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Abstract. In this article, we introduce the notion of a scattered locally
C∗-algebra and we give the conditions for a locally C∗-algebra to be scat-
tered. Given an action α of a locally compact group G on a scattered locally
C∗-algebra A[τΓ], it is natural to ask under what conditions the crossed product
A[τΓ]×α G is also scattered. We obtain some results concerning this question.

1. Introduction

A topological space X is called scattered (or dispersed) if every nonempty
subset of X necessarily contains an isolated point. Rudin [16, p. 41, Theorem 6]
showed that the linear functionals on C(X), where X is a compact Hausdorff
space which is scattered, have a very simple structure. A compact Hausdorff space
X is scattered if and only if every Radon measure on X is atomic. Pelczynski
and Semadeni [13] gave several necessary and sufficient conditions for a compact
Hausdorff space X to be scattered in terms of C(X). They showed that a compact
Hausdorff space X is scattered if and only if every linear functional f on C(X)
is of the form

f(h) =
∞∑
n=1

anh(xn),

where (xn)n is a fixed sequence of points in X and
∑∞

n=1 |an| <∞. As a noncom-
mutative generalization of a scattered compact Hausdorff space, the notion of a
scattered C∗-algebra was introduced independently by Jensen [7] and Rothwell
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[15]. A C∗-algebra A is said to be scattered if every positive functional on A is
atomic (see [7, Definition 1.1]); or equivalently, any positive functional on A is
the sum of a finite or infinite sequence of pure functionals on A. (We refer the
reader to [2], [5], [7], [8], [12], [10], [15] for other equivalent conditions on scattered
C∗-algebras.)

The notion of a “locally” C∗-algebra is a generalization of the notion of a C∗-
algebra. Instead of being given by a single C∗-norm, the topology on a locally
C∗-algebra is defined by a directed family of C∗-seminorms. A locally C∗-algebra
A[τΓ] is a complete Hausdorff topological ∗-algebra for which there exists an
upward directed family Γ of C∗-seminorms {pλ}λ∈Λ defining the topology τΓ.
A Fréchet locally C∗-algebra is a locally C∗-algebra whose topology is given by a
countable family of C∗-seminorms. A morphism of locally C∗-algebras is a contin-
uous ∗-morphism Φ from a locally C∗-algebra A[τΓ] to another locally C∗-algebra
B[τΓ′ ]. Other terms with which locally C∗-algebras can be found in the literature
are: pro-C∗-algebras, b∗-algebras, and LMC∗-algebras (see Phillips [14]).

Let {Aλ;χλµ}λ,µ∈Λ,λ≥µ be an inverse system of C∗-algebras. Then lim←λAλ with
the topology given by the family of C∗-seminorms {pAλ

}λ∈Λ, pAλ
((aµ)µ) = ‖aλ‖Aλ

,
where ‖ · ‖Aλ

denotes the C∗-norm on Aλ, is a locally C∗-algebra.
For a locally C∗-algebra A[τΓ], and every λ ∈ Λ, the quotient normed ∗-algebra

Aλ = A/ ker pλ, where ker pλ = {a ∈ A; pλ(a) = 0}, is already complete, hence,
it is a C∗-algebra in the norm ‖a + ker pλ‖Aλ

= pλ(a), a ∈ A (see, e.g., [3, The-
orem 10.24]). The canonical map from A to Aλ is denoted by πA

λ . For λ, µ ∈ Λ
with λ ≥ µ, there is a canonical surjective C∗-morphism πA

λµ : Aλ → Aµ such

that πA
λµ(a + ker pλ) = a + ker pµ for all a ∈ A. Moreover, {Aλ; π

A
λµ}λ,µ∈Λ,λ≥µ is

an inverse system of C∗-algebras, called the Arens–Michael decomposition of the
locally C∗-algebra A[τΓ]. The Arens–Michael decomposition gives us a represen-
tation of A[τΓ] as an inverse limit of C∗-algebras; namely, A[τΓ] = lim←λAλ, up
to a topological ∗-isomorphism.

In this article, we introduce the notion of scattered locally C∗-algebra, and we
give conditions for locally C∗-algebras to be scattered. Given an action α of a
locally compact group G on a scattered locally C∗-algebra A[τΓ], it is natural to
ask under what condition the crossed product A[τΓ] ×α G is also scattered. We
obtain some results concerning this question.

2. Scattered locally C∗-algebras

Let A[τΓ] be a locally C∗-algebra. A continuous positive functional on A[τΓ] is
a continuous linear map f : A → C with the property that f(a∗a) ≥ 0 for all
a ∈ A. If fλ is a positive functional on Aλ, then fλ ◦ πA

λ is a continuous positive
functional on A[τΓ]. Moreover, for any continuous positive functional f on A[τΓ],
there are λ ∈ Λ and a positive functional fλ on Aλ, called the positive functional
associated to f , such that f = fλ ◦ πA

λ . A continuous positive functional f on
A[τΓ] is pure if f 6= 0, and if g is another positive functional on A[τΓ] and g ≤ f ,
then there is α ∈ [0, 1] such that g = αf . A continuous positive functional f on
A[τΓ] is pure if and only if its associated positive functional fλ is pure.
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Definition 2.1. A locally C∗-algebra A[τΓ] is scattered if any continuous positive
functional f on A[τΓ] is a countable sum f =

∑
n fn of pure functionals fn on A,

in the pointwise convergence.

Remark 2.2. Let A[τΓ] and B[τΓ′ ] be two isomorphic locally C∗-algebras. Then
A[τΓ] is scattered if and only if B[τΓ′ ] is scattered.

Proposition 2.3. Let A[τΓ] be a locally C∗-algebra. Then A[τΓ] is scattered if
and only if the factors Aλ, λ ∈ Λ in the Arens–Michael decomposition of A[τΓ],
are scattered.

Proof. First, we suppose that A[τΓ] is scattered. Let λ ∈ Λ, and let f be a positive
functional on Aλ. Then f ◦ πA

λ is a continuous positive functional on A[τΓ], and
since A[τΓ] is scattered, f ◦ πA

λ =
∑

n fn, where the fn, n ∈ N, are pure. Let n
be a positive integer. Then, there are µ ∈ Λ and fµ,n a positive functional on Aµ

such that fn = fµ,n ◦ πA
µ . Furthermore,∣∣fn(a)∣∣2 ≤ ‖fµ,n‖fn(a∗a) ≤ ‖fµ,n‖f

(
πA
λ (a

∗a)
)
≤ ‖fµ,n‖‖f‖pλ(a)2

for all a ∈ A[τΓ]. Therefore, for each positive integer n, there is a positive func-
tional fλ

n on Aλ such that fλ
n ◦ πA

λ = fn. Moreover, since fn is pure, fλ
n is pure

and f =
∑

n f
λ
n .

Conversely, suppose that f is a continuous positive functional on A[τΓ]. Then
there are λ ∈ Λ and a positive functional fλ on Aλ such that f = fλ ◦ πA

λ . Since
Aλ is scattered, fλ =

∑
n fn, where the fn’s are pure. Then

f = fλ ◦ πA
λ =

∑
n

fn ◦ πA
λ

and since for each positive integer n, fn◦πA
λ is pure, be a positive functional A[τΓ]

is scattered. �

Corollary 2.4. Any closed ∗-subalgebra of a scattered locally C∗-algebra is a
scattered locally C∗-algebra.

Proof. Let A[τΓ] be a scattered locally C∗-algebra, and let B be a closed ∗-
subalgebra of A[τΓ]. Then B is a locally C∗-algebra and the factors Bλ, λ ∈ Λ in
the Arens–Michael decomposition of B can be identified with the C∗-subalgebras

πA
λ (B), the closure of the ∗-subalgebra πA

λ (B) in Aλ, of Aλ, λ ∈ Λ which are scat-
tered C∗-algebras. Then, Bλ, λ ∈ Λ, are scattered (see, e.g., [11, p. 677]) and so
B is scattered. �

A Hausdorff countably compactly generated topological space is a topological
space X which is the direct limit of a sequence of Hausdorff compact spaces
{Kn}n. The ∗-algebra C(X) of all continuous complex-valued functions on X
has a structure of a locally C∗-algebra with respect to the topology given by
C∗-seminorms {pKn}n with pKn(f) = sup{|f(x)|;x ∈ Kn}. Moreover, for each
n,C(X)n is isomorphic to C(Kn), and for any commutative Fréchet locally C∗-
algebra A, there is a Hausdorff countably compactly generated topological space
X such that A is isomorphic with C(X) (see [14, Theorem 5.7]).
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Corollary 2.5. A commutative Fréchet locally C∗-algebra A[τΓ] is scattered if
and only if there is a Hausdorff countably compactly generated topological space
X which is the direct limit of a sequence of scattered Hausdorff compact spaces
{Kn}n such that A[τΓ] is isomorphic with C(X).

Corollary 2.6. Let A[τΓ] and B[τΓ′ ] be two locally C∗-algebras. Then the maximal
tensor product A[τΓ]⊗maxB[τΓ′ ] of A[τΓ] and B[τΓ′ ] is a scattered locally C∗-algebra
if and only if the locally C∗-algebras A[τΓ] and B[τΓ′ ] are scattered.

Proof. The proof follows from Proposition 2.3, [2, Proposition 1], and [3, Theo-
rem 31.7 and Corollary 31.11]. �

Recall that a continuous ∗-representation of a locally C∗-algebra A[τΓ] on a
Hilbert space is a pair (ϕ,Hϕ) consisting of a Hilbert space Hϕ and a continuous
∗-morphism ϕ from A[τΓ] to L(Hϕ), the C

∗-algebra of all bounded linear operators
on Hϕ. If (ϕ,Hϕ) is a representation of A[τΓ], then there exist λ ∈ Λ and a
∗-representation (ϕλ,Hϕ) of Aλ such that ϕ = ϕλ ◦ πA

λ .
A continuous ∗-representation (ϕ,Hϕ) of A[τΓ] is of type I if the von Neumann

algebra generated by ϕ(A) is of type I (i.e., the commutant of ϕ(A) is an abelian
∗-subalgebra of L(Hϕ)). A locally C∗-algebra A[τΓ] is of type I if each of its
continuous ∗-representations is of type I.

Corollary 2.7. Let A[τΓ] be a locally C∗-algebra. If A[τΓ] is scattered, then A[τΓ]
is of type I.

Proof. Since A[τΓ] is scattered, the Aλ’s are scattered as well, and by [7, Theo-
rem 2.3], the Aλ, λ ∈ Λ are of type I. The corollary is proved since A[τΓ] is of
type I if and only if the Aλ, λ ∈ Λ are of type I (see [3, Proposition 30.8]). �

Let I be a closed two-sided ∗-ideal of A[τΓ]. Then the quotient ∗-algebra
A[τΓ]/I, equipped with the quotient topology, is a pre-locally C∗-algebra, and its

completion A[τΓ]/I is a locally C∗-algebra. Moreover, for each λ ∈ Λ, Iλ = πA
λ (I),

the closure of πA
λ (I) in the C∗-algebra Aλ is a closed two-sided ∗-ideal of Aλ,

and the C∗-algebras Aλ/Iλ and (A[τΓ]/I)λ are isomorphic (see, e.g., [3, Theo-
rem 11.7]).

Proposition 2.8. Let A[τΓ] be a locally C∗-algebra, and let I be a closed two-sided

∗-ideal of A[τΓ]. Then A[τΓ] is scattered if and only if I and A[τΓ]/I are scattered.

Proof. The proof follows from the above discussion, [7, Proposition 2.4], and
Proposition 2.3. �

Remark 2.9. If A[τΓ] is a Fréchet locally C∗-algebra and I is a closed two-sided
∗-ideal of A[τΓ], then the quotient ∗-algebra A[τΓ]/I is complete and so it is a
Fréchet locally C∗-algebra (see, e.g., [3, Corollary 11.8]). Therefore, if A[τΓ] is a
Fréchet locally C∗-algebra and I is a closed two-sided ∗-ideal of A[τΓ], then A[τΓ]
is scattered if and only if I and A[τΓ]/I are scattered.

An element a in a locally C∗-algebra A[τΓ] is bounded if sup{pλ(a);λ ∈ Λ} <
∞. Put b(A[τΓ]) = {a ∈ A[τΓ]; a is bounded}. The map ‖ · ‖∞: b(A[τΓ]) → [0,∞)
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defined by

‖a‖∞ = sup
{
pλ(a);λ ∈ Λ

}
is a C∗-norm, and b(A[τΓ]), equipped with this C∗-norm, is a C∗-algebra which
is dense in A[τΓ]. Moreover, for each λ ∈ Λ, ker pλ|b(A[τΓ]) = ker pλ ∩ b(A[τΓ]) is
a closed two-sided ∗-ideal of b(A[τΓ]), and the C∗-algebras b(A[τΓ])/ ker pλ|b(A[τΓ])

and Aλ are isomorphic (see, e.g., [3, Theorem 10.24]).

Proposition 2.10. Let A[τΓ] be a locally C∗-algebra.

(1) If the C∗-algebra b(A[τΓ]) of all bounded elements is scattered, then A[τΓ]
is scattered.

(2) If A[τΓ] is scattered and for some λ ∈ Λ, the closed two sided ∗-ideal
ker pλ|b(A[τΓ]) of b(A[τΓ]) is scattered, then b(A[τΓ]) is scattered.

Proof. (1) If b(A[τΓ]) is scattered, then for each λ ∈ Λ, ker pλ|b(A[τΓ]) and b(A[τΓ])/
ker pλ|b(A[τΓ]) are scattered (see [7, Proposition 2.4]). Therefore, for each λ ∈ Λ,
the C∗-algebra Aλ is scattered, since Aλ is isomorphic with b(A[τΓ])/ ker pλ|b(A[τΓ]),
and by Proposition 2.3, A[τΓ] is scattered.

(2) If A[τΓ] is scattered, then Aλ is scattered, and since Aλ is isomorphic with
b(A[τΓ])/ ker pλ|b(A[τΓ]) and the closed two sided ∗-ideal ker pλ|b(A[τΓ]) of b(A[τΓ]) is
scattered, b(A[τΓ]) is scattered. �

Let A[τΓ] be a locally C
∗-algebra, and let Z(A[τΓ]) = {a ∈ A; ab = ba for all b ∈

A} be its center. Clearly, Z(A[τΓ]) is a commutative locally C∗-subalgebra of A,
and so it is a locally C∗-algebra with respect to the topology given by the family
of C∗-seminorms {pλ|Z(A[τΓ])}λ∈Λ. For each λ, µ ∈ Λ with λ ≥ µ, πA

λµ(Z(Aλ)) ⊆
Z(Aµ) and so {Z(Aλ);π

A
λµ|Z(Aλ)}λ,µ∈Λ,λ≥µ is an inverse system of C∗-algebras.

Proposition 2.11. Let A[τΓ] be a locally C∗-algebra. Then Z(A[τΓ]) =
lim↼λ Z(Aλ), up to an isomorphism of locally C∗-algebras.

Proof. Consider the map Φ : Z(A[τΓ]) → lim↼λ Z(Aλ) given by

Φ(a) =
(
πA
λ (a)

)
λ
.

Clearly, Φ is a ∗-morphism and pZ(Aλ)(Φ(a)) = pλ|Z(A[τΓ])(a) for all a ∈ Z(A[τΓ])
and for all λ ∈ Λ. If (aλ)λ is a coherent sequence in {Z(Aλ); π

A
λµ|Z(Aλ)}λ,µ∈Λ,λ≥µ,

then there is a ∈ A such that πA
λ (a) = aλ for all λ ∈ Λ. Take b ∈ A. From πA

λ (ab) =
πA
λ (a)π

A
λ (b) = πA

λ (b)π
A
λ (a) = πA

λ (ba) for all λ ∈ Λ, we deduce that ab = ba, and
so a ∈ Z(A[τΓ]). Therefore, Φ is an isomorphism of locally C∗-algebras. �

Remark 2.12. We remark that, in general, the isometric C∗-morphism ϕλ :
(Z(A[τΓ]))λ → Z(Aλ), ϕλ(a+ ker(pλ|Z(A[τΓ]))) = a+ ker pλ is not onto.

An inverse system {Ai;χij}i,j∈I,i≥j of topological algebras is called perfect if the
restrictions to the inverse limit algebra A = lim←iAi of the canonical projections
πi :

∏
i∈I Ai → Ai, i ∈ I, namely, the continuous morphisms πi|A : A→ Ai, i ∈ I,

are onto maps. The resulting inverse limit algebra A = lim←iAi is called a perfect
topological algebra (see [4, Definition 2.7]).

Definition 2.13. We say that a locally C∗-algebra A[τΓ] is with perfect center if
the inverse system of C∗-algebras {Z(Aλ); π

A
λµ|Z(Aλ)}λ,µ∈Λ,λ≥µ is perfect.
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Let {Hλ}λ∈Λ be a directed family of Hilbert spaces such that for each λ, µ ∈ Λ
with λ ≥ µ, Hµ is a closed subspace of Hλ and 〈·, ·〉µ = 〈·, ·〉λ|Hµ . Then H =
limλ→Hλ with the inductive limit topology is called a locally Hilbert space. L(H)
denotes all linear maps T : H → H such that for each λ ∈ Λ, T |Hλ

∈ L(Hλ), the
C∗-algebra of all bounded linear operators on Hλ, and PλµT |Hλ

= T |Hλ
Pλµ for

all λ, µ ∈ Λ with λ ≥ µ, where Pλµ is the projection of Hλ on Hµ. If T ∈ L(H),
then there is T ∗ ∈ L(H) such that T ∗|Hλ

= (T |Hλ
)∗ for all λ ∈ Λ. Then L(H)

has a structure of locally C∗-algebra with the topology given by the family of
C∗-seminorms {pλ}λ∈Λ with pλ(T ) = ‖T |Hλ

‖L(Hλ) (see, e.g., [6, Theorem 5.1]).

Example 2.14. Let H = limλ→Hλ be a locally Hilbert space. Then H is a pre-
Hilbert space with the inner product given by 〈ξ, η〉 = 〈ξ, η〉λ if ξ, η ∈ Hλ. Let

H̃ be the Hilbert space obtained by the completion of H. For each λ ∈ Λ, Hλ

is a closed subspace of H̃. The projection of H̃ on Hλ is denoted by Pλ. Clearly,
the restriction Pλ|H of Pλ on H is an element in L(H). It is easy to check that
Z(L(H)) is the locally C∗-subalgebra of L(H) generated by {Pλ|H , λ ∈ Λ} and
that for each λ ∈ Λ, (Z(L(H)))λ is isomorphic with the C∗-subalgebra of L(Hλ)
generated by {Pλ|Hµ , µ ∈ Λ, µ ≤ λ}.

On the other hand, L(H)λ is isomorphic with the C∗-subalgebra of L(Hλ), the
C∗-algebra of all bounded linear operators on Hλ generated by {T ∈ L(Hλ);
PλµT = TPλµ, µ ∈ Λ, µ ≤ λ}, and then Z(L(H)λ) is isomorphic with the
C∗-subalgebra of L(Hλ) generated by {Pλ|Hµ , µ ∈ Λ, µ ≤ λ}.

Therefore, for each λ ∈ Λ, the C∗-algebras (Z(L(H)))λ and Z(L(H)λ) are
isomorphic and L(H) is a locally C∗-algebra with perfect center.

If the Hilbert spaces Hλ, λ ∈ Λ, are finite-dimensional, then the C∗-algebras
L(Hλ), λ ∈ Λ, are scattered (see [2]). Therefore the factors L(H)λ, λ ∈ Λ, in
the Arens–Michael decomposition of L(H) are scattered, and by Proposition 2.3,
L(H) is a scattered locally C∗-algebra with perfect center.

It is known that a C∗-algebra A is scattered if and only if it is of type I and
its center Z(A) is a scattered C∗-algebra (see [10, Theorem 2.2]). The following
result is a generalization of [10, Theorem 2.2].

Theorem 2.15. Let A[τΓ] be a locally C∗-algebra with perfect center. Then the
following statements are equivalent:

(1) A[τΓ] is a scattered locally C∗-algebra,
(2) A[τΓ] is of type I and Z(A[τΓ]) is a scattered locally C∗-algebra.

Proof. (1) ⇒ (2). This follows from Corrolaries 2.4 and 2.7.
(2) ⇒ (1). Since Z(A[τΓ]) is a scattered locally C∗-algebra, the factors

(Z(A[τΓ]))λ, λ ∈ Λ, in the Arens–Michael decomposition of Z(A[τΓ]) are scat-
tered. On the other hand, Z(A[τΓ]) = lim↼λ Z(Aλ), up to an isomorphism of
locally C∗-algebras, and {Z(Aλ);π

A
λµ|Z(Aλ)}λ,µ∈Λ,λ≥µ is a perfect inverse system

of C∗-algebras. Therefore, the C∗-algebras Z(Aλ), λ ∈ Λ, are scattered. Since
A[τΓ] is of type I, the factors Aλ, λ ∈ Λ, in the Arens–Michael decomposition of
A[τΓ] are of type I. Then, by [10, Theorem 2.2], the C∗-algebras Aλ, λ ∈ Λ, are
scattered, and by Proposition 2.3, A[τΓ] is scattered. �
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3. Crossed products of scattered locally C∗-algebras

Let G be a locally compact group, and let A[τΓ] be a locally C∗-algebra. An
action of G on A[τΓ] is a group morphism α from G to Aut(A[τΓ]), the group of
all automorphisms of A[τΓ], such that, for each a ∈ A, the map g 7→ αg(a) from
G to A[τΓ] is continuous. An action α of G on A[τΓ] is an inverse limit action if
there is a cofinal subset Γ′ of Γ with the property that pλ(αg(a)) = pλ(a) for all
a ∈ A, for all g ∈ G, and for all pλ ∈ Γ′. If α is an inverse limit action, we can
suppose that Γ′ = Γ, and then for each λ ∈ Λ there is an action αλ of G on Aλ

such that αg = lim←λ α
λ
g for all g ∈ G. If G is compact, then any action of G on

A[τΓ] is an inverse limit action.
Recall that if α is an inverse limit action of G on A[τΓ], then L

1(G,α,A[τΓ]) =
{f : G→ A;

∫
G
pλ(f(g)) dg <∞ for all λ ∈ Λ}, where dg is the Haar measure on

G, has a structure of locally m-convex ∗-algebra with the convolution as product
and the involution given by f#(g) = ∆(g−1)αg(f(g

−1)∗), where ∆ is the mod-
ular function on G, and the topology given by the family of submultiplicative
∗-seminorms {Nλ}λ, where Nλ(f) =

∫
G
pλ(f(g)) dg. The crossed product of A[τΓ]

by α, denoted by A[τΓ]×αG, is the enveloping locally C∗-algebra of the covariant
algebra L1(G,α,A[τΓ]). Moreover, for each λ ∈ Λ, the C∗-algebras (A[τΓ]×α G)λ
and Aλ ×αλ G are isomorphic (see [9]).

As in the case of C∗-algebras, we have the following result.

Proposition 3.1. Let G be a locally compact group, and let A[τΓ] be a locally
C∗-algebra. Then the crossed product A[τΓ] ×ι G of A[τΓ] by the trivial action ι
of G is scattered if and only if A[τΓ] and C

∗(G), the group C∗-algebras associated
to G, are scattered.

Proof. The assertion follows from Corollary 2.6 by taking into account that
A[τΓ] ×ι G is isomorphic to the maximal tensor product of A[τΓ] and C∗(G)
(see, e.g., [9]). �

The following result extends [2, Proposition 6].

Proposition 3.2. Let G be a compact group, and let α be an action of G on a
locally C∗-algebra A[τΓ]. If A[τΓ] is scattered, then A[τΓ]×α G is scattered.

Proof. If A[τΓ] is scattered, then, for each λ ∈ Λ, Aλ is scattered (see Propo-
sition 2.3), and by [2, Proposition 6] Aλ ×αλ G is scattered. From these facts
and taking into account that for each λ ∈ Λ, the C∗-algebras (A[τΓ]×α G)λ and
Aλ ×αλ G are isomorphic, we deduce that A[τΓ]×α G is scattered. �

Let α = lim←λ α
λ be an inverse limit action of a locally compact group G on a

pro-C∗-algebra A[τΓ], and let (A[τΓ])
α = {a ∈ A;αg(a) = a for all g ∈ G} be the

fixed point algebra of A[τΓ] under α. Then (A[τΓ])
α is a locally C∗-subalgebra of

A[τΓ]. Since, for each λ, µ ∈ Λ with λ ≥ µ, πA
λµ((Aλ)

αλ
) ⊆ (Aµ)

αµ
,{

(Aλ)
αλ

; πA
λµ|(Aλ)α

λ

}
λ,µ∈Λ,λ≥µ

is an inverse system of C∗-algebras.
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Proposition 3.3. Let α = lim←λ α
λ be an inverse limit action of a locally com-

pact group G on a locally C∗-algebra A[τΓ]. Then (A[τΓ])
α = lim↼λ(Aλ)

αλ
, up to

an isomorphism of locally C∗-algebras.

Proof. Consider the map Ψ : (A[τΓ])
α → lim↼λ(Aλ)

αλ
given by

Φ(a) =
(
πA
λ (a)

)
λ
.

Clearly, Ψ is a ∗-morphism and p
(Aλ)α

λ (Ψ(a)) = pλ|(A[τΓ])α(a) for all a ∈ (A[τΓ])
α

and for all λ ∈ Λ. If (aλ)λ is a coherent sequence in {(Aλ)
αλ
; πA

λµ|(Aλ)α
λ}λ,µ∈Λ,λ≥µ,

then there is a ∈ A such that πA
λ (a) = aλ for all λ ∈ Λ. From πA

λ (αg(a) − a) =
αλ
g (π

A
λ (a)) − πA

λ (a) = 0 for all λ ∈ Λ, we deduce that a ∈ (A[τΓ])
α, and so Ψ is

surjective. Therefore, Ψ is an isomorphism of locally C∗-algebras. �

Remark 3.4. We remark that, in general, the isometric C∗-morphism ψλ :
((A[τΓ])

α)λ → (Aλ)
αλ
, ψλ(a+ ker(pλ|(A[τΓ])α)) = a+ ker pλ is not onto.

By [10, Theorem 3.2], the crossed product A ×α G of a C∗-algebra A by an
action α of a compact abelian group G is a scattered C∗-algebra if and only if Aα

is a scattered C∗-algebra. We do not know if this result is true in the context of
locally C∗-algebras, but we can prove the following results.

Proposition 3.5. Let G be a compact abelian group, and let α be an action of G
on a locally C∗-algebra A[τΓ]. If A×α G is scattered, then (A[τΓ])

α is scattered.

Proof. If A×αG is scattered, then by Proposition 2.3 and [10, Theorem 3.2], the

(Aλ)
αλ
, λ ∈ Λ, are scattered. Since for each λ ∈ Λ, ((A[τΓ])

α)λ is a C∗-subalgebra

of (Aλ)
αλ
, ((A[τΓ])

α)λ is scattered and so (A[τΓ])
α is scattered. �

Definition 3.6. We say that an inverse limit action α = lim←λ α
λ of a locally com-

pact group G on a pro-C∗-algebra A[τΓ] is perfect if {(Aλ)
αλ
; πA

λµ|(Aλ)α
λ}λ,µ∈Λ,λ≥µ

is a perfect inverse system of C∗-algebras.

Example 3.7. Let G be a locally compact group, and let A[τΓ] be a locally
C∗-algebra. The action δ of G on the locally C∗-algebra C0(G,A) of all con-
tinuous functions from G to A vanishing to infinite, given by δg(f)(t) = f(tg) for
all g, t ∈ G, is an inverse limit action δ = lim←λ δ

λ, where δλ is the action of G
on C0(G,Aλ), given by δλg (f)(t) = f(tg) for all g, t ∈ G. Moreover, δ is perfect,
since the fixed point algebra of C0(G,A) under δ is isomorphic with A.

Under perfectness of the action, we obtain the inverse statement of Proposi-
tion 3.5.

Theorem 3.8. Let G be a compact abelian group, and let α be a perfect action
of G on a locally C∗-algebra A[τΓ]. Then the following statements are equivalent:

(1) A×α G is scattered,
(2) (A[τΓ])

α is scattered.

Proof. (1) ⇒ (2). It follows from Proposition 3.5.
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(2) ⇒ (1). Since (A[τΓ])
α is a scattered locally C∗-algebra, the factors

((A[τΓ])
α)λ, λ ∈ Λ, in the Arens–Michael decomposition of (A[τΓ])

α, are scat-

tered. On the other hand, (A[τΓ])
α = lim↼λ(Aλ)

αλ
, up to an isomorphism of

locally C∗-algebras, and {(Aλ)
αλ
; πA

λµ|(Aλ)α
λ}λ,µ∈Λ,λ≥µ is a perfect inverse system

of C∗-algebras. Therefore, the fixed point algebras (Aλ)
αλ

of Aλ under αλ, λ ∈ Λ,
are scattered. Then, by [10, Theorem 3.2], the factors Aλ ×αλ G, λ ∈ Λ, in the
Arens–Michael decomposition of A ×α G, are scattered, and by Proposition 2.3,
A×α G is scattered. �

Let α = lim←λ α
λ be an inverse limit action of a locally compact group G on

a locally C∗-algebra A[τΓ]. For each g ∈ G, the restriction of αg on b(A[τΓ]), the
C∗-algebra of all bounded elements of A[τΓ], is an automorphism of b(A[τΓ]) and
the map g 7→ αg|b(A[τΓ]) from G to Aut(b(A[τΓ])) is a group morphism. In general,
the map g 7→ αg|b(A[τΓ]) from G to Aut(b(A[τΓ])) is not an action of G on b(A[τΓ]),
since for a fixed element a ∈ b(A[τΓ]), the map g 7→ αg(a) from G to b(A[τΓ]) is
not always continuous. We remark that if β is an action of G on b(A[τΓ]) such
that the closed two-sided ∗-ideals ker pλ|b(A[τΓ]), λ ∈ Λ, are β-invariant, then β

extends to an action g 7→ β̃g of G on A[τΓ], where β̃g is the extension of the
automorphism βg of b(A[τΓ]) to an automorphism of A[τΓ].

Suppose that for each a ∈ b(A[τΓ]), the map g 7→ αg(a) from G to b(A[τΓ])
is continuous. Then α|b(A[τΓ]) is an action of G on b(A[τΓ]) and the closed two-
sided ∗-ideals ker pλ|b(A[τΓ]), λ ∈ Λ, are α|b(A[τΓ])-invariant. Therefore, for each
λ ∈ Λ, α|b(A[τΓ]) induces an action of G on b(A[τΓ])/ ker pλ|b(A[τΓ]), denoted by
α|λb(A[τΓ])

, and the C∗-algebras (b(A[τΓ])×α|b(A[τΓ])
G)/ ker pλ|b(A[τΓ])×α|b(A[τΓ])

G and

b(A[τΓ])/ ker pλ|b(A[τΓ]) ×α|λ
b(A[τΓ])

G are isomorphic (see, e.g., [1, Chapter IV, The-

orem 3.5.8]).

Lemma 3.9. Let α = lim←λ α
λ be an inverse limit action of a locally compact

group G on a locally C∗-algebra A[τΓ] such that for each a ∈ b(A[τΓ]), the map
g 7→ αg(a) from G to b(A[τΓ]) is continuous. Then, for each λ ∈ Λ, the C∗-algebras
(b(A[τΓ])×α|b(A[τΓ])

G)/ ker pλ|b(A[τΓ]) ×α|b(A[τΓ])
G and Aλ ×αλ G are isomorphic.

Proof. Take λ ∈ Λ. The map ϕλ : b(A[τΓ])/ ker pλ|b(A[τΓ]) → A[τΓ])/ ker pλ, given
by

ϕλ(a+ ker pλ|b(A[τΓ])) = a+ ker pλ,

is a C∗-isomorphism (see, e.g., [3, Theorem 10.24]). Furthermore,

ϕλ

(
(α|b(A[τΓ]))g(a+ ker pλ|b(A[τΓ]))

)
= αλ

g

(
ϕλ(a+ ker pλ|b(A[τΓ]))

)
for all a ∈ b(A[τΓ]) and for all g ∈ G. Thus, there is a C∗-isomorphism Φλ :
b(A[τΓ])/ ker pλ|b(A[τΓ]) ×α|λ

b(A[τΓ])
G→ Aλ ×αλ G such that

Φλ

(
(a+ ker pλ|b(A[τΓ]))⊗ f

)
= ϕλ(a+ ker pλ|b(A[τΓ]))⊗ f

for all a ∈ b(A[τΓ]) and for all f ∈ Cc(G). Therefore, the C
∗-algebras Aλ ×αλ G

and (b(A[τΓ])×α|b(A[τΓ])
G)/ ker pλ|b(A[τΓ]) ×α|b(A[τΓ])

G are isomorphic. �



SCATTERED LOCALLY C∗-ALGEBRAS 39

Proposition 3.10. Let α = lim←λ α
λ be an inverse limit action of a locally

compact group G on a locally C∗-algebra A[τΓ] such that for each a ∈ b(A[τΓ]),
the map g 7→ αg(a) from G to b(A[τΓ]) is continuous. If b(A[τΓ]) ×α|b(A[τΓ])

G is
scattered, then A×α G is scattered.

Proof. If b(A[τΓ]) ×α|b(A[τΓ])
G is scattered, then for each λ ∈ Λ, the C∗-algebra

(b(A[τΓ]) ×α|b(A[τΓ])
G)/ ker pλ|b(A[τΓ]) ×α|b(A[τΓ])

G is scattered, and according to
Lemma 3.9, for each λ ∈ Λ, the C∗-algebra Aλ ×αλ G is scattered. From this
fact, [9, Corollary 1.3.7], and Proposition 2.3, we deduce that A ×α G is scat-
tered. �

Theorem 3.11. Let G be a compact abelian group, and let α be an action of G
on a locally C∗-algebra A[τΓ] such that for each a ∈ b(A[τΓ]), the map g 7→ αg(a)
from G to b(A[τΓ]) is continuous. If for some λ ∈ Λ the closed two sided ∗-ideal
ker pλ|b(A[τΓ]) of b(A[τΓ]) is scattered, then the following statements are equivalent:

(1) (b(A[τΓ]))
α|b(A[τΓ]) is scattered,

(2) b(A[τΓ])×α|b(A[τΓ])
G is scattered,

(3) A×α G is scattered,
(4) (A[τΓ]))

α is scattered.

Proof. (1) ⇔ (2). By [10, Theorem 3.2], (b(A[τΓ]))
α|b(A[τΓ]) is scattered if and only

if b(A[τΓ])×α|b(A[τΓ])
G is scattered.

(2) =⇒ (3). This follows from Proposition 3.10.
(3) =⇒ (4). This follows from Proposition 3.5.
(4) =⇒ (1). If the closed two sided ∗-ideal ker pλ|b(A[τΓ]) of b(A[τΓ]) is scattered,

then ker pλ|(b(A[τΓ]))
α|b(A[τΓ]) is scattered, and by Proposition 2.10, (b(A[τΓ]))

α|b(A[τΓ])

is scattered since (b(A[τΓ]))
α|b(A[τΓ]) = b((A[τΓ]))

α). �
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9. M. Joiţa, Crossed Products of Locally C∗-Algebras, Editura Academiei Române, Bucharest,
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