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Abstract. The set of supporting vectors of a continuous linear operator, that
is, the normalized vectors at which the operator attains its norm, is decomposed
into its convex components. In the complex case, the set of supporting vectors
of a nonzero functional is proved to be path-connected. We also introduce
the concept of generalized supporting vectors for a sequence of operators as
the normalized vectors that maximize the summation of the squared norm of
those operators. We determine the set of generalized supporting vectors for
the particular case of a finite sequence of real matrices. Finally, we unveil the
relation between the supporting vectors of a real matrix A and the Tikhonov
regularization minx∈Rn ‖Ax − b‖ + α‖x‖ reaching the conclusion that, by an
appropriate choice of b and α, the supporting vectors of A can be obtained via
solving the Tikhonov regularization minx∈Rn ‖Ax− b‖+ α‖x‖.

1. Introduction

Recall that the set of supporting vectors of a continuous linear operator between
normed spaces X and Y is defined as

suppv(T ) := arg max
‖x‖=1

∥∥T (x)∥∥ =
{
x ∈ SX :

∥∥T (x)∥∥ = ‖T‖
}
.
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The supporting vectors play a fundamental role in the geometry of Banach spaces
due to famous classical results such as the Bishop–Phelps theorem and the Hahn–
Banach theorem. We refer the reader to [1], [2] for a broad perspective on those
theorems and their generalizations.

In the second section of this manuscript we study the topological structure
of the set suppv(T ) by identifying its convex components, which turn out to
be closed. Needless to say, suppv(T ) is in general not even connected except in
extremal cases (such as T = 0) or in an isometry. Special attention will be paid
to the closed convex set suppv1(x

∗) := {x ∈ SX : x∗(x) = ‖x∗‖}, where x∗ ∈ X∗.
These sets are also known by the Banach space geometers as the exposed faces
of the unit ball of X, BX . We will prove (see Theorem 2.1) that suppv1(x

∗) is
path-connected if X is complex.

In the third section we introduce the new concept of generalized supporting
vectors for a sequence of continuous and linear operators, and we give a com-
plete description of them in the particular case of an eventually null sequence of
finite-rank operators. The generalized supporting vectors are crucial to solving
several optimization problems that involve the design of transcranial magnetic
stimulation coils (see [4]). The fourth and final section is devoted to obtain-
ing the supporting vectors of a real matrix A via the Tikhonov regularization
minx∈Rn ‖Ax− b‖+ α‖x‖ (see [6]).

2. Topological structure of the set of supporting vectors

It is trivially verified that suppv(x∗) =
⋃

λ∈SK λ suppv1(x
∗) for every x∗ ∈

X∗, where K = R or C. In fact, if K = R, and x∗ 6= 0, then {suppv1(x∗),
− suppv1(x

∗)} are the two connected components of suppv(x∗). We remind the
reader that a convex component is a maximal convex subset (see [3]). There-
fore, {suppv1(x∗),− suppv1(x

∗)} also constitute the two convex components of
suppv(x∗). The complex case is completely different.

Theorem 2.1. Let X be a complex normed space, and let x∗ ∈ X∗ \ {0}. Then
(1) suppv(x∗) is path-connected,
(2) the convex components of suppv(x∗) are {λ suppv1(x∗) : λ ∈ SC}.

Proof. We will only prove the first item since the second one will be generalized
in an upcoming theorem. Let x, y ∈ suppv(x∗), and let λ, γ ∈ SC such that
x ∈ λ suppv1(x

∗), and y ∈ γ suppv1(x
∗). Note that SCx ⊆ suppv(x∗), and note

that SCx is path-connected since it is homeomorphic to SC. Thus we can construct
a continuous path inside suppv(x∗) joining x with γ

λ
x ∈ γ suppv1(x

∗). Finally,
since γ suppv1(x

∗) is convex, we can consider the segment joining γ
λ
x with y, which

is entirely contained in γ suppv1(x
∗) ⊆ suppv(x∗). By adding together these two

paths we obtain a continuous path inside suppv(x∗) joining x and y. �

We proceed to obtain a similar decomposition of suppv(T ) for T a continuous
linear operator between normed spaces.
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Lemma 2.2. Let X, Y , and Z be normed spaces, and consider nonzero con-
tinuous linear operators S : X → Y and T : Y → Z. If ‖T ◦ S‖ = ‖T‖‖S‖,
then

suppv(T ◦ S) ⊆ suppv(S) and
S(suppv(T ◦ S))

‖S‖
⊆ suppv(T ).

Proof. Fix an arbitrary x ∈ suppv(T ◦ S). By hypothesis, ‖T‖‖S‖ = ‖T ◦ S‖ =

‖T (S(x))‖, which implies that ‖T (S(x)‖S‖ )‖ = ‖T‖. This means that ‖S(x)
‖S‖ ‖ = 1,

and thus that ‖S(x)‖ = ‖S‖. �

Note that Theorem 2.1(2) is a direct consequence of the following result.

Theorem 2.3. Let X and Y be normed spaces, and let T : X → Y be a contin-
uous linear operator. Then

(1) suppv(T ) =
⋃

y∗∈suppv(T ∗) suppv1(y
∗ ◦ T );

(2) if C is a convex component of suppv(T ), then C = suppv1(y
∗ ◦ T ) for

some y∗ ∈ suppv(T ∗);
(3) if Y is smooth, then every nonempty suppv1(y

∗ ◦ T ) with y∗ ∈ suppv(T ∗)
is a convex component of suppv(T ).

Proof. (1) We will prove only that

suppv(T ) ⊇
⋃

y∗∈suppv(T ∗)

suppv1(y
∗ ◦ T )

since the other inclusion will be shown in the next item. If y∗ ∈ suppv(T ∗),
then ‖y∗ ◦ T‖ = ‖T ∗(y∗)‖ = ‖T ∗‖ = ‖T‖ = ‖y∗‖‖T‖; therefore we can apply
Lemma 2.2 to deduce that suppv1(y

∗ ◦ T ) ⊆ suppv(T ).
(2) Let C be a convex component of suppv(T ). Note that T (C) is a convex set

contained in SY (0, ‖T‖); thus, by the Hahn–Banach theorem, there exists y∗ ∈ SY ∗

such that y∗(T (C)) = {‖T‖}. As a consequence ‖T ∗(y∗)‖ = ‖y∗ ◦ T‖ = ‖T‖ =
‖T ∗‖; therefore y∗ ∈ suppv(T ∗), and C ⊆ suppv1(y

∗ ◦ T ). Since suppv1(y∗ ◦ T ) is
convex, and, by virtue of the previous item contained in suppv(T ), we have that
the maximality of C allows that C = suppv1(y

∗ ◦ T ).
(3) Let suppv1(y

∗ ◦ T ) be nonempty with y∗ ∈ suppv(T ∗), and consider C
to be a convex subset suppv(T ) containing suppv1(y

∗ ◦ T ). We will show that
C = suppv1(y

∗ ◦T ). We may assume without loss of generality that C is a convex
component of suppv(T ). In this case, we already know that C = suppv1(z

∗ ◦ T )
for some z∗ ∈ supp(T ∗). Hence we have that suppv1(y

∗ ◦ T ) ⊆ suppv1(z
∗ ◦ T ).

Choose any x ∈ suppv1(y
∗ ◦ T ). Observe that y∗(T (x)

‖T‖ ) = 1 = z∗(T (x)
‖T‖ ). Now the

smoothness of Y allows us to deduce that y∗ = z∗. �

Note that if we drop the hypothesis of smoothness from the third item of
Theorem 2.3, then we cannot conclude that all the nonempty exposed faces
of the form suppv1(y

∗ ◦ T ) with y∗ ∈ suppv(T ∗) are convex components of
suppv(T ). Indeed, consider X = Y = `∞, T = I, and y∗ := e1+e2

2
. Note that

C1 := {(xn)n∈N ∈ S`∞ : x1 = 1} is a convex component of S`∞ = suppv(T ) and
that

suppv1(y
∗ ◦ T ) =

{
(xn)n∈N ∈ S`∞ : x1 = x2 = 1

}
( C1.
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As an immediate consequence of Theorem 2.3, we obtain the following corollary.

Corollary 2.4. Let X and Y be normed spaces, and let T : X → Y be a contin-
uous linear operator. Then

(1) if suppv(T ) 6= ∅, then suppv(T ∗) 6= ∅;
(2) if X is reflexive and suppv(T ∗) 6= ∅, then suppv(T ) 6= ∅.

Proof. The first item is a direct consequence of Theorem 2.3. Therefore, assume
that X is reflexive and that suppv(T ∗) 6= ∅. If y∗ ∈ suppv(T ∗), then ‖y∗ ◦ T‖ =
‖T ∗(y∗)‖ = ‖T ∗‖ = ‖T‖ = ‖y∗‖‖T‖; thus Lemma 2.2 shows that suppv(y∗ ◦T ) ⊆
suppv(T ). Finally, the reflexivity of X allows us to conclude that suppv(y∗ ◦T ) 6=
∅. �

We conclude this section by pointing out that the converse to the previous
corollary does not hold true. Indeed, consider any nonreflexive Banach space
and a non-norm-attaining functional f ∈ SX∗ . Then suppv(f) = ∅; however,
f ∗ : K → X∗ verifies that suppv(f ∗) = SK.

3. Generalized supporting vectors

The generalized supporting vectors appear in an implicit way in many opti-
mization problems in physics and engineering (see [4]). Here we will properly
define them in a more general and abstract setting.

Definition 3.1. Let X and Y be normed spaces, and consider a sequence (Tn)n∈N
of continuous linear operators between them. The generalized supporting vectors
of (Tn)n∈N are defined as the elements of

gsuppv
(
(Tn)n∈N

)
:= arg max

‖x‖2=1

∞∑
n=1

∥∥Ti(x)
∥∥2
.

Notice that it can easily happen that gsuppv((Tn)n∈N) is empty. In order to
avoid this, some conditions are required on the sequence of operators and on the
normed spaces, such as reflexivity for X and that (Tn)n∈N ∈ `2(B(X,Y )).

We will focus now on the generalized supporting vectors of an eventually null
sequence of finite-rank operators A1, . . . , Ak ∈ Rm×n. For this we need to recall
several basic concepts of linear algebra along with other basic concepts from the
spectral theory of normed algebras, such as the point spectrum of a continuous
linear operator. (Throughout this section, the 2-norm of a matrix A ∈ Rm×n is
considered to be the operator norm of A between Rn and Rm when both are
endowed with the Euclidean norm.)

A matrix P ∈ Rn×n is said to be orthogonal provided that P T = P−1. Orthog-
onal matrices induce isometries on `n2 := (R2, ‖ · ‖2); that is,

‖Px‖22 = (Px)T (Px) = xTP TPx = xTx = ‖x‖22
for all x ∈ Rn. In particular, the 2-norm of an orthogonal matrix is 1.

It is well known that the eigenvalues of a symmetric real matrix are real. This
fact remains true in more general settings, for instance in operator theory. If
A ∈ Rm×n is symmetric, then λmax(A) stands for the largest eigenvalue of A, and
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V (λmax(A)) := ker(A−λmax(A)I) is the vector subspace of eigenvectors associated
to λmax(A). Before stating and proving the following crucial lemma, we note that
if D ∈ Rn×n is a diagonal matrix, then ‖D‖2 = |λmax(D)|. From the spectral
theory of C∗-algebras, we can easily deduce the following lemma. We include its
proof for the sake of completeness.

Lemma 3.2. If A ∈ Rn×n is positive semidefinite and symmetric, then

(1) ‖A‖2 = λmax(A),
(2) xTAx ≤ λmax(A)‖x‖22 for all x ∈ Rn.

Proof. Since A is symmetric, we have that A is orthogonally diagonalizable. In
other words, there exist an orthogonal matrix P and a diagonal matrix D such
that A = P TDP and the eigenvalues of A are the elements of the main diagonal
of D. On the other hand, since A is also positive semidefinite, then the eigenvalues
of A are positive.

(1) Since P and P T are both isometries, it holds that

‖A‖2 = ‖P TDP‖2 = ‖D‖2 = λmax(D) = λmax(A).

(2) By restating that P is an isometry and by relying on the above item, we
see that

xTAx = |xTAx| ≤ ‖xT‖2‖A‖2‖x‖2 = λmax(A)‖x‖22. �

Since every element x of a normed space X can be regarded as an element of
X∗∗, it makes sense to consider suppv1(x), which consists of all x∗ ∈ SX∗ such
that x∗(x) = ‖x‖. On the other hand, we note that the set of smooth points of
the unit ball of a normed space X is defined as

smo(BX) :=
{
x ∈ SX : ∃x∗ ∈ SX∗ with suppv1(x) = {x∗}

}
.

Whenever smo(BX) = SX , we consider X a smooth normed space. It is well
known that all Hilbert spaces are smooth.

Theorem 3.3. Let A1, . . . , Ak ∈ Rm×n. Then

max
‖x‖2=1

k∑
i=1

‖Aix‖22 = λmax

( k∑
i=1

AT
i Ai

)
,

and

V
(
λmax

( k∑
i=1

AT
i Ai

))
∩ S`n2

= arg max
‖x‖2=1

k∑
i=1

‖Aix‖22.

Proof. First, for any x ∈ Rn and by virtue of Lemma 3.2(2),

k∑
i=1

‖Aix‖22 =
k∑

i=1

xTAT
i Aix = xT

( k∑
i=1

AT
i Ai

)
x ≤ λmax

( k∑
i=1

AT
i Ai

)
‖x‖2.

Therefore,

max
‖x‖2=1

k∑
i=1

‖Aix‖22 ≤ λmax

( k∑
i=1

AT
i Ai

)
.
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Now let w ∈ V (λmax(
∑k

i=1A
T
i Ai)) ∩ S`n2

. Then

k∑
i=1

‖Aiw‖22 = wT
( k∑

i=1

AT
i Ai

)
w = λmax

( k∑
i=1

AT
i Ai

)
.

This shows that

max
‖x‖2=1

k∑
i=1

‖Aix‖22 = λmax

( k∑
i=1

AT
i Ai

)
and that

V
(
λmax

( k∑
i=1

AT
i Ai

))
∩ S`n2

⊆ arg max
‖x‖2=1

k∑
i=1

‖Aix‖22.

Finally, let v ∈ argmax‖x‖2=1

∑k
i=1 ‖Aix‖22. On the one hand, in accordance with

Lemma 3.2(1), we deduce that∥∥∥ (
∑k

i=1 A
T
i Ai)v

λmax(
∑k

i=1A
T
i Ai)

∥∥∥
2
≤ ‖

∑k
i=1A

T
i Ai‖2

λmax(
∑k

i=1 A
T
i Ai)

= 1.

On the other hand,

vT
(
∑k

i=1A
T
i Ai)v

λmax(
∑k

i=1 A
T
i Ai)

=

∑k
i=1 ‖Aiv‖22

λmax(
∑k

i=1A
T
i Ai)

= 1,

which implies that ∥∥∥ (
∑k

i=1A
T
i Ai)v

λmax(
∑k

i=1A
T
i Ai)

∥∥∥
2
= 1.

The smoothness of `n2 allows us to deduce that

(
∑k

i=1 A
T
i Ai)v

λmax(
∑k

i=1A
T
i Ai)

= v;

that is, ( k∑
i=1

AT
i Ai

)
v = λmax

( k∑
i=1

AT
i Ai

)
v,

and so v ∈ V (λmax(
∑k

i=1 A
T
i Ai)) ∩ S`n2

. �

As a consequence, we easily obtain the well-known formula of the 2-norm of a
matrix.

Corollary 3.4. If A ∈ Rm×n, then ‖A‖2 =
√
λmax(ATA), and V (λmax(A

TA)) ∩
S`n2

= suppv(A).
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4. Supporting vectors and the Tikhonov regularization

Many times in physics and engineering, the following problem arises:{
min ‖Ax− b‖+ α‖x‖
x ∈ Rn,

where A ∈ Rm×n, b ∈ Rn, and α > 0 are constant. This problem is often related
to identifying the supporting vectors of A, and it is known as the Tikhonov
regularization due to the addition of the term α‖x‖ (see [6] for a broad perspective
on the Tikhonov regularization). In this section we will prove that an appropriate
choice of b and α allows the computation of the supporting vectors of A via the
Tikhonov regularization minx∈Rn ‖Ax− b‖+α‖x‖. We will consider both Rn and
Rm endowed with arbitrary norms and Rm×n endowed with the corresponding
operator norm. Likewise, X and Y will stand for Rn and Rm endowed with the
previous norms, respectively.

Lemma 4.1. Let A ∈ Rm×n, b ∈ Rn, and let α > 0. If

suppv(A) ∩ arg min
x∈Rn

(
‖Ax− b‖+ α‖x‖

)
6= ∅,

then α ≤ min{‖A‖, ‖b‖}.

Proof. Let y ∈ suppv(A) ∩ argminx∈Rn(‖Ax − b‖ + α‖x‖). Notice that ‖y‖ = 1
and that ‖Ay‖ = ‖A‖. We will distinguish between the two following cases:

• ‖b‖ ≤ ‖A‖. On the one hand,

‖b‖ = ‖A0− b‖+ α‖0‖
≥ ‖Ay − b‖+ α‖y‖
≥

∣∣‖Ay‖ − ‖b‖
∣∣+ α‖y‖

=
∣∣‖A‖ − ‖b‖

∣∣+ α

= ‖A‖ − ‖b‖+ α

≥ α.

• ‖A‖ < ‖b‖. On the other hand, following the same change of inequalities
as above, we conclude that

‖b‖ ≥
∣∣‖A‖ − ‖b‖

∣∣+ α = ‖b‖ − ‖A‖+ α,

from which we immediately deduce that α ≤ ‖A‖. �

The preceding lemma suggests the choice α = ‖A‖ = ‖b‖. Before stating
our next result on the Tikhonov regularization, we need the following technical
lemma.

Lemma 4.2. Let Z be a strictly convex normed space. If z ∈ Z with 0 < ‖z‖ < 1,
then SZ ∩ SZ(0, 1− ‖z‖) = { z

‖z‖}.

Proof. Let y ∈ SZ ∩ SZ(0, 1− ‖z‖). Notice that ‖y − z‖ = 1− ‖z‖ = ‖y‖ − ‖z‖;
thus ‖z + (y − z)‖ = ‖z‖ + ‖y − z‖. According to [5, Proposition 5.1.11], there
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exists α > 0 such that y − z = αz; that is, y = (1 + α)z. Since ‖y‖ = 1, and
1 + α > 0, then the only possibility is that y = z

‖z‖ . �

Theorem 4.3. Let A ∈ Rm×n, b ∈ Rn, and α > 0 satisfy the condition α =
‖A‖ = ‖b‖. Then:

(1) minx∈Rn(‖Ax− b‖+ α‖x‖) = min‖x‖≤1(‖Ax− b‖+ α‖x‖) = ‖A‖,
(2) 0 ∈ argminx∈Rn(‖Ax− b‖+ α‖x‖) ⊆ BX ,
(3) (argmin‖x‖≤1(‖Ax− b‖+ α‖x‖)) \ {0} ⊆ (0, 1] suppv(A),
(4) if Y is strictly convex, and (argmin‖x‖≤1(‖Ax − b‖ + α‖x‖)) \ {0} 6= ∅,

then b ∈ A suppv(A).

Proof. (1)–(2) Let x ∈ Rn. We will distinguish between the two following cases:

• ‖Ax‖ ≥ ‖A‖. In this case, ‖A‖‖x‖ ≥ ‖Ax‖ ≥ ‖A‖, so ‖x‖ ≥ 1; hence

‖Ax− b‖+ α‖x‖ ≥ α = ‖A‖.

• ‖Ax‖ < ‖A‖. In this case,

‖Ax− b‖+ α‖x‖ ≥
∣∣‖Ax‖ − ‖b‖

∣∣+ α‖x‖
= ‖A‖ − ‖Ax‖+ α‖x‖
≥ ‖A‖ − ‖A‖‖x‖+ α‖x‖
= ‖A‖.

This shows that

min
{
‖Ax− b‖+ α‖x‖ : x ∈ Rn

}
≥ ‖A‖.

By taking x = 0, we obtain ‖A0− b‖+α‖0‖ = ‖b‖ = ‖A‖. Now, if ‖x‖ > 1, then
‖Ax− b‖+ α‖x‖ > α = ‖A‖.

(3) Let z ∈ argmin‖x‖≤1(‖Ax− b‖+ α‖x‖) with z 6= 0. By taking into account
that ‖A‖ = ‖Az − b‖+ α‖z‖ and that ‖Az‖ ≤ ‖A‖‖z‖ ≤ ‖A‖ = ‖b‖, we obtain

‖b‖ − ‖Az‖ =
∣∣‖b‖ − ‖Az‖

∣∣
≤ ‖b− Az‖
= ‖A‖ − α‖z‖
= ‖A‖ − ‖A‖‖z‖
= ‖b‖ − ‖A‖‖z‖.

Therefore, ‖A‖‖z‖ ≤ ‖Az‖ ≤ ‖A‖‖z‖, which means that∥∥∥A z

‖z‖

∥∥∥ = ‖A‖;

hence z ∈ ‖z‖ suppv(A).
(4) Let z ∈ argmin‖x‖≤1(‖Ax− b‖ + α‖x‖) with z 6= 0. From the proof of the

previous item, we know that z
‖z‖ ∈ suppv(A) and that

‖Az − b‖ = ‖A‖
(
1− ‖z‖

)
=

∥∥∥Az − A
z

‖z‖

∥∥∥.
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Therefore, b ∈ SY (0, ‖A‖) ∩ SY (Az, ‖A‖(1 − ‖z‖)). By making use of the trian-
gular inequality, it can be seen that BY (Az, ‖A‖(1 − ‖z‖)) ⊆ BY (0, ‖A‖). Now
Lemma 4.2 comes into play to assure that

SY

(
Az, ‖A‖

(
1− ‖z‖

))
∩ SY

(
0, ‖A‖

)
=

{
A

z

‖z‖

}
.

Thus we conclude that b = A z
‖z‖ ∈ A suppv(A). �

The preceding theorem indicates that under the choice of α = ‖A‖ = ‖b‖, the
Tikhonov regularization can be restricted to ‖x‖ ≤ 1. On the other hand, the
hypothesis of strict convexity for Y in Theorem 4.3(4) cannot be removed, as we
will show in the next example.

Example 4.4. Take X = Y := `2∞, A :=
(
1 0
0 0

)
, b :=

(
1

1/2

)
, α := 1, and z :=

(
1/2
0

)
.

Then

• α = ‖A‖∞ = ‖b‖∞ = 1,
• suppv(A) =

{(
x
y

)
: |x| = 1, |y| ≤ 1

}
,

• A suppv(A) =
{(

1
0

)
,
(
−1
0

)}
, so b /∈ A suppv(A), and

• ‖Az − b‖∞ + α‖z‖∞ = 1
2
+ 1

2
= 1 = ‖A‖∞.

The next result shows a necessary and sufficient condition to force that b ∈
A suppv(A).

Theorem 4.5. Let A ∈ Rm×n, b ∈ Rn, and α > 0 satisfy the condition α =
‖A‖ = ‖b‖. Then min{‖Ax − b‖ + α‖x‖ : ‖x‖ = 1} = ‖A‖ if and only if b ∈
A suppv(A). In this situation,

arg min
‖x‖=1

(
‖Ax− b‖+ α‖x‖

)
⊆ suppv(A).

Proof. Assume first that there exists y ∈ Rn with ‖y‖ = 1, ‖Ay‖ = ‖A‖, and
b = Ay. Then

‖A‖ = min
{
‖Ax− b‖+ α‖x‖ : x ∈ Rn

}
≤ min

{
‖Ax− b‖+ α‖x‖ : ‖x‖ = 1

}
≤ ‖Ay − b‖+ α‖y‖
= ‖A‖.

Conversely, assume that min{‖Ax − b‖ + α‖x‖ : ‖x‖ = 1} = ‖A‖. Due to the
compacity of SX we can find y ∈ argmin‖x‖=1(‖Ax− b‖+ α‖x‖). Notice that

‖A‖ = ‖Ay − b‖+ α‖y‖ = ‖Ay − b‖+ ‖A‖,
which means that Ay = b. Finally, ‖Ay‖ = ‖b‖ = ‖A‖, and so y ∈ suppv(A). �

A first consequence of Theorem 4.5 follows. We note that UX stands for the
open unit ball of X, that is, the set of vectors with norm strictly less than 1.

Corollary 4.6. Let A ∈ Rm×n, b ∈ Rn, and α > 0 satisfy the condition α =
‖A‖ = ‖b‖. If b /∈ A suppv(A), then

arg min
‖x‖≤1

(
‖Ax− b‖+ α‖x‖

)
⊆ UX .
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Proof. If SX ∩ argmin‖x‖≤1(‖Ax− b‖+ α‖x‖) 6= ∅, then min{‖Ax− b‖+ α‖x‖ :
‖x‖ = 1} = ‖A‖; thus by virtue of Theorem 4.5 we obtain that b ∈ A suppv(A).

�

Another consequence of Theorem 4.5 is the next corollary.

Corollary 4.7. Let A ∈ Rm×n, b ∈ Rn, and α > 0 satisfy the condition α = ‖A‖
and b = Ay for some y ∈ suppv(A). Then

(1) [0, 1]y ⊆ argmin‖x‖≤1(‖Ax− b‖+ α‖x‖);
(2) if ker(A) = {0}, then

arg min
‖x‖=1

(
‖Ax− b‖+ α‖x‖

)
= {y}.

Proof. (1) Let t ∈ [0, 1]. Simply observe that∥∥A(ty)− b
∥∥+ α‖ty‖ =

∥∥A(ty)− Ay
∥∥+ α‖ty‖

= (1− t)‖Ay‖+ tα‖y‖
= (1− t)‖A‖+ t‖A‖
= ‖A‖.

(2) Let z ∈ argmin‖x‖=1(‖Ax− b‖+ α‖x‖). According to Theorem 4.5,

‖A‖ = min
{
‖Ax− b‖+ α‖x‖ : ‖x‖ = 1

}
= ‖Az − b‖+ α‖z‖
= ‖Az − b‖+ ‖A‖,

which results in ‖Az − b‖ = 0; hence Az = b = Ay, which by hypothesis implies
that z = y. �

We now attempt to find an example of a Tikhonov regularization of the form
minx∈Rn ‖Ax − b‖ + α‖x‖ and also in which α = ‖A‖ = ‖b‖ in such a way that
argminx∈Rn(‖Ax − b‖ + α‖x‖) = {0}. In accordance with Corollary 4.7(1) we
must choose b /∈ A suppv(A). This hint leads us to rely strongly on the following
proposition.

Proposition 4.8. Let Z be a normed space, and consider a linear projection
P : Z → Z such that ‖P‖ = ‖I − P‖ = 1. Then ‖Pz − y‖ + ‖z‖ > 1 for each
z 6= 0, and every y ∈ SZ ∩ ker(P ).

Proof. Note that (I−P )(Pz−y) = y, so ‖Pz−y‖ ≥ 1. Therefore, ‖Pz−y‖+‖z‖ ≥
1 + ‖z‖ > 1. �

The preceding proposition is the key to our example.

Example 4.9. Take X = Y := `2∞, A :=
(
1 0
0 0

)
, b :=

(
0
1

)
, and α := 1. Then

α = ‖A‖∞ = ‖b‖∞ = 1, and Proposition 4.8 allows

arg min
x∈Rn

(
‖Ax− b‖∞ + α‖x‖∞

)
= {0}.
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