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Abstract. We present two versions of the well-known Banach contraction
principle: one in the context of extended metric spaces for which the distance
mapping is allowed to be infinite, the other in the context of metric spaces
endowed with a compatible binary relation. We also point out that these two
results and the Banach contraction principle are actually equivalent.

1. Introduction

The well-known Banach fixed-point theorem [1] (also known as the contrac-
tion mapping principle) is probably one of the most famous fixed-point theorems.
Due to its popularity, from both a theoretical point of view and an applications
standpoint, the contraction mapping principle was subject to many generaliza-
tions, some of which arise from suitable generalizations of the notion of metric
space.

In this paper, we present two such generalizations. Our first result (Theo-
rem 3.1) is a version of the contraction mapping principle in the context of
extended metric spaces (where the distance mapping is allowed to take the
value ∞). We extend some earlier partial results obtained by Diaz [3], Jung
[6], and Luxemburg [8] by establishing necessary and sufficient conditions for the
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existence of fixed points for contractions, specifying the basin of attraction of the
fixed points and studying their uniqueness.

Our second result (Theorem 3.2) is related to a version of the contraction
mapping principle in the context of metric spaces endowed with a graph due to
Jachymski [5, Theorem 3.2]. In comparison, our result is stated in the language of
binary relations and gives a full description of the basin of attraction of the fixed
points for contractions. We refer to Remark 3.3 for a more detailed explanation.

The key point of this paper is that the two fixed-point results are actually
equivalent to the original contraction mapping principle using a cyclic argument.
To be specific, we will prove Theorem 3.1 using the contraction mapping principle,
and then we will prove Theorem 3.2 via Theorem 3.1, while the contraction
mapping principle easily follows as a particular case of Theorem 3.2. It is worth
mentioning that equivalence results of this kind have been established for other
important theorems in this field, the classical Brouwer fixed-point theorem being
probably one of the most illustrative examples. (In this direction, we refer the
reader to, for example, [4], [9], and the references therein.)

This article is organized as follows. In Section 2, we recall some basic facts
about binary relations and extended metric spaces. In Section 3, we state our
main results, while Section 4 contains all the details of the proofs.

2. Preliminaries

Let Z denote the set of integers, let N denote the set of positive integers, and
let N0 denote the set of nonnegative integers.

2.1. Binary relations. We now recall some basic facts about binary relations,
introduce some notation, and state some easy to check properties. We refer to [7,
pp. 2–8] for some of the details.

Let X be a nonempty set.

(BR1) It is said that R is a binary relation over X if R is a nonempty subset of
X ×X. In particular, any selfmap of X can be seen as a binary relation
over X by identifying it with its graph.

(BR2) For any two binary relations S and R over X, their product (or composi-
tion) is the binary relation defined as

SR =
{
(x, y) ∈ X×X : there exists z ∈ X such that (x, z) ∈ R and (z, y) ∈ S

}
.

This is an associative law with ∆X := {(x, x) : x ∈ X} being the identity
element; hence one can define the powers of any binary relation R over X
by Rn+1 = RnR for all n ∈ N0 (where R0 := ∆X).

Next, let R be a binary relation over X

(BR3) For x, y ∈ X and n ∈ N, a vector ζ = (z0, z1, . . . , zn) ∈ Xn+1 is called an
R-chain (of order n, from x to y) if z0 = x, zn = y, and (zi, zi+1) ∈ R
for all i ∈ {0, 1, . . . , n − 1}. By this definition, Rn is the set of all pairs
(x, y) ∈ X ×X such that there exists an R-chain of order n from x to y.
For ζ = (z0, z1, . . . , zn) ∈ Xn+1, let ζ = (zn, zn−1, . . . , z0). If ζ is an R-chain
from x to y, then ζ is an R-chain of the same order from y to x.
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Let x, y, z ∈ X. If ζ = (z0, z1, . . . , zn) is an R-chain of order n from x
to z and ζ ′ = (z′0, z

′
1, . . . , z

′
m) is an R-chain of order m from z to y, then

zn = z = z′0 and the composition of ζ with ζ ′ defined by

ζ ◦ ζ ′ := (z0, z1, . . . , zn−1, z, z
′
1, z

′
2, . . . , z

′
m) ∈ Xn+m+1

produces an R-chain of order n+m from x to y.
(BR4) The inverse of R is the binary relation R−1 defined as

R−1 =
{
(x, y) ∈ X ×X : (y, x) ∈ R

}
.

Note that R−1 is not necessarily the inverse of R with respect to the
composition law since RR−1 and R−1R are not in general identical with
∆X .

(BR5) The binary relation R is said to be reflexive if ∆X ⊆ R, symmetric if
R−1 ⊆ R (this implies that R−1 = R), transitive if R2 ⊆ R (this implies
that Rn ⊆ R for all n ∈ N), or an equivalence if it is at the same time
reflexive, symmetric, and transitive. When R is an equivalence, by [x]R we
denote the equivalence class of x ∈ X with respect to R, that is, the set of
all elements in X that are equivalent to x. Any two equivalent classes are
either disjoint or equal; hence R partitions X into its equivalence classes.
In this context, consider R# the reflexive symmetric closure of R (i.e., the
smallest reflexive and symmetric relation overX that includesR), consider
R+ the transitive closure of R (i.e., the smallest transitive relation over
X that includes R), and consider R≡ the equivalence closure of R (i.e.,
the smallest equivalence relation over X that includes R). It can be easily
checked that

R# = R ∪∆X ∪R−1

=
{
(x, y) ∈ X ×X : (x, y) ∈ R or (y, x) ∈ R or x = y

}
,

R+ =
⋃
n≥1

Rn

=
{
(x, y) ∈ X ×X : there exists a R-chain from x to y

}
,

R≡ = (R#)+ =
⋃
n≥1

(R#)n

=
{
(x, y) ∈ X ×X : there exists a R#-chain from x to y

}
.

Next, let d be a metric over X.

(BR6) If ζ = (z0, z1, . . . , zn) ∈ Xn+1 is an R-chain from x to y, then, by the
triangle inequality,

d(x, y) ≤
n−1∑
i=0

d(zi, zi+1),

and we call d(ζ) :=
∑n−1

i=0 d(zi, zi+1) the d-length of the R-chain ζ.
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(BR7) We say that R is compatible with d if, for every x ∈ X and every sequence
(xn) convergent to x such that (xn, xn+1) ∈ R for all n ∈ N, there exists
a subsequence (x′

n) of (xn) such that (x′
n, x) ∈ R for all n ∈ N.

Next, let F : X → X.

(BR8) A point x ∈ X is called an R-fixed point of F if (x, Fx) ∈ R, and the
set of the R-fixed points of F is denoted by FixR F . In particular, with
R := ∆X we recover the usual notion of fixed point.

(BR9) We call F an endomorphism of R if (Fx, Fy) ∈ R for all (x, y) ∈ R.
By replacing R with its reflexive symmetric closure R#, it can be easily
checked that F is an endomorphism of R# if and only if (Fx, Fy) ∈ R#

for all (x, y) ∈ R.
As a consequence, any endomorphism of R is an endomorphism of R#. In
general, the converse is not true: consider, for example, a totally ordered
set (X,≤) and let R := {(x, y) ∈ X × X : x ≤ y, x 6= y}. Then R# =
X × X and any selfmap of X is an endomorphism of R#, while the
endomorphisms of R are precisely the increasing maps (hence no constant
map is an endomorphisms of R).

(BR10) Let RF be the binary relation over X defined by

RF =
{
(x, y) ∈ X ×X : there exist p, q ∈ N0 such that (F px, F qy) ∈ R

}
.

Obviously, R ⊆ RF . It can be easily checked that if F is an endomorphism
of R, and R is an equivalence, then RF is also an equivalence, and the
equivalence classes with respect to RF are invariant under F .

2.2. Extended metrics. Allowing a metric to take the value ∞ leads to the
concept of an extended metric. This notion has been introduced by Luxemburg
[8] (under the name of generalized metric) and has been further investigated by
Jung [6]. Here, we use the terminology from [2, p. 4].

(EM1) Let X be a nonempty set. A map ρ : X×X → [0,∞] is called an extended
metric over X if it satisfies the following conditions:
(d1) ρ(x, y) = 0 if and only if x = y;
(d2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(d3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.
The pair (X, ρ) is called an extended metric space.

(EM2) The topology of an extended metric space is generated by the family of
all open balls (with finite radius). Also, the notion of a Cauchy sequence
and the completeness of an extended metric space are defined just like in
the metric case.

Next, let (X, ρ) be an extended metric space.

(EM3) The relation Q defined by

Q =
{
(x, y) ∈ X ×X : ρ(x, y) < ∞

}
is an equivalence over X that will be called the canonical equivalence over
(X, ρ). Indeed, Q is reflexive by (d1), and symmetric by (d2), while the
transitivity easily follows by (d3). The partitioning of X induced by the
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equivalence Q is called the canonical decomposition of X induced by ρ,
while the members of the partition (the equivalence classes with respect
to Q) are called the metric components of X (with respect to ρ).
For x ∈ X, let Xx denote the metric component of X that contains x;
that is, Xx = {y ∈ X : ρ(x, y) < ∞}.
These definitions are motivated by the fact that the restriction of ρ to pairs
of elements from the same metric component is always finite; hence, it is a
metric. In this way, any extended metric space is the disjoint reunion of a
family of metric spaces when the distance to be infinite between elements
of different metric spaces is considered; hence, there is an equivalence
between extended metrics and disjoint union metrics (see [2, p. 90]). It
also follows that an extended metric space is complete if and only if each
of its metric components is complete with respect to the metric induced
by the extended metric (see [2] and [6] for more details).

(EM4) Similar to the metric case, it can be shown that the extended metric space
(X, ρ) is complete if and only if every sequence (xn) in X that satisfies

∞∑
n=1

ρ(xn, xn+1) < ∞ (2.1)

is convergent. For the direct implication, if a sequence (xn) in X satisfies
(2.1), then all its terms belong to the same metric component and the
sequence is a Cauchy sequence, and hence convergent. In proving the
converse, let (xn) be a Cauchy sequence in (X, ρ). Since there exists n0 ∈ N
such that ρ(xn, xm) < 1 for all m,n ≥ n0, it follows that all the terms
xn for n ≥ n0 belong to the same metric component. Next, by a simple
argument, one can construct a subsequence (x′

n) of (xn)n≥n0 such that
ρ(x′

n, x
′
n+1) ≤ 1

2n
for all n ∈ N; hence the sequence (x′

n) satisfies the
condition in (2.1) which leads to (x′

n) being convergent. Since (xn)n≥n0 is
a Cauchy sequence (in a metric space) with a convergent subsequence, this
leads by a classical argument to (xn)n≥n0 being convergent; hence (xn) is
convergent, which concludes the proof.

(EM5) Let F : X → X be an endomorphism of Q; that is, ρ(Fx, Fy) < ∞ for
every x, y ∈ X such that ρ(x, y) < ∞. Then the relation QF (see (BR10)
in Section 2.1),

QF =
{
(x, y) ∈ X ×X : there exist p, q ∈ N0 such that ρ(F px, F qy) < ∞

}
,

is an equivalence over X such that Q ⊆ QF . Every equivalence class of
X with respect to QF is the reunion of a family of metric components of
X, is invariant under F , and will be called an F -component of X (with
respect to ρ).

3. Main results

In this section, we state (without proof) the main results of the present article
and relate them to previously known fixed-point theorems. The proofs will be
presented in Section 4
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Our first result is an extension of the contraction mapping principle in the
context of extended metric spaces. By considering contractions in a complete
extended metric space, our result gives a full description of the fixed points by
establishing necessary and sufficient conditions for their existence by specifying
their basin of attraction and by studying their uniqueness. Similar partial results
were previously obtained in [3], [6], and [8].

Theorem 3.1. Let (X, ρ) be a complete extended metric space F : X → X for
which there exists q ∈ (0, 1) such that

ρ(Fx, Fy) ≤ q · ρ(x, y) for all x, y ∈ X, (3.1)

and Y ⊆ X a F -component of X with respect to ρ. Then F has a fixed point in Y
if and only if there exists y ∈ Y such that ρ(y, Fy) < ∞. In the affirmative case,

(1) F has a unique fixed point x∗ in Y , and x∗ ∈ Xy;
(2) Xx∗ = Xy = {x ∈ Y : ρ(x, Fx) < ∞};
(3) the basin of attraction of the fixed point x∗ is Y (i.e., for x ∈ X, the

sequence (F nx) is convergent to x∗ if and only if x ∈ Y ).

Our next result is a version of [5, Theorem 3.2], but it is stated in the language
of binary relations. We refer to Remark 3.3 for more details on the comparison
between the two results. Our result also contains [10, Corollary 2.12].

Theorem 3.2. Let (X, d) be a complete metric space, let R be a binary relation
over X such that R# is compatible with d, and let F : X → X be an endomor-
phism of R# for which there exists q ∈ (0, 1) such that

d(Fx, Fy) ≤ q · d(x, y) for all (x, y) ∈ R. (3.2)

Let Y ⊆ X be an equivalence class with respect to the equivalence (R≡)F . Then
F has a fixed point in Y if and only if Y ∩FixR≡ F is nonempty (i.e., there exists
y ∈ Y such that (y, Fy) ∈ R≡). In the affirmative case,

(1) F has a unique fixed point x∗ in Y , and x∗ ∈ [y]R≡;
(2) [x∗]R≡ = [y]R≡ = Y ∩ FixR≡ F ;
(3) the basin of attraction of the fixed point x∗ is Y (i.e., for x ∈ X, the

sequence (F nx) is convergent to x∗ if and only if x ∈ Y ).

Remark 3.3. There is a natural correspondence between the language of graph
theory and that of binary relations; in effect, a (directed) graph is simply a binary
relation over the set of its vertices. Assuming the notation and terminology in [5],
we can easily compare the assumptions in Theorem 3.2 and [5, Theorem 3.2].

Let R be the binary relation associated to the graph G in [5] (i.e., X = V (G)
and R = E(G)), and let the selfmap F : X → X in Theorem 3.2 be f in [5].

The condition “f : X → X is a G-contraction” in [5, Theorem 3.2] is equivalent
to f being an endomorphism of R for which there exists q ∈ (0, 1) such that

d(fx, fy) ≤ q · d(x, y) for all (x, y) ∈ R. (3.3)

In our result, we require that f be an endomorphism of R# such that (3.3) holds,
which in general is a less restrictive condition (see (BR9) in Section 2.1).
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Condition (3.1) in [5, Theorem 3.2] translates to “R is compatible with d”
compared to “R# is compatible with d” in our Theorem 3.2. These two hypothe-
ses are identical when G is an undirected graph (hence when R is symmetrical),
while it appears that there is no obvious logical implication between them when
G is directed (hence when R is not symmetrical). In this direction, further inves-
tigation is clearly needed, which leads to the open question of finding “good”
examples for which only one of the two theorems can be applied.

With the assumption that G is undirected (which provides common ground
for comparing the conclusions of the two theorems), the overall conclusions of
Theorem 3.2 and [5, Theorem 3.2] are fairly similar. The main added value of
Theorem 3.2 is that it provides a complete description of the basin of attraction
of the fixed points.

We conclude with the announced equivalence result.

Theorem 3.4. Theorems 3.1, 3.2, and the Banach contraction principle are
equivalent.

4. Proofs of the main results

Before proving the main results, we need the following auxiliary result, inspired
by [11, Proposition 1].

Lemma 4.1. Let (X, d) be a metric space, and let R be a reflexive and symmetric
binary relation over X. Define the map dR : X ×X → [0,∞] by

dR(x, y) = inf
{
d(ζ) : ζ is a R-chain from x to y

}
with the usual convention that inf ∅ = ∞. Then dR is an extended metric over X
having the following properties:

(1) R≡ is the canonical equivalence over (X, dR); that is, dR(x, y) < ∞ if and
only if (x, y) ∈ R≡;

(2) d(x, y) ≤ dR(x, y) for all x, y ∈ X;
(3) d(x, y) = dR(x, y) for all (x, y) ∈ R.

Moreover, if R is compatible with d and d is complete, then dR is complete.

Proof. Clearly, dR is correctly defined. Let x, y ∈ X.
By definition, dR(x, y) < ∞ if and only if there exists an R-chain from x to y;

that is, (x, y) ∈ R+ = R≡, which proves Conclusion 1.
Next, if (x, y) /∈ R≡, then d(x, y) < ∞ = dR(x, y). If (x, y) ∈ R≡, then let ζ be

an arbitrary R-chain from x to y; hence, d(x, y) ≤ d(ζ) by the triangle inequality
(see (BR6) in Section 2.1). Since this inequality is true for every R-chain ζ from x
to y, it follows by the definition of dR that d(x, y) ≤ dR(x, y), and hence we have
Conclusion 2. In particular, if(x, y) ∈ R, then ζ := (x, y) is an R-chain from x to
y; hence, dR(x, y) ≤ d(ζ) = d(x, y), which by Conclusion 2 leads to Conclusion 3.

We verify next that dR is indeed an extended metric over X. It is obvious
that dR(x, x) = 0 for all x ∈ X since (x, x) is an R-chain from x to x; also, if
dR(x, y) = 0, then d(x, y) = 0 by Conclusion 2, which leads to x = y. Next,
dR is symmetric based on the fact that the correspondence ζ 7→ ζ is a bijection
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between the set of R-chains from x to y and the set of R-chains from y to x, and
this correspondence preserves the d-length of the chains. Also, dR satisfies the
triangle inequality dR(x, y) ≤ dR(x, z) + dR(z, y) for all x, y, z ∈ X. Indeed, let ζ
be an R-chain from x to z, and let ζ ′ be an R-chain from z to y. Then ζ ◦ ζ ′ is
an R-chain from x to y, and dR(x, y) ≤ d(ζ ◦ ζ ′) = d(ζ) + d(ζ ′). By taking the
infimum over ζ and ζ ′, we obtain the desired inequality.

Next, assume that R is compatible with d, and that d is complete. In order to
prove that dR is also complete, it is enough to show (see (EM4) in Section 2.2)
that every sequence (xn) in X that satisfies

∞∑
n=1

dR(xn, xn+1) < ∞ (4.1)

is dR-convergent.
Let n ∈ N. By (4.1), we have dR(xn, xn+1) < ∞; hence (xn, xn+1) ∈ R≡ by

Conclusion 1, and by the definition of dR there exists ζn an R-chain from xn to
xn+1 such that

d(ζn) ≤ dR(xn, xn+1) +
1

2n
.

Considering the (infinite) composition ζ1 ◦ ζ2 ◦ ζ3 ◦ · · · of all the R-chains {ζn :
n ∈ N}, we obtain a sequence (zn) in X such that

(zn, zn+1) ∈ R for all n ∈ N, (4.2)

(xn) is a subsequence of (zn), and
∞∑
n=1

dR(zn, zn+1) =
∞∑
n=1

d(zn, zn+1) =
∞∑
n=1

d(ζn)≤
∞∑
n=1

dR(xn, xn+1) +
n∑

n=1

1

2n
< ∞;

hence, (zn) is dR-Cauchy and d-Cauchy. Since d is complete, it follows that (zn) is
d-convergent to some x ∈ X. Next, using (4.2) and the fact that d is compatible
with R, there exists (yn) a subsequence of (zn) such that (yn, x) ∈ R for all n ∈ N;
hence,

dR(yn, x) = d(yn, x) → 0 (as n → ∞)

by Conclusion 3, proving that (yn) is dR-convergent.
In conclusion, (zn) is a dR-Cauchy sequence having a dR-convergent subse-

quence; thus, (zn) is dR-convergent (see also (EM4) in Section 2.2). Since (xn) is
a subsequence of (zn), we conclude that (xn) is also dR-convergent. �

For the following proof, (EM3) and (EM5) in Section 2.2 provide additional
details.

Proof of Theorem 3.1 via the Banach contraction principle. Note by (3.1) that
ρ(Fx, Fy) < ∞ for every x, y ∈ X such that ρ(x, y) < ∞; thus, the existence of
the F -components of X with respect to ρ is assured.

The direct implication is obvious, and so we prove the converse. Let y ∈ Y such
that ρ(y, Fy) < ∞; hence Fy ∈ Xy ⊆ Y . For arbitrary x ∈ Xy, it follows by (3.1)
that ρ(Fx, Fy) ≤ q · ρ(x, y) < ∞, meaning that Fx and Fy belong to the same
metric component of X, and hence to Xy. In conclusion, F (Xy) ⊆ Xy, and we
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can apply the Banach contraction principle in the complete metric space (Xy, ρ)
to the restriction of F to Xy. It follows that F has a (unique) fixed point x∗ in
Xy, hence in Y . Also, the sequence (F nx) is convergent to x∗ for every x ∈ Xy.

(1) We prove that x∗ is the unique fixed point of F in Y . Let y∗ ∈ Y be a fixed
point of F . Since Y is the F -component of X that contains x∗ and y∗,
there exist p, q ∈ N0 such that ρ(F px∗, F

qy∗) < ∞; hence ρ(x∗, y∗) < ∞
since F px∗ = x∗ and F qy∗ = y∗ by the fixed-point property. As x∗ ∈ Xy,
we conclude that also y∗ ∈ Xy; thus y∗ = x∗ by the uniqueness of the fixed
point of F in Xy.

(2) Obviously, Xx∗ = Xy, since x∗ ∈ Xy. Let x ∈ Xy. Since F (Xy) ⊆ Xy,
it follows that Fx ∈ Xy; hence ρ(x, Fx) < ∞, which proves the direct
inclusion

Xy ⊆
{
x ∈ Y : ρ(x, Fx) < ∞

}
.

Conversely, let x ∈ Y such that ρ(x, Fx) < ∞. By applying the results
proved so far with y replaced by x and taking into account the uniqueness
of the fixed point x∗ in Y , it follows that Xx = Xy; hence, x ∈ Xy, which
proves the inverse inclusion.

(3) By taking into account the fact that Y is the F -component of X which
contains x∗, and that x∗ is a fixed point, it follows that

Y =
{
x ∈ X : there exists k ∈ N0 such that ρ(x∗, F

kx) < ∞
}
. (4.3)

Let Z ⊆ X be the basin of attraction of the fixed point x∗. Then so far
we have proved that Xx∗ ⊆ Z. From here, it follows that Z contains every
x ∈ X such that F kx ∈ Xx∗ for some k ∈ N0; thus, Y ⊆ Z by (4.3).
Conversely, if x ∈ Z, then eventually ρ(x∗, F

kx) < ∞ for some k ∈ N0;
hence x ∈ Y , which concludes the proof. �

Proof of Theorem 3.2 via Theorem 3.1. Considering the complete metric space
(X, d) and the reflexive symmetric binary relationR# overX, it follows by Lemma
4.1 that the map ρ := dR# is a complete extended metric over X.

We claim that F satisfies (3.1) in Theorem 3.1. Let x, y ∈ X. Obviously, the
inequality in (3.1) is satisfied when ρ(x, y) = ∞, that is, when (x, y) /∈ R≡

(by Lemma 4.1(1)), and so we can assume that (x, y) ∈ R≡. Next, let ζ =
(z0, z1, . . . , zn) be an arbitrary R#-chain from x to y. Since F is an endomorphism
of R#, it follows that Fζ := (Fz0, Fz1, . . . , Fzn) is an R#-chain from Fx to Fy.
Also, by symmetry, the inequality in (3.2) takes place for all (x, y) ∈ R#; hence

ρ(Fx, Fy) ≤ d(Fζ) ≤ q · d(ζ),

and, by taking the infimum after ζ, it follows that

ρ(Fx, Fy) ≤ q · ρ(x, y),

which proves our claim.
Also, by Lemma 4.1(1), it follows (see (EM3) and (EM5) in Section 2.2) that

R≡ is the canonical equivalence over (X, ρ), and that the equivalence classes of X
with respect to R≡ are precisely the metric components of X with respect to ρ,
while the equivalence classes of X with respect to (R≡)F are the F -components
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of X with respect to ρ. Finally, x ∈ X is a R≡-fixed point of F if and only if
ρ(x, Fx) < ∞. Now, the conclusions follow directly by Theorem 3.1. �

We conclude with the proof of the equivalence result.

Proof of Theorem 3.4. We proved Theorem 3.2 via Theorem 3.1, which in turn
was proved via the Banach contraction principle. Finally, the Banach contraction
principle can be obtained via Theorem 3.2 by letting R be X ×X. �
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