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Abstract. For 0 < ε ≤ 1 and an element a of a complex unital Banach
algebra A, we prove the following two topological properties about the level
sets of the condition spectrum. (1) If ε = 1, then the 1-level set of the condition
spectrum of a has an empty interior unless a is a scalar multiple of the unity.
(2) If 0 < ε < 1, then the ε-level set of the condition spectrum of a has an
empty interior in the unbounded component of the resolvent set of a. Further,
we show that, if the Banach space X is complex uniformly convex or if X∗ is
complex uniformly convex, then, for any operator T acting on X, the level set
of the ε-condition spectrum of T has an empty interior.

1. Introduction

Let A be a complex Banach algebra with unity e, and let Ω be an open subset
of C. We will identify λ.e = λ for any λ ∈ C. As most of our results are trivial
for the elements which are a scalar multiple of the unity, we denote the set of all
elements in A which are not a scalar multiple of the unity by A\Ce. A function
f : Ω → A is said to be differentiable at the point µ ∈ Ω (see [13, Definition 3.3])
if there exists an element f ′(µ) ∈ A such that

lim
λ→µ

∥∥∥f(λ)− f(µ)

λ− µ
− f ′(µ)

∥∥∥ = 0.

If f is differentiable at every point in Ω, then f is regarded as analytic in Ω.
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Consider a nonconstant analytic function f : Ω → A. For M > 0, we ask the
question

Does the level set :=
{
λ ∈ Ω :

∥∥f(λ)∥∥ =M
}
have a nonempty interior? (1.1)

The answer to this question depends on the topology of Ω and the Banach algebra
A. The following two examples show that, for some M > 0 and for a general
nonconstant analytic Banach algebra-valued function, the interior of the level set
may be empty or may not be empty.

Example 1.1. If Ω is a connected, open subset of C,A = C and if f : Ω → C
is a nonconstant analytic map, then by the maximum modulus theorem, for any
M > 0, the interior of the level set defined in (1.1) is empty.

Example 1.2. Consider Ω = C, A = M2(C) :=
{
A : A =

(
a11 a12
a21 a22

)
where aij ∈ C

}
with norm ‖A‖∞ = max1≤i≤2{

∑2
j=1 |aij|}. Define ψ : C → M2(C) by ψ(λ) =(

λ 0
0 1

)
. For any µ ∈ C, it is easy to see that

lim
λ→µ

∥∥∥∥ψ(λ)− ψ(µ)

λ− µ
−

(
1 0
0 0

)∥∥∥∥
∞

= 0.

Thus ψ is analytic. Moreover,∥∥ψ(λ)∥∥∞ =

{
1 if |λ| ≤ 1,

|λ| if |λ| > 1.

The level set of ψ for M = 1 is{
λ ∈ C :

∥∥ψ(λ)∥∥∞ = 1
}
=

{
λ ∈ C : |λ| ≤ 1

}
.

Clearly, 0 is an interior point to the above set.

For a ∈ A, the resolvent set of a is defined as {λ ∈ C : (a− λ) ∈ A−1}, where
A−1 denotes the set of all invertible elements of A. The resolvent set is denoted
as ρ(a), and it is known that ρ(a) is an open subset of C. The complement of
ρ(a) is called the spectrum of a, and it is denoted by σ(a). It is well known that
σ(a) is a nonempty compact subset of C. The spectral radius of a is defined as

r(a) := sup
{
|λ| : λ ∈ σ(a)

}
.

The map R : ρ(a) → A defined by R(λ) = (a− λ)−1 is called the resolvent map,
and we know that the resolvent map is an analytic Banach algebra-valued map.

For ε > 0, Globevnik in [10] raised the following question:

Does the level set
{
λ ∈ ρ(a) :

∥∥(a− λ)−1
∥∥ = ε

}
have a nonempty interior?

He was unable to answer this question. He showed that (a) the resolvent norm of
an element of a unital Banach algebra cannot be constant on an open subset of
the unbounded component of the resolvent set, and that (b) the resolvent norm
of a bounded linear operator on a Banach space cannot be constant on an open
set if the underlying space is complex uniformly convex (see Definition 4.4). One
can find some more answers related to this question in [5], [3], and [4]. In [14,
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Theorem 3.1], Shargorodsky proved there exists an invertible bounded operator
T acting on the Banach space

`∞(Z) :=
{
x = (. . . , x−2, x−1, x0, x1, x2, . . .)

∣∣ sup
−∞≤i≤∞

|xi| <∞ and xi ∈ C
}

with norm ‖x‖∗ = supk 6=0 |xk|+ |x0| such that ‖(T −λ)−1‖ is constant in a neigh-
borhood of λ = 0, which is an affirmative answer to the question of Globevnik.
(See [7] for the results related to the level sets of the resolvent norm of a linear
operator.)

The concept of the condition spectrum was first introduced by Kulkarni and
Sukumar in [11], and because of the inequality in the definition, it is evident
that, in order to understand the condition spectrum geometrically, one has to
know more about its boundary set. Since the boundary set is the subset of the
level sets of the condition spectrum, one has to concentrate on the level sets. The
definition of the level sets of the condition spectrum is the following,

Definition 1.3. Let 0 < ε ≤ 1. The ε-level set of the condition spectrum of a ∈ A
is defined as

Lε(a) :=
{
λ ∈ C :

∥∥(a− λ)
∥∥∥∥(a− λ)−1

∥∥ =
1

ε

}
.

In the computational point of view, if we are sure that the level sets of the
condition spectrum do not contain any interior point, then it can help us to trace
out the boundary set of the condition spectrum. Because of the reasons discussed
so far, in this article we focus on the following question: is the interior of Lε(a)
nonempty?

For 0 < ε < 1 and a ∈ A \ Ce, the preliminary section of this article discusses
the basic facts about Lε(a). In Section 3, we construct some examples to show the
contrast between the topological property of L1(a) and Lε(a), and we prove that
L1(a) has an empty interior. For 0 < ε < 1, in Section 4, we study the interior
property of Lε(a).

Throughout this article, B(a, r) denotes the open ball in C with center a and
radius r, and B(X) denotes the set of all bounded linear operators defined on the
complex Banach space X.

2. Preliminaries

In this section, we introduce some definitions and terminology used in this
article. We also prove some basic properties of the level sets of the condition
spectrum.

Definition 2.1. ([11, Definition 2.5]) Let 0 < ε < 1. The ε-condition spectrum of
a ∈ A is defined as

σε(a) =
{
λ ∈ C :

∥∥(a− λ)
∥∥∥∥(a− λ)−1

∥∥ ≥ 1

ε

}
with the convention that ‖(a− λ)‖‖(a− λ)−1‖ = ∞ if (a− λ) is not invertible.
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Note 2.2. For 0 < ε < 1, it is clear that Lε(a) ⊂ σε(a). If a = λ for some λ ∈ C,
then Lε(a) = ∅, and so the interior of Lε(a) = ∅. Further, L1(a) = C \ {λ}, and
so the interior of L1(a) 6= ∅.

Consider the Banach algebra M2(C). For every A ∈ M2(C), the 2-norm of A is
defined as ‖A‖ = smax(A), where smax(A) denotes the maximum singular value
of A. For any 0 < ε < 1, we find out explicitly the ε-level set of the condition
spectrum of an upper triangular 2× 2 matrix.

Proposition 2.3. Let 0 < ε < 1, and let A =
(
a b
0 c

)
∈ M2(C). Then

Lε(A) =
{
µ ∈ C :

(
√

(|µ− a|+ |µ− c|)2 + |b|2 +
√

(|µ− a| − |µ− c|)2 + |b|2)2

4|µ− a||µ− c|

=
1

ε

}
. (2.1)

Proof. For A ∈ M2(C) with the 2-norm, we have the following:

‖A− µ‖ = smax(A− µ) and
∥∥(A− µ)−1

∥∥ =
1

smin(A− µ)
,

where smin(A− µ) denotes the minimum singular value of A− µ. Hence

Lε(A) =
{
µ :

smax(A− µ)

smin(A− µ)
=

1

ε

}
.

Now,

smax(A− µ)smin(A− µ) =
∣∣det(A− µ)

∣∣ = |a− µ||c− µ|, (2.2)[
smax(A− µ)

]2
+
[
smin(A− µ)

]2
= trace

[
(A− µ)∗(A− µ)

]
= |µ− a|2 + |µ− c|2 + |b|2. (2.3)

From the above two equations, we get[
smax(A− µ)± smin(A− µ)

]2
=

(
|µ− a| ± |µ− c|

)2
+ |b|2. (2.4)

After simplification, we see Lε(a) as given in equation (2.1) �

Note 2.4. We know that any complex matrix is unitarily similar to an upper
triangular matrix, and hence the level set of any matrix A ∈ M2(C) is of the form
given in Proposition 2.3.

For 0 < ε < 1, if a ∈ A \ Ce, then the boundary of σε(a) is a subset of Lε(a).
Since σε(a) is a nonempty compact set, Lε(a) is also a nonempty set. The following
example shows that every element of Lε(a) need not come from the boundary of
σε(a).

Example 2.5. Consider the Banach space `∞(Z) with norm

‖x‖∗ = |x0|+ sup
n6=0

|xn| where x = (. . . , x−2, x−1, x0 , x1, x2, . . .),
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where the box represents the zeroth coordinate of an element in `∞(Z). Take an
operator A ∈ B(`∞(Z)) such that

A(. . . , x−2, x−1, x0 , x1, x2, . . .) =
(
. . . , x−2, x−1, x0,

x1
4
, x2, x3, . . .

)
.

For ε = 1
5
, we prove that the scalar 0 belongs to Lε(A) but not in the boundary

of σε(A). By Theorem 3.1 in [14],∥∥(A− λ)−1
∥∥ = 4 for λ ∈ B

(
0,

1

4

)
. (2.5)

For any x ∈ `∞(Z),

‖Ax‖∗ =
(∣∣∣x1

4

∣∣∣+ sup
n6=1

|xn|
)
≤ 5

4
‖x‖∗. (2.6)

Take the unit norm element y = (yk)
∞
k=−∞ such that

yk =

{
1 for k = 1, 2,

0 otherwise.

It is easy to see ‖Ay‖∗ = 5
4
, and thus ‖A‖ = 5

4
. Equation (2.5) and the fact

‖A‖ = 5
4
together imply that ‖A‖‖A−1‖ = 5, and hence 0 ∈ Lε(A). Consider the

unit norm element y = (yk)
∞
k=−∞ such that

yk =


1 for k = 1, 4,

−λ for k = 3,

0 otherwise,

where λ ∈ B(0, 1
4
) \ {0}. Then∥∥(A− λ)y

∥∥
∗

=
∥∥∥(. . . , y−1 − λy−2, y0 − λy−1,

y1
4

− λy0 , y2 − λy1, y3 − λy2, . . .
)∥∥∥

∗

=
∣∣∣y1
4

− λy0

∣∣∣+ sup
n 6=0

|yn+1 − λyn| >
5

4
.

Hence

‖A− λ‖ > 5

4
for λ ∈ B

(
0,

1

4

)∖
{0}. (2.7)

From equation (2.5) and equation (2.7), we get

‖A− λ‖
∥∥(A− λ)−1

∥∥ > 5 for λ ∈ B
(
0,

1

4

)∖
{0}.

Thus B(0, 1
4
) ⊂ σε(A), and this clearly tells us that 0 is not a boundary point of

σε(A).
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Note 2.6. From Theorem 3.1 in [11], we know that σε(a) is a perfect set for any
a ∈ A \Ce. But from the last example, we note that Lε(a) need not be a perfect
set, whereas the following proposition shows that Lε(a) is a compact set with
uncountable cardinality.

Proposition 2.7. Let 0 < ε < 1. If a ∈ A \ Ce, then Lε(a) is a compact subset
of C with an uncountable number of elements.

Proof. For a ∈ A \Ce, we know that Lε(a) is a closed subset of σε(a), and hence
Lε(a) is compact. Suppose that Lε(a) has a countable number of elements. Then
we choose an isolated point λ0 from the boundary of σε(a). There exist an r > 0
such that

B(λ0, r) ∩ σ(a) = ∅, B(λ0, r) ∩ σε(a) 6= ∅, B(λ0, r) ∩ σε(a)c 6= ∅.

Take E := B(λ0, r) \ Lε(a), and define the following function:

φ : E → C by φ(λ) =
∥∥(a− λ)

∥∥∥∥(a− λ)−1
∥∥.

Clearly, φ is continuous, and

E =
{
λ ∈ ρ(a) : φ(λ) >

1

ε

}
∪
{
λ ∈ ρ(a) : φ(λ) <

1

ε

}
.

This is a contradiction to the fact that E is connected. Thus Lε(a) has an uncount-
able number of points. �

3. 1-level set of the condition spectrum

This section deals with the 1-level set of the condition spectrum. We mainly
prove that the interior of the 1-level set of the condition spectrum is empty, and
we also give a better geometric picture of the 1-level set of the condition spectrum
(see Lemma 3.4). In fact, excluding the case when the number of elements in σ(a)
is two, we prove that L1(a) contains at most one element (see Theorems 3.5, 3.8).

The following examples show that the nature of L1(a) is different from Lε(a),
particularly when L1(a) may be empty, may be unbounded, or may have a count-
able number of points.

Example 3.1. The set D = {f ∈ C([a, b]) | f ′ ∈ C([a, b])} forms a complex unital
Banach algebra with respect to pointwise addition, pointwise multiplication, and
with the norm ‖f‖d = ‖f‖∞ + ‖f ′‖∞. Since ‖f ′‖∞ 6= 0 for every nonscalar
invertible element f ∈ D, we have

‖f‖d‖f−1‖d ≥ ‖f‖∞‖f−1‖∞ + ‖f−1‖∞‖f ′‖∞ > 1.

Thus L1(f) = ∅ for every nonscalar invertible element f ∈ D.

Example 3.2. Consider the complex Hilbert space

`2(N) :=
{
x = (x1, x2, x3, x4, . . . )

∣∣∣∣ ∞∑
i=1

|xi|2 <∞ and xi ∈ C
}
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with norm

‖x‖2 =
( ∞∑

i=1

|xi|2
)1/2

.

For some fixed n ∈ N with n ≥ 2, consider an operator T in B(`2(N)) defined as

T (ei) =

{
e(n+1)−i for 1 ≤ i ≤ n,

ei for all i ≥ n+ 1,

where the ei’s form the standard orthonormal basis for `2(N). It is easy to see
that T = T ∗ = T−1 and σ(T ) = {−1, 1}. For any λ ∈ ρ(T ), the operators T − λ
and (T −λ)−1 are normal, and so their norms are equal to its spectral radius. We
have

‖T−λ‖ = max
{
|λ−1|, |λ+1|

}
and

∥∥(T−λ)−1
∥∥ = max

{ 1

|λ− 1|
,

1

|λ+ 1|

}
.

Hence,

L1(T ) =
{
λ :

|λ− 1|
|λ+ 1|

= 1
}
∪
{
λ :

|λ+ 1|
|λ− 1|

= 1
}
=

{
λ : |λ− 1| = |λ+ 1|

}
.

This shows that L1(T ) is unbounded.

Example 3.3. For n ≥ 2, consider a Banach space Cn with infinity norm. Take an
operator S ∈ B(Cn) such that S(ei) = e(n+1)−i, where ei is the standard basis of
Cn. It is clear that S = S−1, ‖S‖ = 1, and σ(S) = {−1, 1}. For any λ ∈ ρ(S), we
observe that

(S − λ)(ei) = −λei + e(n+1)−i with
∥∥(S − λ)

∥∥ = 1 + |λ|

and

(S − λ)−1(ei) =
−1

λ2 − 1
(λei + e(n+1)−i) with

∥∥(S − λ)−1
∥∥ =

1 + |λ|
|λ2 − 1|

.

It is easy to verify that L1(S) = {0}.

Lemma 3.4. Let a ∈ A \ Ce. If L1(a) is nonempty, then for each µ ∈ L1(a),

‖a− µ‖ = |µ− λ| and
∥∥(a− µ)−1

∥∥ =
1

|µ− λ|
for all λ ∈ σ(a).

Proof. Let µ ∈ L1(a). Then∥∥(a− µ)−1
∥∥ ≥ 1

inf{|µ− λ| : λ ∈ σ(a)}

≥ 1

sup{|µ− λ| : λ ∈ σ(a)}

=
1

r(a− µ)
≥ 1

‖a− µ‖
=

∥∥(a− µ)−1
∥∥.

Hence |µ− λ| = ‖a− µ‖ and 1
|µ−λ| = ‖(a− µ)−1‖ for all λ ∈ σ(a). �
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Theorem 3.5. Let a ∈ A \ Ce. If σ(a) has more than two elements, then L1(a)
has at most one element.

Proof. Let λ1, λ2, λ3 ∈ σ(a) with λ1 6= λ2 6= λ3. Suppose that L1(a) has two
distinct elements z1 and z2. Then, by Lemma 3.4, we have

|z1 − λ1| = |z1 − λ2| = |z1 − λ3| = ‖a− z1‖
and

|z2 − λ1| = |z2 − λ2| = |z2 − λ3| = ‖a− z2‖.
The above two equations imply that two circles with distinct centers intersect in
three distinct points. This is a contradiction. �

Theorem 3.6. Let a ∈ A \Ce such that σ(a) has more than one element. Then
the interior of L1(a) is empty.

Proof. If σ(a) has more than two elements, then, by Theorem 3.5, the interior of
L1(a) is empty. Next, we assume that σ(a) = {λ1, λ2} with λ1 6= λ2. Suppose that
there exists an r > 0 such that B(η0, r) ⊆ L1(a) for some η0 ∈ C. By Lemma 3.4,
we have |λ1 − µ| = |λ2 − µ| for all µ ∈ B(η0, r). This is a contradiction. �

A well-known problem in operator theory is that, if T ∈ B(X) with σ(T ) =
{1}, then under what additional conditions can we conclude that T = I? In
connection with this problem, Theorem 3.7 gives a sufficient condition. A survey
article contains details of many classical results related to this problem (see [15]).
Another sufficient condition is also given in [11, Corollary, 3.5] in terms of the
condition spectrum.

Theorem 3.7 ([1, Theorem 1.1]). Let a ∈ A. If σ(a) = {1} and a is a doubly
power bound element of A, which means that sup{‖an‖ : n ∈ Z} <∞, then a = e.

We prove the following result with the help of Theorem 3.7.

Theorem 3.8. Let a ∈ A \ Ce. If σ(a) = {λ}, then L1(a) is empty, and in
particular the interior of L1(a) is also empty.

Proof. Suppose that L1(a) 6= ∅, and suppose that µ ∈ L1(a). Then, by Lemma 3.4,

‖a − µ‖ = |µ − λ|. Consider the element b := (a−µ)
λ−µ

. It is clear that σ(b) = {1}.
Since ‖b‖ = 1, we have ‖bn‖ ≤ 1 for all positive integers n. By Lemma 3.4,
‖b−1‖ = 1, and hence ‖bn‖ ≤ 1 for all negative integers n, and hence b is doubly
power bound. By Theorem 3.7, we conclude that b = e; this implies that a = λ,
which is a contradiction. �

From Theorem 3.8, we observe that if a ∈ A\Ce such that L1(a) is nonempty,
then σ(a) contains more than one element, and that if a ∈ A with L1(a) = C\{µ}
for some µ ∈ C, then a = µ. From Example 3.1, we understand that L1(a) may
be empty for a ∈ A \ Ce with σ(a) containing more than one element.

The following theorem and Example 3.1 prove that L1(a) = ∅ for some elements
of every Banach algebra and every element of some Banach algebra.

Theorem 3.9. For any complex unital Banach algebra A there always exists an
a ∈ A \ Ce such that L1(a) = ∅.
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Proof. Suppose that there exists a ∈ A \ Ce such that σ(a) = {λ}. Then, by
Theorem 3.6, L1(a) = ∅. If there exists a ∈ A \ Ce such that σ(a) = {λ1, λ2}
with λ1 6= λ2, then, by Proposition 9 in Section 7 of [2], there exists idempotents
e1 and e2 such that σ(ae1) = {λ1}, σ(ae2) = {λ2}, and a = ae1 + ae2. We must
have either ae1 ∈ A \ Ce or ae2 ∈ A \ Ce; otherwise a /∈ A \ Ce. Hence, by
Theorem 3.6, we get L1(ae1) = ∅ or L1(ae2) = ∅. If there exists a ∈ A \ Ce
such that {λ1, λ2, λ3} ⊆ σ(a) with λ1 6= λ2 6= λ3, then consider the following
polynomial:

p(z) =
(z − λ2)(z − λ3)

(λ1 − λ2)(λ1 − λ3)
− (z − λ1)(z − λ3)

(λ2 − λ1)(λ2 − λ3)
.

Clearly, {−1, 0, 1} ⊆ σ(p(a)), and so, by Lemma 3.4, L1(p(a)) = ∅. �

To get Theorem 3.8, we need a doubly power bound element a ∈ A \ Ce. We
now ask the following question: for a ∈ A \ Ce with L1(a) empty, is it necessary
that a be doubly power bound? We get a negative answer from the following
example.

Example 3.10. Consider the Banach algebra C[0, 2] and element f ∈ C[0, 2] such
that f(x) = x. By Lemma 3.4, L1(f) = ∅, but ‖fn‖∞ → ∞ as n → ∞. Hence f
is not a doubly power bound element.

4. ε-level set of the condition spectrum

For 0 < ε < 1 and a ∈ A \ Ce, our first main result in this section proves that
Lε(a) has an empty interior in the unbounded component of the resolvent set of
a. For that, we prove a version of the maximum modulus theorem for the product
of n analytic vector-valued functions (where n ∈ N.) This proof is similar to the
proof of Theorem 2.1 in [14].

Lemma 4.1. Let Ω0 be a connected, open subset of C, let Ω be an open subset of
Ω0, and let X be a complex Banach space. For i = 1, . . . , n, suppose that we have
the following:

(1) ψi : Ω0 → X are analytic vector-valued functions,
(2)

∏n
i=1 ‖ψi(λ)‖ ≤M for all λ ∈ Ω,

(3)
∏n

i=1 ‖ψi(µ)‖ < M for some µ ∈ Ω0.

Then,
∏n

i=1 ‖ψi(λ)‖ < M for all λ ∈ Ω.

Proof. Suppose that there exists λ0 ∈ Ω such that

n∏
i=1

∥∥ψi(λ0)
∥∥ =M.

Then, by the Hahn–Banach theorem, for each ψi(λ0) there exists gi ∈ X∗ such
that ‖gi‖ = 1 and

gi
(
ψi(λ0)

)
=

∥∥ψi(λ0)
∥∥. (4.1)
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Consider the function

φ : Ω0 → C defined by φ(λ) =
n∏

i=1

gi
(
ψi(λ)

)
.

Here φ is analytic because gi(ψi) is analytic on Ω0 for each i. By assumption (2),∣∣φ(λ)∣∣ = ∣∣∣ n∏
i=1

gi
(
ψi(λ)

)∣∣∣ ≤ n∏
i=1

‖gi‖
∥∥ψi(λ)

∥∥ ≤M for all λ ∈ Ω.

Particularly for λ0 ∈ Ω and from equation (4.1), we get∣∣φ(λ0)∣∣ = ∣∣∣ n∏
i=1

gi
(
ψi(λ0)

)∣∣∣ = n∏
i=1

∣∣gi(ψi(λ0)
)∣∣ = n∏

i=1

∥∥ψi(λ0)
∥∥ =M.

Thus |φ| attains the local maximum at Ω0. Since Ω0 is connected by the maximum
modulus theorem, φ is constant and φ ≡ M . On the other hand, by assumption
(3) and by the definition of all gi, we have

M =
∣∣φ(µ)∣∣ = ∣∣∣ n∏

i=1

gi
(
ψi(µ)

)∣∣∣ ≤ n∏
i=1

‖gi‖
∥∥ψi(µ)

∥∥ =
n∏

i=1

∥∥ψi(µ)
∥∥ < M.

This is a contradiction. �

Theorem 4.2. Let M > 1, let a ∈ A \ Ce, and let Ω be an open subset in the
unbounded component of ρ(a). If∥∥(a− λ)

∥∥∥∥(a− λ)−1
∥∥ ≤M for all λ ∈ Ω,

then ∥∥(a− λ)
∥∥∥∥(a− λ)−1

∥∥ < M for all λ ∈ Ω.

Proof. Let Ω0 be the unbounded component of ρ(a). By our assumption, Ω ⊂ Ω0,
and ∥∥(a− λ)

∥∥∥∥(a− λ)−1
∥∥ ≤M for all λ ∈ Ω.

Since σ 1
M
(a) is compact, we must have{

λ ∈ C :
∥∥(a− λ)

∥∥∥∥(a− λ)−1
∥∥ < M

}
∩ Ω0 6= ∅.

Take µ ∈ {λ ∈ C : ‖(a − λ)‖‖(a − λ)−1‖ < M} ∩ Ω0. Apply Lemma 4.1 to the
analytic functions λ 7→ (a − λ) and λ 7→ (a − λ)−1 which are defined from Ω0

to A and to the scalar µ ∈ Ω0. Then we get ‖(a − λ)‖‖(a − λ)−1‖ < M for all
λ ∈ Ω. �

Corollary 4.3. Let a ∈ A \ Ce, and let 0 < ε < 1. Then Lε(a) has an empty
interior in the unbounded component of ρ(a). In particular, the interior of Lε(a)
is empty if ρ(a) is connected.

Proof. The proof follows immediately from Theorem 4.2. �
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Our next result shows that if T ∈ B(X) whereX is a complex uniformly convex
Banach space, then the interior of Lε(T ) is empty for 0 < ε < 1. We first see the
notion of complex uniformly convex Banach space and some important remarks
related to them.

Definition 4.4 ([9, Definition 2.4(ii)]). A complex Banach space X is said to be
complex uniformly convex (uniformly convex) if for every ε > 0 there exists δ > 0
such that

x, y ∈ X, ‖y‖ ≥ ε and ‖x+ ζy‖ ≤ 1,∀ζ ∈ C(ζ ∈ R),with |ζ| ≤ 1 ⇒ ‖x‖ ≤ 1− δ.

It is so obvious that every uniformly convex Banach space is a complex uni-
formly convex space. It is proved in [6] that Hilbert spaces and Lp (with 1 <
p < ∞) spaces are uniformly convex Banach spaces, and hence that they are all
complex uniformly convex Banach spaces. In [9, Theorem 1], Globevnik showed
that the L1 space is complex uniformly convex. The Banach space L∞ is not
a complex uniformly convex Banach space. The dual space L∗

∞ is isometrically
isomorphic to a space of bounded finitely additive set functions (see [8, Chapter
IV, Section 8, Theorem 16] and [8, Chapter III, Section 1, Lemma 5]). The space
of bounded finitely additive set functions is a complex uniformly convex space
proved in Proposition 1.1 in [12], and so L∗

∞ is complex uniformly convex.

Definition 4.5 ([9, Remark]). Consider a complex Banach space X and δ > 0. We
define ωc(δ) as follows:

ωc(δ) = sup
{
‖y‖ : x, y ∈ X with ‖x‖ = 1, ‖x+ ζy‖ ≤ 1 + δ,

(
ζ ∈ B(0, 1)

)}
.

Remark 4.6 ([9, Remark]). Let X be a complex Banach space. Then X is complex
uniformly convex if and only if limδ→0 ωc(δ) = 0.

The proof of the following Theorem is similar to the proof of Proposition 2
in [10].

Theorem 4.7. Let X be a complex uniformly convex Banach space, and let
M > 1. If T ∈ B(X) with

‖T − λ‖
∥∥(T − λ)−1

∥∥ ≤M for all λ ∈ B(0, 1),

then

‖T − λ‖
∥∥(T − λ)−1

∥∥ < M for all λ ∈ B(0, 1).

Proof. We claim that there exists µ ∈ B(0, 1) such that

‖T − µ‖
∥∥(T − µ)−1

∥∥ < M.

Suppose that ∥∥(T − λ)
∥∥∥∥(T − λ)−1

∥∥ =M for all λ ∈ B(0, 1). (4.2)

We arrive at a contradiction in the following three steps.
Step 1: In this step, we define a sequence of function ψn from B(0, 1) to X

for each n ∈ N, and we prove that each ψn is a bounded analytic vector-valued
function. We know that there exists a sequence {xn} with ‖xn‖ = 1 such that

lim
n→∞

∥∥T−1(xn)
∥∥ = ‖T−1‖.
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By the Hahn–Banach theorem, there exists g ∈ B(X)∗ such that g(T ) = ‖T‖
with ‖g‖ = 1. For each xn, we define the following function:

ψn : B(0, 1) → X by ψn(λ) =
[g(T − λ)](T − λ)−1xn

‖T‖‖T−1‖
.

Now, ∥∥ψn(λ)
∥∥ =

∥∥∥ [g(T − λ)](T − λ)−1xn
‖T‖‖T−1‖

∥∥∥
≤ ‖g‖‖T − λ‖‖(T − λ)−1‖‖xn‖

‖T‖‖T−1‖
. (4.3)

Since ‖g‖ = 1, and by equations (4.2) and (4.3), we get∥∥ψn(λ)
∥∥ ≤ 1. (4.4)

Each ψn is analytic because the maps λ 7→ g(T − λ) and λ 7→ (T − λ)−1 are
analytic.

Step 2: In this step we apply Theorem 2 in [9] to the functions ψn, and we see
the consequence. Applying Theorem 2 in [9] to the function ψn, we get∥∥ψn(λ)− ψn(0)

∥∥ ≤
( 2|λ|
1− |λ|

)
wc

(
1−

∥∥ψn(0)
∥∥) for all λ ∈ B(0, 1).

Substituting the corresponding values of ψn in the above equation,∥∥∥ [g(T − λ)](T − λ)−1xn
‖T‖‖T−1‖

− g(T )T−1xn
‖T‖‖T−1‖

∥∥∥ ≤
( 2|λ|
1− |λ|

)
wc

(
1−

∥∥∥g(T )T−1xn
‖T‖‖T−1‖

∥∥∥).
Applying g(T ) = ‖T‖ to the right-hand side of the above inequality, we get∥∥∥ [g(T − λ)](T − λ)−1xn

‖T‖‖T−1‖
− g(T )T−1xn

‖T‖‖T−1‖

∥∥∥ ≤
( 2|λ|
1− |λ|

)
wc

(
1− ‖T−1xn‖

‖T−1‖

)
.

Using Remark 4.6 and the fact that 1− ‖T−1xn‖
‖T−1‖ → 0, we note that

lim
n→∞

∥∥[g(T − λ)
]
(T − λ)−1xn − g(T )T−1xn

∥∥ = 0. (4.5)

Substitute (T − λ)−1 = T−1 + λT−1(T − λ)−1. We get[
g(T − λ)

]
(T − λ)−1 − g(T )T−1

= g(T )
[
T−1 + λT−1(T − λ)−1

]
− λg(I)(T − λ)−1 − g(T )T−1

= λ
[
g(T )T−1 − g(I)

]
(T − λ)−1. (4.6)

Equation (4.5) and equation (4.6) together yield

lim
n→∞

∥∥[g(T )T−1 − g(I)
]
(T − λ)−1xn

∥∥ = 0 (4.7)

and

lim
n→∞

∥∥[g(T )− g(I)T
]
(T − λ)−1xn

∥∥ = 0 (4.8)

for all λ ∈ B(0, 1).



326 D. SUKUMAR and S. VEERAMANI

Step 3: In this step, we get the required contradiction by applying the appro-
priate value for g(I) to the equation (4.7) and equation (4.8).

Case 1: If g(I) = 0, then equation (4.8) becomes

lim
n→∞

∥∥g(T )(T − λ)−1xn
∥∥ = 0.

Since the operator T − λ is continuous for any λ ∈ B(0, 1),

lim
n→∞

‖xn‖ = 0,

which is a contradiction to ‖xn‖ = 1.
Case 2: If |g(I)| ≤ 1, then, from equation (4.7), we get

lim
n→∞

∥∥(T − λ)
[
g(T )T−1 − g(I)

]
(T − λ)−1xn

∥∥ = 0. (4.9)

Since the operators (T − λ) and T−1 commute, the above equation becomes

lim
n→∞

∥∥(g(T )T−1 − g(I)
)
xn

∥∥ = 0.

By the triangle inequality,

lim
n→∞

(∥∥g(T )T−1xn
∥∥−

∥∥g(I)xn∥∥) = 0.

The above equation implies that

lim
n→∞

‖T‖‖T−1xn‖ = 1.

Thus

lim
n→∞

‖T−1xn‖ =
1

‖T‖
.

We also know that limn→∞ ‖T−1xn‖ = ‖T−1‖. Hence, ‖T‖‖T−1‖ = 1. But we
assumed that ‖T‖‖T−1‖ = M . This is a contradiction to M > 1. Hence there
exists µ ∈ B(0, 1) such that ‖T − µ‖‖(T − µ)−1‖ < M . Apply Lemma 4.1 to the
function λ 7→ (T − λ) and λ 7→ (T − λ)−1, defined from B(0, 1) to B(X) and to
the point µ, to get the required conclusion. �

Note 4.8. The above result holds for any open ball in the resolvent set of T .
Suppose that ‖T−λ‖‖(T−λ)−1‖ ≤M for all λ ∈ B(µ, r) and M > 1. If we define
an operator S := T−µ

r
∈ B(X), then S ∈ B(X) and ‖S − λ‖‖(S − λ)−1‖ ≤M for

all λ ∈ B(0, 1). In order to prove ‖T − λ‖‖(T − λ)−1‖ < M for all λ ∈ B(µ, r),
we apply Theorem 4.7 to the operator S.

Corollary 4.9. Let X be a complex Banach space such that the dual space X∗ is
complex uniformly convex and M > 1. Suppose also that T ∈ B(X) with

‖T − λ‖
∥∥(T − λ)−1

∥∥ ≤M for all λ ∈ B(0, 1).

Then

‖T − λ‖
∥∥(T − λ)−1

∥∥ < M for all λ ∈ B(0, 1).
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Proof. Consider the transpose linear map T ∗ ∈ B(X∗). For any λ ∈ B(0, 1), we
have ∥∥(T − λ)

∥∥∥∥(T − λ)−1
∥∥ =

∥∥(T ∗ − λ)
∥∥∥∥(T ∗ − λ)−1

∥∥.
Apply Theorem 4.7 to the operator T ∗ and the Banach space X∗. This completes
the proof. �

Corollary 4.10. Let X be a complex Banach space, let T ∈ B(X), and let
0 < ε < 1. If either X or X∗ is complex uniformly convex, then Lε(T ) has an
empty interior in the resolvent set of T .

Proof. The proof is an immediate consequence of Theorem 4.7 and Corollary 4.9.
�

Corollary 4.11. Let 0 < ε < 1, and let A be a unital C∗ algebra. If a ∈ A \Ce,
then the interior of Lε(a) is empty.

Proof. We know that there exists a C∗ isomorphism ψ form A to C∗ subalgebra
of B(H) for some Hilbert space H. For any a ∈ A, we have σ(a) = σ(ψ(a)) and
‖a‖ = ‖ψ(a)‖. These imply that

Lε(a) = Lε

(
ψ(a)

)
.

Since the Hilbert space H is complex uniformly convex, and applying Theorem
4.7, we get that the interior of Lε(ψ(a)) is empty. Hence, the interior of Lε(a) is
empty. �
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5. A. Böttcher, S. M. Grudsky, and B. Silbermann, Norms of inverses, spectra, and pseu-
dospectra of large truncated Wiener-Hopf operators and Toeplitz matrices, New York J.
Math. 3 (1997), 1–31. Zbl 0887.47025. MR1443134. 315

6. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414.
Zbl 0015.35604. MR1501880. 324

http://www.emis.de/cgi-bin/MATH-item?0705.46021
http://www.ams.org/mathscinet-getitem?mr=1008239
http://www.emis.de/cgi-bin/MATH-item?0271.46039
http://www.ams.org/mathscinet-getitem?mr=0423029
http://www.emis.de/cgi-bin/MATH-item?0819.45002
http://www.ams.org/mathscinet-getitem?mr=1312518
http://dx.doi.org/10.1216/jiea/1181075815
http://dx.doi.org/10.1216/jiea/1181075815
http://www.emis.de/cgi-bin/MATH-item?1089.47001
http://www.ams.org/mathscinet-getitem?mr=2179973
http://dx.doi.org/10.1137/1.9780898717853
http://www.emis.de/cgi-bin/MATH-item?0887.47025
http://www.ams.org/mathscinet-getitem?mr=1443134
http://www.emis.de/cgi-bin/MATH-item?0015.35604
http://www.ams.org/mathscinet-getitem?mr=1501880


328 D. SUKUMAR and S. VEERAMANI

7. E. B. Davies and E. Shargorodsky, Level sets of the resolvent norm of a linear operator revis-
ited, Mathematika 62 (2016), no. 1, 243–265. Zbl 1328.47006. MR3430382. DOI 10.1112/
S0025579315000194. 316

8. N. Dunford and J. T. Schwartz, Linear Operators, I: General Theory, Pure Appl. Math. 7,
Interscience, New York, 1958. Zbl 0084.10402. MR0117523. 324

9. J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975),
175–178. Zbl 0307.46015. MR0355564. DOI 10.2307/2040227. 324, 325

10. J. Globevnik, Norm-constant analytic functions and equivalent norms, Illinois J. Math. 20
(1976), no. 3, 503–506. Zbl 0322.30040. MR0448044. 315, 324

11. S. H. Kulkarni and D. Sukumar, The condition spectrum, Acta Sci. Math. (Szeged) 74
(2008), no. 3–4, 625–641. Zbl 1199.46106. MR2487937. 316, 319, 321

12. G. Lešnjak, Complex convexity and finitely additive vector measures, Proc. Amer. Math.
Soc. 102 (1988), no. 4, 867–873. Zbl 0651.47033. MR0934858. DOI 10.2307/2047325. 324

13. J. Locker, Spectral Theory of Non-self-adjoint Two-point Differential Operators, Math. Sur-
veys Monogr. 73, Amer. Math. Soc., Providence, 2000. Zbl 0945.47004. MR1721499. 314

14. E. Shargorodsky, On the level sets of the resolvent norm of a linear operator, Bull. Lond.
Math. Soc. 40 (2008), no. 3, 493–504. Zbl 1147.47007. MR2418805. DOI 10.1112/blms/
bdn038. 315, 318, 322

15. X.-D. Zhang, Some aspects of the spectral theory of positive operators, Acta Appl. Math.
27 (1992), no. 1–2, 135–142. Zbl 0797.47022. MR1184885. DOI 10.1007/BF00046644. 321

Department of Mathematics, Indian Institute of Technology, Hyderabad,
India.

E-mail address: suku@iith.ac.in; ma13p1005@iith.ac.in

http://www.emis.de/cgi-bin/MATH-item?1328.47006
http://www.ams.org/mathscinet-getitem?mr=3430382
http://dx.doi.org/10.1112/S0025579315000194
http://dx.doi.org/10.1112/S0025579315000194
http://www.emis.de/cgi-bin/MATH-item?0084.10402
http://www.ams.org/mathscinet-getitem?mr=0117523
http://www.emis.de/cgi-bin/MATH-item?0307.46015
http://www.ams.org/mathscinet-getitem?mr=0355564
http://dx.doi.org/10.2307/2040227
http://www.emis.de/cgi-bin/MATH-item?0322.30040
http://www.ams.org/mathscinet-getitem?mr=0448044
http://www.emis.de/cgi-bin/MATH-item?1199.46106
http://www.ams.org/mathscinet-getitem?mr=2487937
http://www.emis.de/cgi-bin/MATH-item?0651.47033
http://www.ams.org/mathscinet-getitem?mr=0934858
http://dx.doi.org/10.2307/2047325
http://www.emis.de/cgi-bin/MATH-item?0945.47004
http://www.ams.org/mathscinet-getitem?mr=1721499
http://www.emis.de/cgi-bin/MATH-item?1147.47007
http://www.ams.org/mathscinet-getitem?mr=2418805
http://dx.doi.org/10.1112/blms/bdn038
http://dx.doi.org/10.1112/blms/bdn038
http://www.emis.de/cgi-bin/MATH-item?0797.47022
http://www.ams.org/mathscinet-getitem?mr=1184885
http://dx.doi.org/10.1007/BF00046644
mailto:suku@iith.ac.in
mailto:ma13p1005@iith.ac.in

	1 Introduction
	2 Preliminaries
	3 1-level set of the condition spectrum
	4 epsilon-level set of the condition spectrum
	Acknowledgments
	References
	Author's addresses

