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Abstract. In the present paper, we consider cubic stochastic operators, and
prove that the surjectivity of such operators is equivalent to their orthogonal-
preserving property. In the last section we provide a full description of orthog-
onal-preserving (respectively, surjective) cubic stochastic operators on the 2–
dimensional simplex.

1. Introduction

It is known that a discrete Markov chain is described by transition probabilities
which depend only on the current state of the process. Recently, nonlinear Markov
chains are intensively studied by many scientists (see [8] for a recent review).
A process described by a nonlinear Markov chain is a discrete-time stochastic
process whose transitions may depend on both the current state and the present
distribution of the process. The simplest nonlinear Markov chain is described by
a quadratic stochastic operator (QSO) which is associated with a cubic stochastic
matrix. This kind of operator arises in the problem of describing the evolution
of biological populations (see [9]). The notion of QSO was first introduced by
Bernstein [2], and the theory of QSOs was developed in many works (see for
example [6], [9], [15], [16]). In [4] and [10], it is given via a self-contained exposition
of the recent achievements and open problems in the theory of the QSOs.
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In general, the surjectivity of a quadratic operator is strongly tied up with
nonlinear optimization problems (see [1]). The criteria for the surjectivity of QSOs
associated with cubic stochastic matrices was given in [15]. Based on the results
of [15] and the results of [12], we conclude that a QSO is surjective if and only
if it is an orthogonal-preserving QSO. So it is natural to study another class of
nonlinear Markov operators described by cubic stochastic operators (CSO). (It
should be noted that cubic stochastic operators were introduced and developed
in [3], [7], [13].)

One can comprehend CSOs as equivalent to the time evolution of genetics in
biology by the following situation. Let I = {1, 2, . . . ,m} be equivalent to n differ-

ent genetic types of a species in a population. We denote by x(0) = (x
(0)
1 , . . . , x

(0)
m )

the initial probability distribution of the species in the present generation. Here
x(0) is an element of the simplex Sm−1 (i.e., the set of probability distributions
on I). By Pijk,l, we mean the probability of the species with ith, jth, and kth
genotypes to crosslink each other and produce an individual with lth genotype.
For the given current distribution, we can find the probability distribution of the
first generation, x′ = (x′

1, . . . , x
′
m), by mean of the total probability, that is,

x′
l =

m∑
i,j,k=1

Pijk,lx
(0)
i x

(0)
j x

(0)
k .

Hence, the correspondence x(0) → x′ defines a mapping called an evolutionary
operator. Therefore, the CSO is a mapping V : Sm−1 → Sm−1 of the form

V (x)l =
m∑

i,j,k=1

Pijk,lxixjxk, x ∈ Sm−1, (1.1)

where Pijk,l are heredity coefficients such that

Pijk,` ≥ 0,
m∑
`=1

Pijk,` = 1, i, j, k, ` ∈ I,

and the coefficients Pijk,l do not change for any permutation of i, j, and k if the
types are not connected with the gender.

In the following, we are going to study the surjectivity of CSOs in terms of
the orthogonal-preserving property. Namely, we will prove that surjectivity of
CSOs is equivalent to its orthogonal-preserving property. This allows us to fully
describe all surjective CSOs. As an application, we provide in the last section a full
description of the orthogonal-preserving (or surjective) CSO on a 2-dimensional
simplex.

2. Preliminaries

Let us recall some necessary notation. Let I = {1, . . . ,m}. Throughout this
paper, we consider the simplex as

Sm−1 =
{
x = (x1, x2, . . . , xm) ∈ Rm : xi ≥ 0, i ∈ I,

m∑
i=1

xi = 1
}
. (2.1)
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The complement of set A ⊂ I is denoted by Ac = I\A. By support of x ∈ Sm−1,
we mean a set supp(x) = {i ∈ I : xi 6= 0}. Put the set null(x) = {i ∈ N : xi = 0}.

In what follows, by ei we denote the standard basis in Rm (i.e., ei = (δi1, . . . ,
δim) (i ∈ I), where δij is the Kronecker delta). We define the face ΓA of the simplex
Sm−1 by setting ΓA = conv{ei}i∈A, here conv(B) stands for the convex hull of a
set B. The set int ΓA = {x ∈ ΓA : xi > 0, ∀i ∈ A} is the interior of ΓA. We recall
that a vector x ∈ Sm−1 is orthogonal or singular to y ∈ Sm−1 (x ⊥ y) if and only
if supp(x) ∩ supp(y) = ∅ for any x = (x1, . . . , xm),y = (y1, . . . , ym) ∈ Sm−1. It is
clear that x ⊥ y if and only if xk · yk = 0 for all k ∈ Im whenever x,y ∈ Sm−1.
Let V be a CSO given by (1.1) associated with heredity coefficients {Pijk,`}. We
define a vector

Pijk,• = (Pijk,1, . . . , Pijk,m), i, j, k ∈ I.

Definition 2.1. A CSO V is called orthogonal-preserving (OP) if, for any x,y ∈
Sm−1 with x ⊥ y, we have V (x) ⊥ V (y).

An absorbing state plays an important role in the theory of the classical (linear)
Markov chains. Analogously, in [14] the concept of absorbing sets for nonlinear
Markov chains was introduced.

Definition 2.2. A subset A ⊂ I is called absorbing if Ac =
⋂

i,j,k∈A null(Pi,j,k,•).

The following results have been proved in [14, Propositions 5.2, 5.5].

Proposition 2.3. The following statements hold:

(i) supp(V (x)) =
⋃

i,j,k∈supp(x) supp(Pi,j,k,•),

(ii) null(V (x)) =
⋂

i,j,k∈supp(x) null(Pi,j,k,•),

(iii) V (int ΓA) ⊂ int ΓB where B =
⋃

i,j,k∈A supp(Pi,j,k,•),

(iv) V (int ΓA) ⊂ int ΓB if and only if V (x(0)) ∈ int ΓB for some x(0) ∈ int ΓA.

Proposition 2.4. Let A ⊂ I be a subset. The following statements are equivalent:

(i) the set A is absorbing,
(ii) V (int ΓA) ⊂ int ΓA,
(iii) V (x(0)) ∈ int ΓA for some x(0) ∈ int ΓA.

3. Surjective and orthogonal-preserving CSOs

Let V be a CSO defined on Sm−1 which is given by the following form:

V (x)• =
m∑

i,j,k=1

xixjxkPijk,•,

where the coefficients Pijk,` satisfy

Pijk,` ≥ 0, Pijk,` = Pjki,` = Pkij,` = Pkji,` = Pjik,` = Pikj,`,

m∑
`=1

Pijk,` = 1.

In this section, we will show that the surjectivity of CSOs is equivalent to the
process of orthogonal preserving. First, we need the following auxiliary result.
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Proposition 3.1. If any subset A ⊂ I with |A| ≤ 3 is absorbing, then all subsets
of I are absorbing.

Proof. Using the assumption, one concludes that for any i, j, k ∈ I, we have

Piii,• = ei, Piij,•, Piji,•, Pjii,• ∈ conv{ei, ej},
(3.1)

Pijk,• ∈ conv{ei, ej, ek},

where i 6= j 6= k. Keeping in mind the symmetricity of Pijk,l and due to the fact
(3.1), we obtain null(Pijk,•) ⊃ I\{i, j, k}, therefore for any B ⊂ I, one gets⋂

i,j,k∈B

null(Pijk,•) =
⋂
i∈B

null(Piii,•) ∩
⋂
i 6=j

i,j∈B

null(Piij,•) ∩
⋂

i6=j 6=k
i,j,k∈B

null(Pijk,•)

= I\B = Bc.

This means that B is absorbing. This completes the proof. �

Proposition 3.2. If any subset A ⊂ I with |A| ≤ 3 is absorbing, then the
associated CSO V : Sm−1 → Sm−1 is surjective.

Proof. Clearly, from Propositions 2.4 and 3.1 we find that the associated CSO V :
Sm−1 → Sm−1 maps each face of the simplex into itself. To show that the operator
V is surjective, we use mathematical induction by means of the dimension of the
simplex. In the case of m = 2, we can write V (see (3.1)) in the following form:

V (x)1 = x3
1 + 3P112,1x

2
1x2 + 3P122,1x1x

2
2,

V (x)2 = x3
2 + 3P112,2x

2
1x2 + 3P122,2x1x

2
2,

where x = (x1, x2) ∈ S1. It is enough for us to study V (x)1 because of V (x)1 +
V (x)2 = 1. Let

f(x) = x3 + 3P112,1x
2(1− x) + 3P122,1(1− x)2.

Clearly, f(x1) ≤ 1 and continuous on interval [0, 1]. Due to f(0) = 0 and f(1) = 1,
we can infer that f(x1) is surjective over interval [0, 1], hence implying the sur-
jectivity of V (x). Thus, the statement is true for m = 2. Further, we assume
that the statement holds for m ≤ n − 1, and we will prove it for m = n. From
the assumption, if we restrict the mapping of V to the face, then the mapping is
surjective (i.e., V : ∂Sn−1 → ∂Sn−1 is surjective). Now, we consider y ∈ intSn−1.
Here, the surjectivity means that the set V −1(y) is nonempty. To prove this
statement, we suppose that the set V −1(y) is empty. Then we define a mapping
g : Sn−1\{y} → ∂Sn−1, which maps every point z ∈ Sn−1\{y} to the intersection
point of the ray starting from z in the direction of y with the boundary of the
simplex. It is easy to check that the mapping F : Sn−1 → Sn−1,F = g ◦ V ,
does not have any fixed point. However, this contradicts the Brouwer fixed-point
theorem. This completes the proof. �

Now we are ready to prove our main result here.

Theorem 3.3. Let V be a CSO on Sm−1 such that V (ei) = ei for all i ∈ I. Then
the following statements are equivalent:
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(i) V is orthogonal-preserving;
(ii) V is surjective;
(iii) V satisfies the following conditions:

(a) V −1(ei) = ei for any i ∈ I,
(b) V −1(int Γeiej) = int Γeiej for any i, j ∈ I,
(c) V −1(int Γeiejek) = int Γeiejek for any i, j, k ∈ I, where Γei1 ···eil =

conv{ei1 , . . . , eil}.

Proof. Let us prove, consecutively, the following implications: (i) ⇒ (ii) ⇒ (iii)
⇒ (ii) ⇒ (i).

(i) ⇒ (ii). Let V be an orthogonal-preserving CSO. Due to assumption (i.e.,
V (ei) = ei), we then have

Piii,• = ei.

Now, choose

x(`) =
( 1

m− 1
, . . . ,

1

m− 1
, 0︸︷︷︸
`th term

,
1

m− 1
, . . . ,

1

m− 1

)
.

Using the definition of CSO, we have

V (x(`))` =
m∑

i,j,k=1

Pijk,lxixjxk

=
3

(m− 1)3

m∑
i,j=1
i6=j 6=`

Piij,` +
6

(m− 1)3

m∑
i,j,k=1

i6=j 6=k 6=`

Pijk,`.

Clearly, x(`) is orthogonal to e`, so the orthogonality of V (x(`)) to V (e`) yields

Piij,` = 0 if i, j 6= ` and Pijk,` = if i, j, k 6= `.

This gives us (3.1), and therefore any subset A ⊂ I with |A| ≤ 3 is absorbing.
Due to Proposition 3.2, we cab infer that V is surjective.

(ii) ⇒ (iii). Assume that V is surjective and let V −1(ei) be the preimage of ei.
We set

supp
(
V −1(ei)

)
=

⋃
x∈V −1(ei)

supp(x), Γsupp(V −1(ei)) = conv{ej}j∈supp(V −1(ei)).

Due to Proposition 2.3, we have V (Γsupp(V −1(ei))) = ei. Consequently,

{ej}j∈supp(V −1(ei)) ⊂ V −1(ei) for any i ∈ I.

This implies that | supp(V −1(ei))| = 1. This means that only ei then maps to
ei, and hence (iii)(a). Further, let y ∈ int Γeiej and x ∈ V −1(y). Using Proposi-
tion 2.3, we have

V (int Γsupp(x)) ⊂ int Γeiej .

In fact, we have

supp(x) = {i, j} for any x ∈ V −1(y).
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If not, then k ∈ supp(x)\{i, j} 6= ∅. Then V (ek) ∈ V (int Γsupp(x)) ⊂ Γeiej , which
is a contradiction. Therefore, we obtain (iii)(b). The case (iii)(c) can be done
similarly.

(iii) ⇒ (ii). This implication follows from Proposition 3.2.
(ii) ⇒ (i). Due to the surjectivity of V and condition V (ei) = ei, we get that

any subsets A ⊂ I with |A| ≤ 3 are absorbing. From (3.1) we obtain

V (x)` =
m∑

i,j,k=1

Pijk,`xixjxk

= P```,`x
3
` + 3

m∑
j=1
j 6=`

P``j,lx
2
`xj + 3

m∑
i=1
i6=`

Pii`,`x
2
ix` + 6

m∑
j=1

i 6=j 6=`

Pij`,`xixjx`

= x`

(
x2
` + 3

m∑
j=1
j 6=`

P``j,`x`xj + 3
m∑
i=1
i 6=`

Pii`,`x
2
i + 6

m∑
j=1

i6=j 6=`

Pij`,`xixj

)
(3.2)

for any x ∈ Sm−1 and ` ∈ I. Next, take any two vectors in the simplex Sm−1 such
that x = (x1, . . . , xm) ⊥ y = (y1, . . . , ym). This means that for any fixed ` ∈ I,
we have either x` = 0 or y` = 0. Therefore, V (x)` ·V (y)` = 0 for any ` ∈ I, which
gives the orthogonality of V (x) and V (y). This completes the proof. �

Immediately from Theorem 3.3, we conclude with the following.

Corollary 3.4. Let V be a CSO on Sm−1. Then the following statements are
equivalent:

(i) V is orthogonal-preserving;
(ii) V is surjective;
(iii) V satisfies the following conditions:

(a) V −1(eπ(i)) = eπ(i) for any i ∈ I,
(b) V −1(int Γeiej) = int Γeπ(i)eπ(j)

for any i, j ∈ I,

(c) V −1(int Γeiejek) = int Γeπ(i)eπ(k)eπ(k)
for any i, j, k ∈ I,

where as before Γei1 ···eil = conv{ei1 , . . . , eil}.

Remark 3.5. We notice that if V is a surjective CSO with V (ei) = ei (i ∈ I),
then, from the proof above (see (3.2)), we conclude that V is a Lotka–Volterra
operator (see [5] for the definitions). It is known (see [5, Theorem 6]) that if a
Lotka–Volterra operator is f -monotone, then it is a bijection, but in [11, Exam-
ple 5.5] it was shown that a bijective cubic Lotka–Volterra operator has no need
to be f -monotone. On the other hand, it is known (see [4]) that quadratic sto-
chastic operators are bijective if and only if they are surjective. Therefore, we
formulate the following conjecture.

Conjecture 3.6. Any surjective CSO is bijective.
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4. Description of orthogonal-preserving CSOs on 2-dimensional
simplex

In general, the description of surjective nonlinear Markov operators is a tricky
job. Therefore, in this section, we are going to describe surjective CSOs by means
of OP CSOs instead of applying surjectivity directly. In this section, we restrict
ourselves to CSOs defined on a 2-dimensional simplex.

Now let us assume that V : S2 → S2 is an orthogonal-preserving CSO. This
means that

e1 ⊥ e2 ⊥ e3 ⊥⇒ V (e1) ⊥ V (e2) ⊥ V (e3).

Now from the definition of CSO, we immediately get

P111,• ⊥ P222,• ⊥ P333,•

since in the simplex S2 there is a unique orthogonal system which is e1, e2, and e3.
We conclude that the possible vectors {P111,•, P222,•, P333,•} must be permutations
of the standard basis {e1, e2, e3}. Therefore, we have six possibilities and we
consider each of these possibilities one by one.

Consider the first possibility by assuming that

P111,• = e1, P222,• = e2, P333,• = e3.

Now our aim is to find conditions for the other coefficients of the given CSO. Let
us consider the following orthogonal vectors:

x =
(1
2
,
1

2
, 0
)
, y = (0, 0, 1).

Then from

V (x) =
1

8
(3P112,1 + 3P122,1 + 1, 3P112,2 + 3P122,2 + 1, 3P112,3 + 3P122,3),

V (y) = (0, 0, 1),

and the orthogonal preservation of V , we get P112,3 = P122,3 = 0. From

3∑
i=1

P112,i = 1 and
3∑

i=1

P122,i = 1,

we get

P112,1 + P112,2 = 1 and P122,1 + P122,2 = 1.

Now consider

x =
(1
2
, 0,

1

2

)
, y = (0, 1, 0).

Then one finds

V (x) =
1

8
(1 + 3P113,1 + 3P133,1, 3P113,2 + 3P133,2, 3P113,3 + 3P133,3 + 1),

V (y) = (0, 1, 0).
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Again the orthogonal preservation of V yields P113,2 = P133,2 = 0. Since

3∑
i=1

P113,i = 1 and
3∑

i=1

P133,i = 1,

we have

P113,1 + P113,3 = 1 and P133,1 + P133,3 = 1.

Further, let us consider

x =
(
0,

1

2
,
1

2

)
, y = (1, 0, 0).

Hence,

V (x) =
1

8
(3P223,1 + 3P233,1, 1 + 3P223,2 + 3P233,2, 3P223,3 + 3P233,3 + 1),

V (y) = (1, 0, 0).

By the same argument as before, we infer that P223,1 = P233,1 = 0, which implies
that

P223,2 + P223,3 = 1 and P233,1 + P233,3 = 1.

Taking into account the obtained equations, we denote

P112,1 = α, P122,1 = β, P113,1 = γ,

P133,1 = θ, P223,2 = λ, P233,2 = ϕ,

P123,1 = ξ, P123,2 = η.

Correspondingly, we get

P112,2 = 1− α, P122,2 = 1− β, P113,3 = 1− γ,

P133,3 = 1− θ, P223,3 = 1− λ, P233,3 = 1− ϕ,

P123,3 = 1− ξ − η.

By V (1), we denote the obtained OP CSO. Then we can see that V (1) has the
following form:

V
(1)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = x(x2 + 3αxy + 3βy2 + 3γxz + 3θz2 + 6ξyz),

y′ = y(y2 + 3(1− α)x2 + 3(1− β)xy + 3λyz + 3ϕz2 + 6ηxz),

z′ = z(z2 + 3(1− γ)x2 + 3(1− θ)xz + 3(1− λ)y2

+ 3(1− ϕ)yz + 6cξ,ηxy),

where cξ,η = 1− ξ − η. Similarly, by considering all other possibilities, we obtain
the following operators:

V
(2)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = z(z2 + 3αzx+ 3βx2 + 3γzy + 3θy2 + 6ξxy),

y′ = x(x2 + 3(1− α)z2 + 3(1− β)zx+ 3λxy + 3ϕy2 + 6ηyz),

z′ = y(y2 + 3(1− γ)z2 + 3(1− θ)zy + 3(1− λ)x2

+ 3(1− ϕ)xy + 6cξ,ηxz),
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V
(3)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = y(y2 + 3αyx+ 3βx2 + 3γyz + 3θz2 + 6ξxz),

y′ = x(x2 + 3(1− α)y2 + 3(1− β)yx+ 3λxz + 3ϕz2 + 6ηyz),

z′ = z(z2 + 3(1− γ)y2 + 3(1− θ)yz + 3(1− λ)x2

+ 3(1− ϕ)xz + 6cξ,ηxy),

V
(4)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = x(x2 + 3αxz + 3βz2 + 3γxy + 3θy2 + 6ξyz),

y′ = z(z2 + 3(1− α)x2 + 3(1− β)xz + 3λzy + 3ϕy2 + 6ηxy),

z′ = y(y2 + 3(1− γ)x2 + 3(1− θ)xy + 3(1− λ)z2

+ 3(1− ϕ)zy + 6cξ,ηxz),

V
(5)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = y(y2 + 3αyz + 3βz2 + 3γyx+ 3θx2 + 6ξxz),

y′ = z(z2 + 3(1− α)y2 + 3(1− β)yz + 3λzx+ 3ϕx2 + 6ηxy),

z′ = x(x2 + 3(1− γ)y2 + 3(1− θ)yx+ 3(1− λ)z2

+ 3(1− ϕ)zx+ 6cξ,ηyz),

V
(6)
α,β,γ,θ,λ,ϕ,ξ,η :


x′ = z(z2 + 3αzy + 3βy2 + 3γzx+ 3θx2 + 6ξxy),

y′ = y(y2 + 3(1− α)z2 + 3(1− β)zy + 3λyx+ 3ϕx2 + 6ηxz),

z′ = x(x2 + 3(1− γ)z2 + 3(1− θ)zx+ 3(1− λ)y2

+ 3(1− ϕ)yx+ 6cξ,ηyz).

Hence, if V is an OP CSO, then it must be one of the above operators. The
reverse of the statement is also true. The proof is given in the following theorem.

Theorem 4.1. Let V be a CSO. Then V is OP if and only if it has one of the
following forms:

V
(1)
α,β,γ,θ,λ,ϕ,ξ,η, V

(2)
α,β,γ,θ,λ,ϕ,ξ,η, V

(3)
α,β,γ,θ,λ,ϕ,ξ,η,

(4.1)
V

(4)
α,β,γ,θ,λ,ϕ,ξ,η, V

(5)
α,β,γ,θ,λ,ϕ,ξ,η, V

(6)
α,β,γ,θ,λ,ϕ,ξ,η.

Proof. The “if” part comes from the previous calculations. Now let us prove the
“only if” part—that is, by assuming a CSO V has the form as given in (4.1).

Without loss of generality, we may consider operator V
(1)
α,β,γ,θ,λ,ϕ,ξ,η.

Assume that x ⊥ y. Then we obtain the following possibilities:

x ⊥ y ⇔


x = (x, y, 0), y = (0, 0.1),

x = (x, 0, z), y = (0, 1, 0),

x = (0, y, z), y = (1, 0, 0).

First, consider x = (x, y, 0) and y = (0, 0, 1). Consequently,

V
(1)
α,β,γ,θ,λ,ϕ,ξ,η(x) =

(
x3 + 3αx2y + 3βxy2, y3 + 3(1− α)x2y + 3(1− β)xy2, 0

)
,

V
(1)
α,β,γ,θ,λ,ϕ,ξ,η(y) = (0, 0, 1).

It is clear that they are orthogonal. For the other two cases, we could establish

the orthogonality of V
(1)
α,β,γ,θ,λ,ϕ,ξ,η(x) and V

(1)
α,β,γ,θ,λ,ϕ,ξ,η(y) by the same argument.

This completes the proof. �
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Remark 4.2. From Corollary 3.4, we conclude that all surjective CSOs of S2

are given by (4.1). We point out that certain classes of operators of the form

V
(1)
α,β,γ,θ,λ,ϕ,ξ,η have been investigated in [7], [13].

Moreover, we want to describe different classes nonconjugacy of OP CSOs on
a 2-dimensional simplex.

Definition 4.3. Two stochastic operators V (a) and V (b) are conjugate if there
exists a permutation π such that π−1V (a)π = V (b); the last one is denoted by
V (a) ∼π V (b).

In our case, we need to consider only permutations of (x, y, z) given by

π1 =

[
x y z
y z x

]
, π2 =

[
x y z
x z y

]
.

Note that other permutations could be derived from those two.

Theorem 4.4. Orthogonal-preserving CSOs can be divided into three nonconju-
gate classes which are

K1 = {V (3)
α,β,γ,θ,λ,ϕ,ξ,η, V

(4)
α,β,γ,θ,λ,ϕ,ξ,η, V

(6)
α,β,γ,θ,λ,ϕ,ξ,η},

K2 = {V (2)
α,β,γ,θ,λ,ϕ,ξ,η, V

(5)
α,β,γ,θ,λ,ϕ,ξ,η},

K3 = {V (1)
α,β,γ,θ,λ,ϕ,ξ,η}.

Proof. Under the permutation π1, let us first consider V
(3)
α,β,γ,θ,λ,ϕ,ξ,ηπ1(x, y, z).

Then we have

π−1
1 V

(3)
α,β,γ,θ,λ,ϕ,ξ,ηπ1(x, y, z)

= π−1
1 V

(3)
α,β,γ,θ,λ,ϕ,ξ,η(y, z, x)

=
(
x3 + 3(1− γ)z2x+ 3(1− θ)zx2 + 3(1− λ)y2x+ 3(1− ϕ)yx2

+ 6(1− ξ − η)yzx, z3 + 3αz2y + 3βzy2 + 3γz2x+ 3θzx2

+ 6(ξyzx), y3 + 3(1− α)z2y + 3(1− β)zy2 + 3λy2x+ 3ϕyx2 + 6(ηyzx)
)

= V
(4)
1−θ,1−γ,1−ϕ,1−λ,α,β,1−ξ−η,ξ,

π−1
1 V

(4)
α,β,γ,θ,λ,ϕ,ξ,ηπ1(x, y, z)

= π−1
1 V

(4)
α,β,γ,θ,λ,ϕ,ξ,η(y, z, x)

=
(
z3 + 3(1− γ)y2z + 3(1− θ)yz2 + 3(1− λ)x2z + 3(1− ϕ)xz2

+ 6(1− ξ − η)yzx, y3 + 3αy2x+ 3βyx2 + 3γy2z + 3θyz2

+ 6(ξyzx), x3 + 3(1− α)y2x+ 3(1− β)yx2 + 3λx2z + 3ϕxz2 + 6(ηyzx)
)

= V
(6)
1−θ,1−γ,1−ϕ,1−λ,α,β,1−ξ−η,ξ,

π−1
1 V

(6)
α,β,γ,θ,λ,ϕ,ξ,ηπ1(x, y, z)

= π−1
1 V

(6)
α,β,γ,θ,λ,ϕ,ξ,η(y, z, x)

=
(
y3 + 3(1− λ)x2y + 3(1− θ)xy2 + 3(1− λ)z2y + 3(1− ϕ)zy2
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+ 6(1− ξ − η)yzx, x3 + 3αx2z + 3βxz2 + 3γx2y + 3θxy2

+ 6(ξyzx), z3 + 3(1− α)x2z + 3(1− β)xz2 + 3λz2y + 3ϕxy2 + 6(ηyzx)
)

= V
(3)
1−θ,1−γ,1−ϕ,1−λ,α,β,1−ξ−η,ξ.

This implies that V
(3)
α,β,γ,θ,λ,ϕ,ξ,η, V

(4)
α,β,γ,θ,λ,ϕ,ξ,η, and V

(6)
α,β,γ,θ,λ,ϕ,ξ,η are conjugate,

and we put them into a class, namely, K1. Taking into account π1 and π2, the
other classes can be done similarly. This completes the proof. �
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