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Abstract. The purpose of this paper is to give a new atomic decomposition
for variable Hardy spaces via the discrete Littlewood–Paley–Stein theory. As
an application of this decomposition, we assume that T is a linear operator
bounded on Lq and Hp(·), and we thus obtain that T can be extended to a
bounded operator from Hp(·) to Lp(·).

1. Introduction

Hardy spaces play a crucial role in the study of singular integral operators
and their application to partial differential equations. In the classical case, Hardy
space can be characterized by the Littlewood–Paley–Stein square functions, maxi-
mal functions, and atomic decompositions. Atomic decomposition is an especially
significant tool in harmonic analysis and wavelet analysis for the study of function
spaces and the operators acting on these spaces (see [2], [15]). Atomic decomposi-
tion was first introduced by Coifman [1] in 1-dimensional cases in 1974, and later
it was extended to higher dimensions by Latter [14]. Atomic decompositions of
Hardy spaces play an important role in the boundedness of operators on Hardy
spaces, and it is usually sufficient to check that atoms are mapped into bounded
elements of quasi-Banach spaces. The literature thus far suggests that atomic
decomposition of the Hardy spaces is only one tool for proving the boundedness
from Hp to Lp for singular integral operators. Recently, Zhao and Han [20] gave
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a new atomic decomposition which converges in both Hp(Rn) and L2(Rn) rather
than only in the distribution sense. Then Han, Lee, and Lin [11] showed that in
weighted Hardy spaces Hp(w) the atomic decomposition also converges in both
Hp(w) and L2(w).

In the present article, we study variable Hardy spaces. Note that the variable
exponent spaces, such as the variable Lebesgue spaces and the variable Sobolev
spaces, were studied by a substantial number of researchers (see, for example,
[3], [4], [8], [13]). Recently the atomic decomposition of variable Hardy spaces
was established independently by using maximal function characterizations (see
[5, Theorem 6.3], [16, Theorem 4.5]).

The main purpose of this paper is to provide a new atomic decomposition
of variable Hardy spaces via the discrete Littlewood–Paley–Stein theory. As an
application, we derive the boundedness Hp(·) → Lp(·) via the boundedness from
Hp(·) → Hp(·) for linear operators. To state the results, we begin with the defi-
nition of Lebesgue spaces with variable exponent, and we make some notations.
For any Lebesgue measurable function p(·) : Rn → (0,∞] and for any measurable
subset E ⊂ Rn, we denote p−(E) = infx∈E p(x) and p+(E) = supx∈E p(x). We
especially denote p− = p−(Rn) and p+ = p+(Rn). The symbols S and S ′ denote
the class of Schwartz functions and tempered functions, respectively. As usual,
for a function ψ on Rn, ψt(x) = t−nψ(t−1x).

Definition 1.1. Let p(·) : Rn → (0,∞] be a Lebesgue measurable function. The
variable Lebesgue space Lp(·) consists of all Lebesgue measurable functions f , for
which the quantity

∫
Rn |εf(x)|p(x) dx is finite for some ε > 0, and

‖f‖Lp(·) = inf
{
λ > 0 :

∫
Rn

( |f(x)|
λ

)p(x)

dx ≤ 1
}
.

Variable Lebesgue spaces were first established by Orlicz [18] in 1931. Two
decades later, Nakano [17] systematically studied modular function spaces, includ-
ing the variable Lebesgue spaces; modern development of the concept started in
1991 with Kováčik and Rákosńık’s paper [13]. As a special case of the theory of
Nakano and Luxemberg (see [17]), we see that Lp(·) is a quasinormed space. This
is especially true when p− ≥ 1, Lp(·) is a Banach space.

Let p(·): Rn → (0,∞) be a measurable function with 0 < p− ≤ p+ < ∞, and
let P0 be the set of all these p(·). Let P denote the set of all measurable functions
p(·) : Rn → [1,∞) such that 1 < p− ≤ p+ <∞. We now recall the following class
of exponent functions, which can be found in [7, Theorem 8.1]. Let B be the set
of p(·) ∈ P such that the Hardy–Littlewood maximal operator M is bounded on

Lp(·).
An important subset of B is the log-Hölder (LH) condition. In the study of

variable exponent function spaces it is common to assume that the exponent
function p(·) satisfies the LH-condition. We say that p(·) ∈ LH if p(·) satisfies

∣∣p(x)− p(y)
∣∣ ≤ C

− log(|x− y|)
, |x− y| ≤ 1/2
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and that ∣∣p(x)− p(y)
∣∣ ≤ C

log |x|+ e
, |y| ≥ |x|.

It is well known that p(·) ∈ B if p(·) ∈ P ∩ LH. Moreover, various examples
show that the above LH-conditions are necessary in a certain sense (see Pick and
Ru̇z̆ic̆ka [19] for more details).

Definition 1.2 ([5, Section 3], [16, Section 3]). Let f ∈ S ′, let ψ ∈ S, let p(·) ∈ P0,
and let ψt(x) = t−nψ(t−1x), x ∈ Rn. Denote by M the grand maximal operator
given by Mf(x) = sup{|ψt ∗ f(x)| : t > 0, ψ ∈ FN} for any fixed large integer
N , where FN = {ϕ ∈ S :

∫
ϕ(x) dx = 1,

∑
|α|≤N sup(1 + |x|)N |∂αϕ(x)| ≤ 1}. The

variable Hardy space Hp(·) is the set of all f ∈ S ′ for which the quantity

‖f‖Hp(·) = ‖Mf‖Lp(·) <∞.

Throughout this paper, C or c will denote a positive constant which may vary
at each occurrence but which is independent of the essential variables, and A ∼ B
means that there are constants C1 > 0 and C2 > 0 independent of the essential
variables such that C1B ≤ A ≤ C2B. Given a measurable set S ⊂ Rn, |S|
denotes the Lebesgue measure and χS means the characteristic function. We also
use the notation j ∧ j′ = min{j, j′} and j ∨ j′ = max{j, j′}. In what follows,
we recall the new atoms for variable Hardy spaces, which were first introduced
in [16]. Let p(·) : Rn → (0,∞), 0 < p− ≤ p+ ≤ 1 < q ≤ ∞. Fix an integer
d ≥ dp(·) ≡ min{d ∈ N ∪ {0} : p−(n+ d+ 1) > n}. A function a on Rn is called a

(p(·), q)-atom if there exists a cube Q such that supp a ⊂ Q; ‖a‖Lq ≤ |Q|1/q
‖χQ‖

Lp(·)(Rn)

;∫
Rn a(x)x

α dx = 0 for |α| ≤ d.
Now, let us state our main results.

Theorem 1.3. Let p(·) ∈ LH ∩ P0, 1 < q < ∞. If f ∈ Lq ∩ Hp(·), there exist
sequences of (p(·), q)-atoms {aj} and scalars {λj} such that f =

∑
j λjaj, where

the series converges to f in both Hp(·)- and Lq-norms. Next write

A
(
{λj}∞j=1, {Qj}∞j=1

)
=

∥∥∥{∑
j

( |λj|χQj

‖χQj
‖Lp(·)

)p−} 1
p−
∥∥∥
Lp(·)

.

Then we have

A
(
{λj}∞j=1, {Qj}∞j=1

)
≤ C‖f‖Hp(·)

As an application of this new atomic decomposition, we obtain the following.

Corollary 1.4. Let p(·) ∈ LH∩P0, 1 < q <∞. Suppose that a linear operator T
is bounded on Lq and Hp(·). Then T can be extended to a bounded operator from
Hp(·) to Lp(·).

Remark 1.5. It is well known that Calderón–Zygmund operators are bounded
on Lq, 1 < q < ∞ and from Hp to Lp for certain p. The regularities of ker-
nels of Calderón–Zygmund operators play a crucial role in the proof. However,
Corollary 1.4 gives a similar but general result, which does not use the regularity
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condition directly. In fact, we only require the boundedness results of linear oper-
ators T and atomic decomposition for variable Hardy spaces Hp(·) here. Moving
in another direction, in order to prove the Hp to Lp, the regularity of kernels of
Calderón–Zygmund operators T is required to deal with ‖Ta‖Lp ≤ C, where a is
classical (p, q)-atom for Hp.

2. Proof of Theorem 1.3 and Corollary 1.4

To show Theorem 1.3, we will apply the Littlewood–Paley–Stein theory. To be
precise, let ψ ∈ S satisfy

supp ψ̂ ⊂
{
ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2

}
,

and let ∑
j∈Z

∣∣ψ̂(2−jξ)
∣∣2 = 1 for all ξ ∈ Rn \ {0}.

Denote by S∞ the set of functions f ∈ S satisfying
∫
Rn f(x)x

α dx = 0 for all
muti-indices α ∈ Zn

+ := ({0, 1, 2, . . .})n. Denote by S ′
∞ its topological dual space.

For f ∈ S ′
∞, we recall the definition of the Littlewood–Paley–Stein square function

of f ,

G(f)(x) :=
(∑

j∈Z

∣∣ψj ∗ f(x)
∣∣2)1/2

,

and the discrete Littlewood–Paley–Stein square function,

Gd(f)(x) :=
(∑

j∈Z

∑
k∈Zn

∣∣ψj ∗ f(2−jk)
∣∣2χQ(x)

)1/2

,

where Q here denotes dyadic cube in Rn with side length 2−j and the lower-left
corner of Q is 2−jk.

First we recall the well-known discrete Calderón identity, which can be found
in [9, Lemma 2.1].

Proposition 2.1. Let ψ be the function mentioned above. Then for all f ∈ S ′
∞,

f(x) =
∑
j∈Z

2−jn
∑
k∈Zn

ψj ∗ f(2−jk)ψj(x− 2−jk),

where the series converges in L2, S∞, and S ′
∞.

We also need the following boundedness of the vector-valued maximal operator
M , whose proof can be found in [4, Corollary 2.1].

Proposition 2.2. Let p(·) ∈ LH∩P. Then for any q > 1, f = {fi}i∈Z, fi ∈ Lloc,
i ∈ Z, ∥∥∥∥M(f)

∥∥
lq

∥∥
Lp(·) ≤ C

∥∥‖f‖lq∥∥Lp(·) ,

where M(f) = {M(fi)}i∈Z.

The following proposition gives equivalent characterizations of Hp(·).
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Proposition 2.3. Let p(·) ∈ LH ∩ P0. Then for all f ∈ S ′
∞, let

‖f‖Hp(·) ∼
∥∥G(f)∥∥

Lp(·) ∼
∥∥Gd(f)

∥∥
Lp(·) .

Proof. The equivalence of the first two norms was proved in [21, Theorem 1.4].
To complete the proof of Proposition 2.3, we only need to prove that∥∥G(f)∥∥

Lp(·) ∼
∥∥Gd(f)

∥∥
Lp(·) .

First, we show that ∥∥G(f)∥∥
Lp(·) ≤

∥∥Gd(f)
∥∥
Lp(·) .

To do this, let f ∈ S ′
∞. The discrete Calderón identity and the almost-

orthogonality estimates yield that, for any v ∈ Q and n
M+n

< δ < (p− ∧ 1),∣∣(ψj ∗ f)(x)
∣∣

=
∑
j′∈Z

2−j′n
∑
k∈Zn

ψj′ ∗ f(2−j′k ∈ Zn)ψj ∗ ψj′(x− 2−j′k)

≤ C
∑
j′∈Z

2−|j−j′|L
∑
k

2(j∧j
′)n

(1 + 2j∧j′ |x− 2−j′k|)M+n
(ψj′ ∗ f)(2−j′k)

≤ C
∑
j′∈Z

2−|j−j′|L2n(
1
δ
−1)((j′−j)∨0)

{
M

(∑
k

∣∣(ψj′ ∗ f)(2−j′k)
∣∣2χQ′

) δ
2
(v)

} 1
δ
,

where L and M are large enough and Q, Q′ denote dyadic cubes in Rn with side
lengths 2−j and 2−j′ , respectively. Then, applying Hölder’s inequality, we have∣∣G(f)(x)∣∣2

=
∑
j∈Z

∣∣ψj ∗ f(x)
∣∣2

≤ C
∑
j′∈Z

(∑
j∈Z

2−|j−j′|L2n(
1
δ
−1)((j′−j)∨0)

{
M

(∑
k

∣∣(ψj′ ∗ f)(2−j′k)
∣∣2χQ′

) δ
2
(v)

} 1
δ
)2

≤ C
∑
j′∈Z

{
M

(∑
k

∣∣(ψj′ ∗ f)(2−j′k)
∣∣2χQ′

) δ
2
(v)

} 2
δ
.

Thus by the vector-valued maximal operator M on Lp(·)/δ(l2/δ), we have∥∥G(f)∥∥
Lp(·) =

∥∥∥(∑
j∈Z

|ψj ∗ f(x)|2
) 1

2
∥∥∥
Lp(·)

≤ C
∥∥∥(∑

j′∈Z

{
M

(∑
k

∣∣(ψj′ ∗ f)(2−j′k)
∣∣2χQ′

) δ
2
} 2

δ
) δ

2
∥∥∥ 1

δ

L
p(·)
δ

≤
∥∥∥(∑

j∈Z

∑
k∈Zn

∣∣ψj ∗ f(2−jk)
∣∣2χQ(x)

) 1
2
∥∥∥
Lp(·)

=
∥∥Gd(f)

∥∥
Lp(·) ,

where n
M+n

< δ < (p− ∧ 1).



92 J. TAN

On the other hand, repeating the same method used by Frazier and Jawerth
in [10], we can obtain that∥∥G(f)∥∥

Lp(·) ∼
∥∥∥(∑

Q

(
supQ(f)χ̃Q

)2)1/2∥∥∥
Lp(·)

∼
∥∥∥(∑

Q

(
infQ,γ(f)χ̃Q

)2)1/2∥∥∥
Lp(·)

,

where Q dyadic with l(Q) = 2−j, χ̃Q = |Q|−1/2χQ, supQ(f) = |Q|1/2 supy∈Q |ψj ∗
f(y)|, and infQ,γ(f) = |Q|1/2max{infy∈Q̃ |ψ ∗ f(y)| : l(Q̃) = 2−γl(Q), Q̃ ⊂ Q} for

γ ∈ Z with γ > 0. Besides, we have the fact that∥∥Gd(f)
∥∥
Lp(·) ≤ C

∥∥∥(∑
Q

(
supQ(f)χ̃Q

)2)1/2∥∥∥
Lp(·)

.

Thus we complete the proof of Proposition 2.3. �

We would like to point out that functions ψj(x) used in the discrete Calderón-
type identity do not have compact support. To prove the atomic decomposition
for Hp(·), we derive the following new discrete Calderón-type identity, which, for
the spaces of homogeneous type, was first used in [6].

Proposition 2.4. Suppose that p(·) ∈ LH ∩ P0. Let φ be a Schwartz function
with support on the unit ball satisfying the conditions: for all ξ ∈ Rn,∑

j∈Z

∣∣φ̂(2−jξ)
∣∣2 = 1,

and
∫
Rn φ(x)x

α dx = 0 for all 0 ≤ |α| ≤M . Then for all f ∈ Hp(·) ∩ Lq, 1 < q <

∞, there exists a function g ∈ Hp(·) ∩ Lq with

‖f‖Lq ∼ ‖g‖Lq and ‖f‖Hp(·) ∼ ‖g‖Hp(·)

such that, for some large integer N depending on φ and p(·), q,M ,

f(x) =
∑
j∈Z

∑
Q

|Q|φj ∗ g(xQ)φj(x− xQ),

where Q represents dyadic cubes with side length 2−j−N , and the series converges
in both norms of Lq and Hp(·).

Proof. By using the classical Calderón identity on L2 and applying Coifman’s
decomposition of the identity, we have

f(x) =
∑
j∈Z

φj ∗ φj ∗ f(x)

=
∑
j∈Z

∫
Rn

φj(x− u)φj ∗ f(u) du

=
∑
j∈Z

∑
Q

∫
Q

φj(x− u)φj ∗ f(u) du

=
∑
j∈Z

∑
Q

|Q|φj(x− xQ)φj ∗ f(xQ) +RN(f)(x),
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where Q ⊂ Rn, l(Q) = 2−j−N for some large integer N which will be chosen later,
and xQ is the lower-left point of Q, and

RN(f)(x) =
∑
j∈Z

∑
Q

∫
Q

[
φj(x− u)φj ∗ f(u)− φj(x− xQ)φj ∗ f(xQ)

]
du.

Now we prove that ∥∥RN(f)
∥∥
L2 ≤ C2−N‖f‖L2

and that ∥∥RN(f)
∥∥
Hp(·) ≤ C2−N‖f‖Hp(·) .

To do this, first we rewrite RN(f)(x) as

RN(f)(x) =
∑
j∈Z

∑
Q

∫
Q

[
φj(x− u)− φj(x− xQ)

]
φj ∗ f(u)

+ φj(x− xQ)
[
φj ∗ f(u)− φj ∗ f(xQ)

]
du

=:

∫
Rn

RN(x, y)f(y) dy,

where the kernel of RN(f)(x) is given by

RN(x, y) =
∑
j∈Z

∑
Q

∫
Q

[
φj(x− u)− φj(x− xQ)

]
φj(u− y) dy

+
∑
j∈Z

∑
Q

∫
Q

φj(x− xQ)
[
φj(u− y)− φj(xQ − y)

]
dy

=: R1
N(x, y)f(y) dy +R2

N(x, y)f(y) dy.

Next, we need to verify that RN(x, y) is a Calderón–Zygmund kernel. For
R1

N(x, y), since φ is a Schwartz function, we have

∣∣∂αxφj(x− u)− ∂αxφj(x− xQ)
∣∣ ≤ C2−N 2j|α|2

−j

(2−j + |xQ − u|)n+2M+1
.

Thus for 0 ≤ |α|, |β| ≤M we get

∣∣∂αx∂βyR1
N(x, y)

∣∣ ≤ C2−N
∑
j∈Z

∫
Rn

2j|α|2
−j

(2−j + |xQ − u|)n+2M+1

∣∣∂βy φj(u− y)
∣∣ dy

≤ C2−N 1

|x− y|n+|α|+|β| .

The same results hold for R2
N(x, y); hence these also hold for RN(x, y) with the

constant C2−N .
Let R1

N(f) =
∑

j Rj(f), where Rj(f)(x) =
∑

Q

∫
Q
[φj(x−u)−φj(x−xQ)]φj(u−

y) dy. By the proof of the estimates for the kernel of RN given above, we have
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‖Rj(f)‖L2 ≤ C2−N‖f‖L2 . Applying an almost orthogonality argument in [12,
Lemmas 2.18] yields that∣∣RjR

∗
k(f)(x, y)

∣∣ ≤ C2−N2|j−k| 2−(j∧k)

(2−(j∧k) + |x− y|)n+1
,

where j ∧ k is the minimum of j and k. Then we have∥∥RjR
∗
k(f)(f)

∥∥
L2 ≤ C2−N2|j−k|‖f‖L2 .

We can also obtain similar results for R∗
kRj(f). Thus we prove that RN is bounded

on L2 with constant C2−N ; hence RN is also bounded on Lq, 1 < q < ∞ with
constant C2−N since RN is a Calderón–Zygmund operator. Theorem 5.3 in [16]
yields that RN is bounded on Hp(·) with constant C2−N .

Choose N large enough so that C2−N < 1. Noting that I = TN + RN , then
T−1
N =

∑∞
n=0(RN)

n is also bounded on L2 and Hp(·), where

TN(f)(x) =
∑
j∈Z

∑
Q

|Q|φj(x− xQ)φj ∗ f(xQ).

It follows that ‖g‖Lq ∼ ‖f‖Lq and ‖g‖Hp(·) ∼ ‖f‖Hp(·) , 1 < q <∞, where g(x) :=
T−1
N (f)(x). Moreover,

f(x) =
∑
j∈Z

∑
Q

|Q|φj(x− xQ)φj ∗ g(xQ),

where the series converges in both Lq- and Hp(·)-norms.
Next we will prove that the series above also converges in Lq for any 1 < q <∞.

Since Lq ∩L2 is dense in Lq, it suffices to show that the series converges in Lq for
each function f ∈ Lq ∩ L2. For f ∈ Lq ∩ L2, set

Bl =
{
Q : l(Q) = 2−j−N , Q ⊂ B(0, l), |j| ≤ l

}
,

where B(0, l) is the ball centered at 0 with radius l in Rn. Write φQ = φj; then we
only need to show that for each function g ∈ Lq ∩ L2 and any positive integer L,∥∥∥∑

l>L

∑
Q∈Bl

|Q|φQ(x− xQ)φQ ∗ g(xQ)
∥∥∥
Lq

→ 0 as L→ ∞.

Suppose that h ∈ Lq′∩L2 (1
q
+ 1

q′
= 1). By duality argument, the Cauchy inequality

and the Hölder inequality, we get that∥∥∥∑
l>L

∑
Q∈Bl

|Q|φQ(x− xQ)φ ∗ g(xQ)
∥∥∥
Lq

= sup
‖h‖

Lq′≤1

∣∣∣〈∑
l>L

∑
Q∈Bl

|Q|φQ(x− xQ)φ ∗ g(xQ), h
〉∣∣∣

= sup
‖h‖

Lq′≤1

∣∣∣∑
l>L

∑
Q∈Bl

|Q|φQ ∗ h(xQ)φ ∗ g(xQ)
∣∣∣

≤ sup
‖h‖

Lq′≤1

∫
Rn

∑
l>L

∑
Q∈Bl

∣∣φQ ∗ h(xQ)
∣∣∣∣φ ∗ g(xQ)

∣∣χQ(x) dx
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≤ sup
‖h‖

Lq′≤1

∫
Rn

{∑
l>L

∑
Q∈Bl

∣∣φQ ∗ h(xQ)
∣∣2χQ(x)

}1/2

×
{∑

l>L

∑
Q∈Bl

∣∣φQ ∗ h(xQ)
∣∣2χQ(x)

}1/2

dx

≤ sup
‖h‖

Lq′≤1

∥∥∥{∑
l>L

∑
Q∈Bl

∣∣φQ ∗ h(xQ)
∣∣2χQ

}1/2∥∥∥
Lq′

×
∥∥∥{∑

l>L

∑
Q∈Bl

∣∣φQ ∗ h(xQ)
∣∣2χQ

}1/2∥∥∥
Lq

≤
∥∥∥{∑

l>L

∑
Q∈Bl

∣∣φQ ∗ g(xQ)
∣∣2χQ

}1/2∥∥∥
Lq
,

which tends to zero as L goes to infinity. This ends the proof of Proposition 2.4.
�

Proof of Theorem 1.3. Let f ∈ Lq ∩ Hp(·) (0 < p− ≤ p+ < q < ∞ with q ≥ 1),
and let φ be the function mentioned in Proposition 2.4. Then by the discrete
Calderón reproducing formula in Proposition 2.4, we have

f(x) =
∑
j∈Z

∑
Q

|Q|φj ∗ g(xQ)φj(x− xQ) in Lq ∩Hp(·).

Now we need the maximal square function defined by

Gd
φ(f)(x) :=

(∑
j∈Z

∑
k∈Zn

sup
xQ∈Q

∣∣φj ∗ g(xQ)
∣∣2χQ(x)

)1/2

.

From the proof of Proposition 2.3, we have

‖f‖Hp(·) ∼
∥∥Gd

φ(f)
∥∥
Lp(·) .

Next, let

Ωi =
{
x ∈ Rn : Gd

φ(f)(x) > 2i
}

and let

Ω̃i =
{
x ∈ Rn :M(χΩi

)(x) >
1

10

}
,

where M is the Hardy–Littlewood maximal operator. Then Ωi ⊂ Ω̃i. By the L2

boundedness of M , |Ω̃i| ≤ C|Ωi|. Denote by Q the set of all dyadic cubes in Rn.
Let

Bi =
{
Q ∈ Q : |Q ∩ Ωi| >

1

2
|Q|, |Q ∩ Ωi+1| ≤

1

2
|Q|

}
.

We write φQ := φl, if l(Q) = 2−l−N and xQ is the lower-left corner of Q. Following

the discrete Calderón reproducing formula and denoting Q̃ ∈ Bi as the maximal



96 J. TAN

dyadic cube in Bi, we rewrite

f(x) =
∑
i∈Z

∑
Q̃∈Bi

∑
Q⊂Q̃

|Q|φQ ∗ g(xQ)φQ(x− xQ) =:
∑
i

∑
Q̃∈Bi

λQ̃aQ̃(x),

where

aQ̃ =
1

λQ̃

∑
Q⊂Q̃

|Q|φQ ∗ g(xQ)φQ(x− xQ),

and

λQ̃ = 2i‖χ5Q̃‖Lp(·) .

From the definition of aQ̃ and the support of φ, we get that aQ̃ is supported in

5Q̃. Then, to establish the atomic decomposition for variable Hardy spaces, we
also need the following inequality:

A
(
{λj}∞j=1, {Qj}∞j=1

)
≤ C‖f‖Hp(·) .

To prove it, we first observe that when 1 < q <∞,

A
(
{λj}∞j=1, {Qj}∞j=1

)
=

∥∥∥{∑
i

∑
Q̃∈Bi

( |λQ̃|χ5Q̃

‖χ5Q̃‖Lp(·)

)p−} 1
p−
∥∥∥
Lp(·)

≤ C
∥∥∥{∑

i

∑
Q̃∈Bi

(2iχ5Q̃)
p−
} 1

p−
∥∥∥
Lp(·)

.

Note that 5Q̃ ⊂ Ω̃i when Q̃ ∈ Bi. Since Ωi ⊂ Ω̃i for each i ∈ Z, and |Ω̃i| ≤ C|Ωi|
for all x ∈ Rn, we have

χΩ̃i
(x) ≤ CM

2
p−χΩi

(x).

If we use these facts and apply the Fefferman–Stein vector-valued maximal
inequality of variable Lebesgue spaces (see Proposition 2.2), we have

A
(
{λj}∞j=1, {Qj}∞j=1

)
≤ C

∥∥∥{∑
i

(2iχΩ̃i
)p

−
} 1

p−
∥∥∥
Lp(·)

≤ C
∥∥∥{∑

i

(2iM
2

p−χΩi
)p

−
} 1

p−
∥∥∥
Lp(·)

= C
∥∥∥{∑

i

2ip
−
M2χΩi

} 1
2
∥∥∥ 2

p−

L
2p(·)
p−

≤ C
∥∥∥{∑

i

2ip
−
χ2
Ωi

} 1
2
∥∥∥ 2

p−

L
2p(·)
p−

≤ C
∥∥∥{∑

i

(2iχΩi
)p

−
} 1

p−
∥∥∥
Lp(·)

.

If Ωi+1 ⊂ Ωi and |
⋂∞

i=1Ωi| = 0, then for almost every x ∈ Rn we have

∞∑
i=−∞

2iχΩi
(x) =

∞∑
i=−∞

2i
∞∑
j=i

χΩj\Ωj+1
(x) = 2

∞∑
j=−∞

2jχΩj\Ωj+1
(x).
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Then we deduce from the definition of Ωi that∥∥∥{∑
i

(2iχΩi
)p

−
} 1

p−
∥∥∥
Lp(·)

≤ C
∥∥∥{∑

i

(2iχΩi\Ωi+1
)p

−
} 1

p−
∥∥∥
Lp(·)

= C inf
{
λ > 0 :

∫
Rn

(∑
i

2iχΩi\Ωi+1

λ

)p(x)

dx ≤ 1
}

= C inf
{
λ > 0 :

∑
i

∫
Ωi\Ωi+1

(2i
λ

)p(x)

dx ≤ 1
}

≤ C inf
{
λ > 0 :

∫
Rn

(Gd
φf(x)

λ

)p(x)

dx ≤ 1
}
≤ C‖f‖Hp(·) .

Thus we have proved the claim. To complete the proof of the theorem, next we
only need to show that every aQ̃ is a (p(·), q)-atom.

By duality and the Hölder inequalities, for 1 < q, q′ < ∞ and 1
q
+ 1

q′
= 1, we

have∥∥∥∑
Q⊂Q̃

|Q|φQ ∗ g(xQ)φQ(· − xQ)
∥∥∥
Lq

≤ sup
‖h‖

Lq′≤1

∫
Rn

∑
Q⊂Q̃

φQ ∗ g(xQ)φQ ∗ h(xQ)χQ(x) dx

≤ sup
‖h‖

Lq′≤1

∥∥∥{∑
Q⊂Q̃

|φQ ∗ g(xQ)|2χQ

} 1
2
∥∥∥
Lq

∥∥∥{∑
Q⊂Q̃

|φQ ∗ h(xQ)|2χQ

} 1
2
∥∥∥
Lq′

≤ C
∥∥∥{∑

Q⊂Q̃

|φQ ∗ g(xQ)|2χQ

} 1
2
∥∥∥
Lq
,

where the last inequality follows from the Lq-estimates of the discrete Littlewood–
Paley square function. If x ∈ Q ∈ Bi, then MχQ∩Ω̃i\Ωi+1

(x) > 1
2
. From this fact,

we have

χQ(x) ≤ 2MχQ∩Ω̃i\Ωi+1
(x) =⇒ χQ(x) ≤ 4M2(χQ∩Ω̃i\Ωi+1

)(x).

Thus by the Fefferman–Stein vector-valued inequality, for all 1 < q <∞,∥∥∥(∑
Q⊂Q̃

sup
xQ∈Q

∣∣φQ ∗ g(xQ)
∣∣2χQ(x)

)1/2∥∥∥q

Lq

=

∫
Rn

(∑
Q⊂Q̃

sup
xQ∈Q

∣∣φQ ∗ g(xQ)
∣∣2χQ(x)

)q/2

dx

≤ C

∫
Rn

(∑
Q⊂Q̃

sup
xQ∈Q

∣∣φQ ∗ g(xQ)M(χQ∩Ω̃i\Ωi+1
)(x)

∣∣2)q/2

dx
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≤ C

∫
Q̃∩Ω̃i\Ωi+1

(∑
Q⊂Q̃

sup
xQ∈Q

∣∣φQ ∗ g(xQ)χQ(x)
∣∣2)q/2

dx

≤ C2iq|Q̃|.
Then the estimate implies that, when 1 ≤ q <∞,

‖aQ̃‖Lq =
1

λQ̃

∥∥∥∑
Q⊂Q̃

|Q|φQ ∗ g(xQ))φQ(· − xQ)
∥∥∥
Lq

≤ 1

2i‖χ5Q̃‖Lp(·)

(
2iq|Q̃|

)1/q
≤ C

|Q̃|1/q

‖χ5Q̃‖Lp(·)
.

Hence, together with the cancellation conditions of φ, we have proved that aQ̃ is
a (p(·), q)-atom. This ends the proof of Theorem 1.3. �

Before we prove Corollary 1.4, we need the following important inequality,
which comes from [16, Lemma 4.10].

Proposition 2.5. Let p(·) ∈ LH ∩ P0, and let p− = min{1, p−}. Let β ∈
(0, 1), and let δ ∈ (0, − log2 β

n+1
). If we are given sequences of nonnegative num-

bers {kj}j, measurable functions {bj}j and cubes {Q}j such that supp bj ⊂ Qj,
and ‖bj‖Lq(Qj) 6= 0 for each j, then we have∥∥∥{∑

j

( kj|bj||Qj|δ

‖bj‖L1/δ(Qj)‖χQj
‖Lp(·)

)p−} 1
p−
∥∥∥
Lp(·)

≤ CA
(
{λj}∞j=1, {Qj}∞j=1

)
.

Proof of Corollary 1.4. Given that f ∈ Lq ∩Hp(·), the Lq-boundedness and Hp(·)-
boundedness of T yield that Tf ∈ Lq∩Hp(·). By Theorem 1.3, for Tf ∈ Lq∩Hp(·),
there is a sequence of (p(·), q)-atoms {a∗j} and a sequence of scalars {λ∗i } with

A
(
{λ∗j}∞j=1, {Q∗

j}∞j=1

)
≤ C‖Tf‖Hp(·) ,

such that Tf =
∑

j λ
∗
ja

∗
j , where the series converges to Tf in Lq.

Next we will prove that, when Tf ∈ Lq ∩Hp(·),

‖Tf‖Lp(·) ≤ CA
(
{λ∗j}∞j=1, {Q∗

j}∞j=1

)
.

To do this, we repeat the similar argument from Theorem 1.3. Then we rewrite

Tf(x) =
∑
i∈Z

∑
Q̃∗∈B∗

i

∑
Q∗⊂Q̃∗

|Q∗|φ∗
Q ∗ g(xQ∗)φQ∗(x− xQ∗) =:

∑
i

∑
Q̃∗∈B∗

i

λQ̃∗aQ̃∗(x),

where

aQ̃∗ =
1

λQ̃∗

∑
Q∗⊂Q̃∗

|Q∗|φQ∗ ∗ g(xQ∗)φQ∗(x− xQ∗),

and

λQ̃∗ = 2i‖χ5Q̃∗‖Lp(·) .
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We choose q∗ ∈ (0,∞), which satisfies 1
q
∈ (0,− log2 β0/(n+ 1)). We observe that

suppaQ̃∗ ⊂ 5Q̃∗ and ‖aQ̃∗‖Lq∗ 6= 0 such that

1 ≤ C
|5Q̃∗|1/q∗

‖aQ̃∗‖Lq∗ (5Q̃∗)‖χ5Q̃∗‖Lp(·)
.

In fact, the similar method in the proof of Theorem 1.3 yields

‖aQ̃∗‖Lq∗ (5Q̃∗) ≤ C‖aQ̃∗‖Lq∗

≤ C2−i‖χ5Q̃∗‖−1
Lp(·)

∥∥∥ ∑
Q∗⊂Q̃∗

|Q∗|φQ∗ ∗ g(xQ∗)φQ∗(x− xQ∗)
∥∥∥
Lq∗

≤ C2−i‖χ5Q̃∗‖−1
Lp(·)2

i|5Q̃∗|1/q∗ .

Thus we see that

‖Tf‖Lp(·) =
∥∥∥∑

i

∑
Q̃∗∈B∗

i

λQ̃∗aQ̃∗(x)
∥∥∥
Lp(·)

≤
∥∥∥{∑

i

∑
Q̃∗∈B∗

i

(
λQ̃∗aQ̃∗(x)

)p−} 1
p−
∥∥∥
Lp(·)

≤
∥∥∥{∑

i,Q̃∗

( λQ̃∗ |aQ̃∗||5Q̃∗|1/q∗

‖aQ̃∗‖Lq∗ (5Q̃∗)‖χ5Q̃∗‖Lp(·)

)p−} 1
p−
∥∥∥
Lp(·)

≤ CA
(
{λ∗j}∞j=1, {Q∗

j}∞j=1

)
,

where the last inequality follows from Proposition 2.5. Then by the above esti-
mates, we obtain, for f ∈ Lq ∩Hp(·),

‖Tf‖Lp(·) ≤ CA
(
{λ∗j}∞j=1, {Q∗

j}∞j=1

)
≤ C‖Tf‖Hp(·) ≤ C‖f‖Hp(·) .

Since Lq ∩Hp(·) is dense in Hp(·), T can be extended to a bounded operator from
Hp(·) to Lp(·). �

Acknowledgments. The author wishes to express heartfelt thanks to the anony-
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