥ 0. Since A = A∗, and A ∈ L(L2

a(D)), we
obtain

0 ≤ 〈A2f, f〉 = 〈A3f, f〉 = 〈A2f, Af〉 =
〈
A(Af), Af

〉
.

Thus, if h ∈ RangeA, 〈Ah, h〉 ≥ 0. Now let f ∈ L2
a(D). Then f = g + h, where

g ∈ kerA and h ∈ (kerA)⊥ = RangeA. Now

〈Af, f〉 =
〈
A(g + h), g + h

〉
= 〈Ag, g〉+ 〈Ag, h〉+ 〈Ah, g〉+ 〈Ah, h〉
= 〈Ah, h〉 ≥ 0.

Thus A ≥ 0. Now P̃A2P̃ = P̃A3P̃ = P̃AP̃AP̃AP̃ = P̃AP̃ = A. Similarly, one

can establish that (I − Q̃)A2(I − Q̃) = A. Since P̃ is positive, we have AP̃A ≥ 0

and (AP̃A)2 = AP̃A2P̃A = AAA = A2. Since each positive operator has a unique

positive square root, it holds that AP̃A = A. Similarly, it is not difficult to see

that A(I − Q̃)A = A. Now define the operator B by B = P̃A. This implies that

B∗ = AP̃ . Since B2 = P̃AP̃A = P̃A = B, the operator B is an idempotent.

Also BB∗ = P̃A2P̃ = A and B∗B = AP̃A = A. Thus B is normal. Since
|B|2 = B∗B = BB∗ = |B∗|2 = A, the result follows. �

An operator T ∈ L(L2
a(D)) is said to be hyponormal if T ∗T ≥ TT ∗. It is

p-hyponormal if (T ∗T )p ≥ (TT ∗)p for a positive number p and log-hyponormal if
T is invertible and log T ∗T ≥ log TT ∗. The operator T is paranormal if ‖T 2f‖ ≥
‖Tf‖2 for all f ∈ L2

a(D). Let T ∈ L(L2
a(D)). The operator T is said to be quasi-

normal if T commutes with |T |2. Let T = V |T | be the polar decomposition of
T . If T is quasinormal, then it is not difficult to see that V |T | = |T |V . Let
f : [0,∞) −→ R be a continuous function. The function f is called operator-
monotone if A,B ∈ L(L2

a(D)), 0 ≤ A ≤ B, implies that f(A) ≤ f(B).

Lemma 3.2. Let T ∈ L(L2
a(D)) be invertible. Then the following hold.

(i) If T is log-hyponormal, then |T 2| ≥ |T |2.
(ii) If |T 2| ≥ |T |2, then T is paranormal.
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Proof.

(i) Suppose that T is log-hyponormal. Then log |T |2 ≥ log |T ∗|2. From [6]
and [7], it follows that |T |2p ≥ (|T |p|T ∗|2p|T |p)1/2 for all p ≥ 0. Let p = 1.
Then we get

|T |2 ≥
(
|T ||T ∗|2|T |

)1/2
. (3.1)

Again from [6] and [7], it follows that (3.1) holds if and only if

|T |2 ≥ |T |T
(
T ∗|T |2T

)−1/2
T ∗|T |.

That is, if and only if (T ∗|T |2T )1/2 ≥ T ∗T . This is equivalent to say that
|T 2| ≥ |T |2.

(ii) Suppose that |T 2| ≥ |T |2. Then for f ∈ L2
a(D) and ‖f‖ = 1, we obtain

from [12] that

‖T 2f‖2 =
〈
(T 2)∗T 2f, f

〉
=

〈
|T 2|2f, f

〉
≥

〈
|T 2|f, f

〉2
≥

〈
|T |2f, f

〉2
= ‖Tf‖4.

Thus T is paranormal. �

Theorem 3.3. Let T ∈ LC(L2
a(D)) and |T n| = |T |n for some n ∈ N, n 6= 1. Then

(2.3) holds and ρ(|T n|) = ρ(|T |n) for all n ∈ N.

Proof. Let T ∈ LC(L2
a(D)), and let the spectral representation of T be as follows:

T =
∑∞

i=1 λi(ψi ⊗ φi), where {ψi}∞i=1 and {φi}∞i=1 are two orthonormal bases for
L2
a(D), where |λi| −→ 0 as i −→ ∞. Then

|T | =
∞∑
i=1

|λi|φi ⊗ φi

and

|T ∗| =
∞∑
i=1

|λi|ψi ⊗ ψi.

Since the eigenspace corresponding to |λ1| is finite-dimensional, there is a k ∈ N
such that |λ1| = · · · = |λk| > |λk+1|. Thus

|λ|2m =
〈
(T ∗T )mφ1, φ1

〉
= 〈T ∗mTmφ1, φ1〉

= |λ|2
〈
(T ∗)m−2Tm−2Tψ1, Tψ1

〉
≤ |λ1|2m−2〈Tψ1, Tψ1〉 ≤ |λ1|2k

and therefore 〈T ∗Tψ1, ψ1〉 = |λ1|2. Hence (|λ1|2−T ∗T )ψ1 = 0 as |λ1|2−T ∗T ≥ 0.
Proceeding similarly, one can show that {ψ1, . . . , ψj} ⊂ ker(T ∗T − |λ1|2). Thus
ker(TT ∗ − |λ1|2) = ker(T ∗T − |λ1|2) = M (let) and M reduces T to the normal
operator. That is, T ∗Tψi = TT ∗ψi for 1 ≤ i ≤ m. Repeating this procedure to
the other restrictions of T , one can derive that T ∗Tψi = TT ∗ψi for all i ∈ N.
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From Theorem 2.4 it follows that T satisfies (2.3). Further, since T is normal, it
holds that ρ(|T n|) = ρ(|T |n) for all n ∈ N. �

Theorem 3.4. Let T ∈ L(L2
a(D)). Then the following are equivalent:

(i) ρ(T |T |2) = ρ(|T |2T );
(ii) ρ(|T n|) = ρ(|T |n) for all n ∈ N;
(iii) there are integers k and m such that ρ(|T n|) = ρ(|T |n) for n = k, k+1,m

and m+ 1, where 1 ≤ k < m.

Proof. From Theorem 3.3 it is not difficult to verify that (i) implies (ii) and that
(ii) implies (iii). We will only verify that (iii) implies (i). From (iii), it follows
that |T n| = |T |n for n = k, k + 1,m, and m + 1 for 1 ≤ k ≤ m. Hence using
mathematical induction, one can show that

T ∗(T ∗T )mT = T ∗(T ∗mTm)T = (T ∗T )m+1 = T ∗(TT ∗)mT.

Thus it follows that

Q̃(T ∗T )mQ̃ = Q̃(TT ∗)mQ̃ = (TT ∗)m,

where Q̃ is the projection map from L2
a(D) onto (RangeT ). Similarly, it follows

that Q̃(T ∗T )kQ̃ = (TT ∗)k, and hence(
Q̃(T ∗T )mQ̃

) k
m = Q̃(T ∗T )kQ̃ = Q̃

(
(T ∗T )m

) k
m Q̃.

Since f(t) = t
k
m is an operator-monotone function, it follows from Theorem 3.3

and [1] that Q̃ commutes with (T ∗T )m and hence with T ∗T . Hence (Q̃T ∗TQ̃)m =

(TT ∗)m and therefore Q̃T ∗TQ̃ = TT ∗. Thus

T ∗TT = T ∗TQ̃T = Q̃T ∗TQ̃T = TT ∗T

and therefore |T |2T = T |T |2 and ρ(|T |2T ) = ρ(T |T |2). �

Let T ∈ L(L2
a(D)). Suppose that

Θ|T |(x, ȳ)K(x, ȳ) �
∣∣ΘT (x, ȳ)K(x, ȳ)

∣∣ (3.2)

for all x, y ∈ D. It is not difficult to see that (2.3) implies that (3.2). Thus if T
is normal then (3.2) holds. Let A,B ∈ L(L2

a(D)). The operator X ∈ L(L2
a(D))

intertwines A and B if AX = XB. Let

B =
{
X ∈ L

(
L2
a(D)

)
: X = 2(IL(L2

a)
− C∗C)1/2C,

where C ∈ L(L2
a) and ‖C‖ ≤ 1

}
.

For X ∈ L(L2
a(D)), let

w(X) = sup
{∣∣〈Xf, f〉∣∣ : f ∈ L2

a(D), ‖f‖ = 1
}
,

the numerical radius of X. It is well known (see [11]) that w(|X|) = ‖X‖.



BEREZIN TRANSFORM OF THE ABSOLUTE VALUE OF AN OPERATOR 163

Theorem 3.5. Let T ∈ L(L2
a(D)) and T = U |T | be the polar decompositions of T .

Then (3.2) holds for all x, y ∈ D if and only if |T |1/2 intertwines with U and an
operator X ∈ B. In this case, there is a sequence of operators Tn ∈ L(L2

a(D))
which converges to U strongly, and there is a sequence Sn ∈ L(L2

a(D)) which
converges to X weakly and Sn ∈ B for all n.

Proof. Suppose that (3.2) holds. Then

Θ|T |(x, ȳ)K(x, ȳ) �
∣∣ΘT (x, ȳ)K(x, ȳ)

∣∣
for all x, y ∈ D. This implies that〈

|T |
( n∑

j=1

cjKxj

)
,

n∑
i=1

ciKxi

〉
≥

∣∣∣〈T( n∑
j=1

cjKxj

)
,

n∑
i=1

ciKxi

〉∣∣∣,
where x1, x2, . . . , xn ∈ D and cj, j = 1, . . . , n are constants. Since {

∑n
j=1 cjKxj

}
is dense in L2

a(D), it holds that |〈Tf, f〉| ≤ 〈|T |f, f〉 for all f ∈ L2
a(D). For n ∈ N,

define Sn ∈ L(L2
a(D)) by

Sn =
(
|T |+ 1

n

)−1/2

U
(
|T |+ 1

n

)1/2

and Tn = T (|T |+ 1
n
)−1. Let {Eλ} be the spectral family for |T |. Then Tn strongly

converges to I − E0 as n −→ ∞. The reason is as follows.
Notice that |T | =

∫∞
0
λ dEλ is the spectral decomposition of |T |. Let

Vn = |T |
(
|T |+ 1

n

)−1

.

Then VnE0f = (|T |+ 1
n
)−1|T |E0f = 0 for f ∈ L2

a(D) and∥∥Vnf − (I − E0)f
∥∥2

=
∥∥(Vn − I)(I − E0)f

∥∥2

=

∫ ∞

0

∣∣∣ λ

λ+ 1
n

− 1
∣∣∣2 d∥∥Eλ(I − E0)f

∥∥2

=

∫ ∞

0

∣∣∣ 1
n

λ+ 1
n

∣∣∣2 d∥∥Eλ(I − E0)f
∥∥2
.

From Lebesgue’s dominated convergence theorem, it follows that Vn strongly
converges to I − E0 as n −→ ∞. Thus we have Tn −→ U(I − E0) strongly as
n −→ ∞. Since E0 is the projection onto the eigenspace {f ∈ L2

a(D) : Tf = 0},
we get UE0 = 0. Consequently, Tn −→ U strongly as n −→ ∞. Further, for all
f ∈ L2

a(D),

〈Snf, f〉 =
〈
U
(
|T |+ 1

n

)1/2

f,
(
|T |+ 1

n

)−1/2

f
〉

=
〈
U
(
|T |+ 1

n

)(
|T |+ 1

n

)−1/2

f,
(
|T |+ 1

n

)−1/2

f
〉

=
〈
T
(
|T |+ 1

n

)−1/2

f,
(
|T |+ 1

n

)−1/2

f
〉

+
1

n

〈
U
(
|T |+ 1

n

)−1/2

f,
(
|T |+ 1

n

)−1/2

f
〉
.
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From (3.2), it follows that

〈Snf, f〉 ≤
〈
|T |

(
|T |+ 1

n

)−1/2

f,
(
|T |+ 1

n

)−1/2

f
〉
+

1

n

∥∥∥(|T |+ 1

n

)−1/2

f
∥∥∥2

=
〈(

|T |+ 1

n

)(
|T |+ 1

n

)−1/2

f,
(
|T |+ 1

n

)−1/2

f
〉

= 〈f, f〉 = ‖f‖2.

If S ∈ L(L2
a(D)), then it is known (see [9]) that 1

2
‖S‖ ≤ w(S) ≤ ‖S‖, where

w(S) is the numerical radius of S. Thus, we get w(Sn) ≤ 1 and ‖Sn‖ ≤ 2.
By the Banach Alaoglu theorem (see [5, Theorem 1.23]), one can construct a
subnet {Sj}j∈J converging weakly to some X ∈ L(L2

a(D)) with ‖X‖ ≤ 2 from
the sequence {Sn}n∈N. Thus, we have w(X) ≤ 1 since

〈Xf, f〉 = lim
j
〈Sjf, f〉 ≤ 〈f, f〉.

From [2], it follows that X ∈ B and Sn ∈ B for all n. Now, from the definition of
{Sj}j∈J , we get

U
(
|T |+ 1

F (j)

)1/2

=
(
|T |+ 1

F (j)

)1/2

SF (j) (3.3)

for some mapping F : J −→ N (in fact, Sj = SF (j)). Hence by taking weak limits

of both sides of (3.3), we obtain U |T |1/2 = |T |1/2X. Conversely, assume that
U |T |1/2 = |T |1/2X for some X ∈ L(L2

a(D)) with w(X) ≤ 1. From [2], it follows
that there exists a contraction C ∈ L(L2

a(D)) such that X = 2(IL(L2
a)
−C∗C)1/2C.

Then for all f ∈ L2
a(D), we get∣∣〈Tf, f〉∣∣ = ∣∣〈U |T |1/2|T |1/2f, f〉∣∣

=
∣∣〈|T |1/2X|T |1/2f, f

〉∣∣
=

∣∣〈X|T |1/2f, |T |1/2f
〉∣∣

≤
〈
|T |1/2f, |T |1/2f

〉
=

〈
|T |f, f

〉
.

The result follows. �
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