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Abstract. Green’s theorem gives a Morita equivalence C0(G/H,A) o G ∼
A o H for a closed subgroup H of a locally compact group G acting on a
C∗-algebra A. We prove an analogue of Green’s theorem in the case G =
Z, where the automorphism generating the action is replaced by a Hilbert
C∗-bimodule.

1. Introduction

The crossed product AoX of a C∗-algebra A by a Hilbert A-A bimodule X,
as defined in [2], is a generalization of the crossed product A oα Z of A by
an automorphism α of A. Given an automorphism α of A, one can twist the
trivial bimodule AAA replacing the right structure by defining x ·α a = xα(a)
and 〈x, y〉αR = α−1(a∗b) for a, x, y ∈ A, to get a C∗-bimodule, denoted by Aα,
satisfying Aoα Z ∼= Ao Aα canonically.

Green’s theorem, as stated in [5, Theorem 4.22], gives a Morita equivalence
C0(G/H,A)oG ∼ Aoα|H H for a general locally compact C∗-dynamical system
(A,G, α) and a closed subgroup H ≤ G. In the special case G = Z, H = nZ, for
n ∈ N, we have G/H = Zn so that C0(G/H,A) = C0(Zn, A) ∼= An (n-fold direct
sum) and (H,α|H , A) = (nZ, α|nZ, A) ∼= (Z, αn, A) so that Aoα|H H

∼= Aoαn Z,
where α also denotes the single automorphism generating the action of Z on A,
and αn denotes its nth composition power. Then, for this special case, we have the
Morita equivalence An oσ Z ∼ Aoαn Z for a certain action σ on An. Translating
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this into the C∗-bimodule language, we get An o An
σ ∼ A o Aαn ∼= A o [Aα]

⊗n,
where we use the isomorphism Aαn ∼= [Aα]

⊗n (n-fold tensor product).
In this context, we show that one can replace Aα by a general right full Hilbert

A-A bimodule X and establish a Morita equivalence of the form

An oXn
σ ∼ AoX⊗n.

We obtain this as a consequence of Theorem 3.1, which states a Morita equiv-
alence of the form

(A1 ⊕ · · · ⊕ An)o (X1 ⊕ · · · ⊕Xn)σ ∼ A1 o (X1 ⊗ · · · ⊗Xn),

for a “cycle” of bimodules A1X1A2
, A2X2A3

, . . . , An−1Xn−1An
, AnXnA1

, the special
case Ai = A, Xi = X, i = 1, . . . , n, giving the desired result.

2. Preliminaries

2.1. C∗-modules, C∗-bimodules, equivalence bimodules, and fullness.
A right Hilbert B-module XB is defined as a vector space X equipped with a
right action of the C∗-algebra B and a B-valued right inner product, which is
complete with respect to the induced norm. A left Hilbert A-module AX is defined
analogously. A Hilbert A-B bimodule AXB is a vector space X with left and right
compatible Hilbert C∗-module structures over C∗-algebras A and B, respectively.
Compatibility means that 〈x, y〉L · z = x · 〈y, z〉R, for all x, y, z ∈ X. We say
that a Hilbert A-B bimodule is right full if 〈X,X〉R = B, where 〈X,X〉R =
span({〈x, y〉R : x, y ∈ X}), is the span denoting the closed linear spanned set.
Left fullness is defined analogously. Finally, an equivalence bimodule is a Hilbert
A-B bimodule AXB which is right full and left full. When an equivalence bimod-
ule AXB exists, the C∗-algebras A and B are said to be Morita equivalent, a
situation denoted A ∼ B. (See [3] for reference.)

2.2. Operations with subspaces. For linear subspacesX,X1, . . . , Xn of a fixed
normed ∗-algebra C, we define∑

Xi ≡ X1 +X2 + · · ·+Xn ≡ {x1 + x2 + · · ·+ xn : xi ∈ Xi},∏
Xi ≡ X1X2 · · ·Xn ≡

{∑
k

x1kx2k · · ·xnk : xik ∈ Xi

}
,

X∗ ≡ {x∗ : x ∈ X}.

If Y1, . . . , Yn is another family of subspaces and Xi = Yi for i = 1, . . . , n, then∑
Xi =

∑
Yi and

∏
Xi =

∏
Yi. Consequently, equalities of the form XY = XY ,

X + Y = X + Y , and so on hold for subspaces X and Y . Also, the following
properties are easily checked for subspaces X,Y, Z:

1. (X + Y ) + Z = X + Y + Z = X + (Y + Z), 2. X + Y = Y +X,

3. (XY )Z = XY Z = X(Y Z), 4. X(Y + Z) = XY +XZ,

5. (X + Y )∗ = X∗ + Y ∗, 6. (XY )∗ = Y ∗X∗, 7. (X∗)∗ = X.
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For a general family of subspaces {Xi}i∈I , we extend the definition of sum as∑
Xi ≡

{∑
i∈I0

xi : I0 ⊆ I finite, xi ∈ Xi

}
.

For every such a family and subspace X, we have

8. X
(∑

Xi

)
=

∑
XXi, 9.

(∑
Xi

)∗
=

∑
X∗

i .

2.2.1. Let C be a fixed normed ∗-algebra, let A ⊆ C be a ∗-subalgebra, and let
X ⊆ C be a linear subspace such that

1. AX ⊆ X, 2. XA ⊆ X, 3. X∗X ⊆ A, 4. XX∗ ⊆ A.

For k ∈ Z, we defineXk = XX · · ·X (k times) if k ≥ 1,X0 = A andXk = (X∗)−k

if k ≤ −1. We have XkX l ⊆ Xk+l for all k, l ∈ Z, and XkX l = Xk+l if kl > 0.
Denote by A[X] the closed ∗-subalgebra of C generated by A ∪X. That is,

A[X] = C∗(A ∪X) =
∑
k∈Z

Xk.

2.2.2. With A,X ⊆ C as before, let B ⊆ C be a ∗-subalgebra. Note that

if BA = AB and BX = XB, then BA[X] = A[X]B.

Indeed, in this case BXk = XkB for all k ∈ Z; then

BA[X] = B
∑
k

Xk =
∑
k

BXk =
∑
k

XkB = A[X]B.

In a similar fashion, we can prove that

if BA = A and BX = X, then BA[X] = A[X].

2.2.3. If in the context of Section 2.2.1 C is a C∗-algebra and A andX are closed,
then A is a C∗-algebra and X is a Hilbert A-A bimodule with the operations given
by the restriction of the trivial Hilbert C-C bimodule structure of C. Then we have
AX = X and XA = X because both actions are automatically nondegenerate.
Moreover, if we assume that X is right full, that is, X∗X = A, then we have
X−kX l = X l−k for k, l ≥ 0.

2.3. Crossed product by a Hilbert bimodule. Crossed products of C∗-alge-
bras by Hilbert bimodules are introduced in [2]. We summarize here their defini-
tion and principal properties.

2.3.1. Covariant pairs. Given a Hilbert A-A bimodule X and a C∗-algebra C,
a covariant pair from AXA to C is a pair of maps (ϕ, ψ) where ϕ : A → C is a
∗-morphism and ψ : X → C a linear map satisfying

1. ψ(a · x) = ϕ(a)ψ(x), 2. ϕ
(
〈x, y〉L

)
= ψ(x)ψ(y)∗,

3. ψ(x · a) = ψ(x)ϕ(a), 4. ϕ
(
〈x, y〉R

)
= ψ(x)∗ψ(y)

for all a ∈ A, x, y ∈ X. That is, the pair preserves the Hilbert bimodule structure
considering on C the trivial Hilbert C-C bimodule structure.
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2.3.2. The crossed product. A crossed product of a C∗-algebra A by a Hilbert
A-A bimodule X is a C∗-algebra A o X (denoted A oX Z in [2]) together with
a covariant pair (ιA, ιX) from AXA to A o X satisfying the following universal
property: for any covariant pair (ϕ, ψ) from AXA to a C∗-algebra C there exists
a unique ∗-morphism ϕ o ψ : A o X → C such that ϕ = (ϕ o ψ) ◦ ιA and
ψ = (ϕo ψ) ◦ ιX .

2.3.3. Basic properties. The crossed product exists and is unique up to isomor-
phism. The maps ιA and ιX are injective, so that we may consider A,X ⊆ AoX
and the induced ∗-morphism ϕo ψ as an extension of the covariant pair (ϕ, ψ).
Moreover, for any covariant pair (ϕ, ψ) we have that Imϕoψ = C∗(Imϕ∪ Imψ)
and that ϕo ψ is injective if ϕ is injective.

3. The main theorem

3.1. Twisting Hilbert modules. If XB is a right Hilbert B-module, C a
C∗-algebra, and σ : C → B a ∗-isomorphism, then we denote by Xσ the right
Hilbert module over C obtained by considering on the vector space X the oper-
ations

x ·σ c = x · σ(c) and 〈x, y〉σ = σ−1
(
〈x, y〉

)
for c ∈ C, x, y ∈ X.

If in addition X is a Hilbert A-B bimodule, then Xσ is a Hilbert A-C bimodule
with the original left structure. The module X is right full if and only if Xσ is
right full.

3.2. The twisted sum of a cycle of Hilbert bimodules. Given Hilbert
bimodules Ai

XiBi
for i = 1, . . . , n, we have that

⊕
Xi is a Hilbert

⊕
Ai-

⊕
Bi

bimodule with pointwise operations. The bimodule
⊕

Xi is right full if and only
if Xi is right full for all i = 1, . . . , n.

Now, given a “cycle” of Hilbert bimodules A1X1A2
, A2X2A3

, . . . , AnXnA1
, we can

make
⊕

Xi into a Hilbert bimodule over
⊕

Ai twisting the right action in the
previous constriction with the isomorphism σ : A1 ⊕A2 ⊕ · · · ⊕An → A2 ⊕ · · · ⊕
An ⊕ A1 given by

σ(a1, a2, . . . , an) = (a2, . . . , an, a1) for ak ∈ Ak.

Theorem 3.1. Let A1X1A2
, A2X2A3

, . . . , AnXnA1
be right full Hilbert bimodules

and consider their twisted sum (X1 ⊕ · · · ⊕ Xn)σ as in 3.2. Then we have the
following Morita equivalence

A1 o (X1 ⊗ · · · ⊗Xn) ∼ (A1 ⊕ · · · ⊕ An)o (X1 ⊕ · · · ⊕Xn)σ.

Proof. Let A = A1 ⊕ · · · ⊕ An, let X = (X1 ⊕ · · · ⊕ Xn)σ, and let C = A o X.
We may suppose that Ak ⊆ A ⊆ C and Xk ⊆ X ⊆ C, for k = 1, . . . , n, so that
the module operations of each bimodule Xk and also the ones of the bimodule X
are given by the operations of the C∗-algebra C, that is, by the restriction of the
trivial Hilbert C-C bimodule structure of C. Note that as the spaces A,X ⊆ C
verify the conditions in Section 2.2.1, then we can define Xk for k ∈ Z as done
there. Moreover, as X is a Hilbert A-A bimodule (hence, nondegenerate for both
actions) and is right full, because each Xk is, we have that A,X ⊆ C verify the
conditions of Section 2.2.3.
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We extend the families {Ak}nk=1 and {Xk}nk=1 to families {Ak}k∈Z and {Xk}k∈Z
letting Ak = Al and Xk = Xl if k = lmodn. For all k ∈ Z, we have

AkXk = Xk = XkAk+1, XkX
∗
k ⊆ Ak, and X∗

kXk = Ak+1,

because each Xk is a Hilbert Ak-Ak+1 bimodule (hence nondegenerate for both
actions) and right full. We also have

AkAl = AkXl = XkAl+1 = 0 for k, l ∈ Z, k 6= lmodn;

therefore, as A =
∑n

k=1Ak and X =
∑n

k=1Xk,

Ak = AkA = AAk, Xk = AkX = XAk+1 for k ∈ Z,

and then

AkX
l = X lAk+l for k, l ∈ Z.

In particular, for k ∈ Z we have that AkX
n = XnAk so that the pairs Ak,

AkX
n satisfy the conditions of Sections 2.2.1 and 2.2.3. Following the notation in

Section 2.2.1, we define the C∗-subalgebra

B = A1[A1X
n] = C∗(A1 ∪ A1X

n) ⊆ C

and the closed subspace

Z = BX0 ⊕BX ⊕ · · · ⊕BXn−1 ⊆M1×n(C),

where M1×n(C) is considered as a Hilbert C-Mn(C) bimodule with the usual
matrix operations. To prove the theorem, it is enough to show that ZZ∗ ⊆ C and
Z∗Z ⊆ Mn(C) are C

∗-subalgebras, that Z is an equivalence ZZ∗-Z∗Z bimodule
with the restricted (matrix) operations, and that we have isomorphisms ZZ∗ ∼=
A1 o (X1 ⊗ · · · ⊗Xn) and Z

∗Z ∼= C.
Let us consider the issues concerning the left side first. Note that the equalities

AA1 = A1 = A1A and A(A1X
n) = A1X

n = (A1X
n)A imply, by Section 2.2.2,

that AB = B = BA, because B = A1[A1X
n] by definition. Then we can calculate

ZZ∗ =
n−1∑
k=0

(BXk)(BXk)∗ = B
(n−1∑

k=0

XkX−k
)
B = BAB = B,

where we use the fact that
∑n−1

k=0 X
kX−k = A, which is a consequence of the

relationsXkX−k ⊆ A andX0 = A, and that AB = B. Besides, from the definition
of Z it is apparent that Z is B-invariant for the left action. Then we have shown
that Z is a full left Hilbert B-module. Finally, to see that B ∼= A1o(X1⊗· · ·⊗Xn),
consider the covariant pair (ϕ, ψ) given by

ϕ : A1 → C, ϕ(a) = a for a ∈ A1,

ψ : X1 ⊗ · · · ⊗Xn → C, ψ(x1 ⊗ · · · ⊗ xn) = x1 · · ·xn for xk ∈ Xk.

By the universal property of the crossed product (see Section 2.3.2), this covariant
pair extends to a ∗-morphism ϕoψ : A1o(X1⊗· · ·⊗Xn) → C, which is injective
because ϕ is injective (see Section 2.3.3). Moreover, Imϕoψ = C∗(Imϕ∪Imψ) =
B because Imϕ = A1, Imψ = X1 · · ·Xn = A1X · · ·AnX = A1X

n, and B =
C∗(A1 ∪ A1X

n) by definition. Hence we have the desired isomorphism.
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Now, turning to the right side, note that Z∗Z is clearly a closed self-adjoint
subspace of Mn(C). From the equalities ZZ∗ = B and BZ = Z we also deduce
that (Z∗Z)(Z∗Z) = Z∗BZ = Z∗Z, so that Z∗Z is a C∗-subalgebra ofMn(C) and
Z is a full right Hilbert Z∗Z-module.

To show that Z∗Z ∼= C, consider the pair of maps ϕ : A→Mn(C) and ψ : X →
Mn(C) given by

ϕ(a1, . . . , an) =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 an

 , ψ(x1, . . . , xn) =


0 x1 · · · 0

0 0
. . .

...
...

. . . . . . xn−1

xn · · · 0 0

 ,
for (a1, . . . , an) ∈ A = A1 ⊕ · · · ⊕ An and (x1, . . . , xn) ∈ X = (X1 ⊕ · · · ⊕Xn)σ.

The following calculations show that this pair is a covariant pair. For every
ak ∈ Ak, xk, yk ∈ Xk, k = 1, . . . , n, we have

ψ
(
(a1, . . . , an) · (x1, . . . , xn)

)
= ψ(a1 · x1, . . . , an · xn)

=


0 a1 · x1 · · · 0

0 0
. . .

...
...

. . . . . . an−1 · xn−1

an · xn · · · 0 0



=


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 an



0 x1 · · · 0

0 0
. . .

...
...

. . . . . . xn−1

xn · · · 0 0


= ϕ(a1, . . . , an)ψ(x1, . . . , xn);

ϕ
(〈
(x1, . . . , xn), (y1, . . . , yn)

〉
L

)
= ϕ

(
〈x1, y1〉L, . . . , 〈xn, yn〉L

)
=


〈x1, y1〉L 0 · · · 0

0 〈x2, y2〉L
. . .

...
...

. . . . . . 0
0 · · · 0 〈xn, yn〉L



=


0 x1 · · · 0

0 0
. . .

...
...

. . . . . . xn−1

xn · · · 0 0



0 0 · · · y∗n

y∗1 0
. . .

...
...

. . . . . . 0
0 · · · y∗n−1 0


= ψ(x1, . . . , xn)ψ(y1, . . . , yn)

∗;

ψ
(
(x1, . . . , xn) ·σ (a1, . . . , an)

)
= ψ

(
(x1, . . . , xn) · σ(a1, . . . , an)

)
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= ψ
(
(x1, . . . , xn) · (a2, . . . , an, a1)

)
= ψ(x1 · a2, . . . , xn−1 · an, xn · a1)

=


0 x1 · a2 · · · 0

0 0
. . .

...
...

. . . . . . xn−1 · an
xn · a1 · · · 0 0



=


0 x1 · · · 0

0 0
. . .

...
...

. . . . . . xn−1

xn · · · 0 0



a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 an


= ψ(x1, . . . , xn)ϕ(a1, . . . , an);

ϕ
(〈
(x1, . . . , xn), (y1, . . . , yn)

〉σ
R

)
= ϕ

(
σ−1

(〈
(x1, . . . , xn), (y1, . . . , yn)

〉
R

))
= ϕ

(
σ−1

(
〈x1, y1〉R, . . . , 〈xn, yn〉R

))
= ϕ

(
〈xn, yn〉R, 〈x1, y1〉R, . . . , 〈xn−1, yn−1〉R

)
=


〈xn, yn〉R 0 · · · 0

0 〈x1, y1〉R
. . .

...
...

. . . . . . 0
0 · · · 0 〈xn−1, yn−1〉R



=


0 0 · · · x∗n

x∗1 0
. . .

...
...

. . . . . . 0
0 · · · x∗n−1 0



0 y1 · · · 0

0 0
. . .

...
...

. . . . . . yn−1

yn · · · 0 0


= ψ(x1, . . . , xn)

∗ψ(y1, . . . , yn).

By the universal property of the crossed product, the covariant pair (ϕ, ψ)
extends to a ∗-morphism ϕo ψ : A oX → Mn(C), which is injective because ϕ
is injective. Then, to end the proof, it suffices to show that Imϕo ψ = Z∗Z.

We calculate that Z∗Z ⊆Mn(C) by adopting the following matrix notation:

Z∗Z = [Eij]
n
i,j=1, where Eij = (BX i−1)∗(BXj−1) ⊆ C, i, j = 1, . . . , n.

Simplifying the expressions of the Eij’s, we get

Eij = (BX i−1)∗(BXj−1) = X1−iBXj−1.

Note that

Eii = X1−iBX i−1 ⊇ X1−iA1X
i−1 = X1−iX i−1Ai = Ai for i = 1, . . . , n,

Eii+1 = EiiX ⊇ AiX = Xi for i = 1, . . . , n− 1

and that

En1 = X1−nBX0 ⊇ X1−n(A1X
n)A = AnX

1−nXn = AnX = Xn.
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Then we see that Imϕ ⊆ Z∗Z and Imψ ⊆ Z∗Z. As Imϕoψ = C∗(Imϕ∪ Imψ),
we conclude that Imϕo ψ ⊆ Z∗Z.

To prove the reverse inclusion, denote D = Imϕo ψ = C∗(Imϕ ∪ Imψ),

Imϕ =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 An

 ⊆ D

and

X̃ = Imψ =


0 X1 · · · 0

0 0
. . .

...
...

. . . . . . Xn−1

Xn · · · 0 0

 ⊆ D.

Note that
0 X1 · · · 0

0 0 0
...

...
. . . . . . 0

0 · · · 0 0



0 0 · · · 0

0 0 X2
...

...
. . . . . . 0

0 · · · 0 0

 · · ·


0 0 · · · 0

0 0
. . .

...
...

. . . . . . Xn−1

0 · · · 0 0




0 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
Xn · · · 0 0



=


X1 · · ·Xn 0 · · · 0

0 0 0
...

...
. . . . . . 0

0 · · · 0 0

 =


A1X

n 0 · · · 0

0 0 0
...

...
. . . . . . 0

0 · · · 0 0

 ⊆ D.

Then, with [
A1 01×(n−1)

0(n−1)×1 0(n−1)×(n−1)
] ⊆ D and [

A1Xn 01×(n−1)

0(n−1)×1 0(n−1)×(n−1)
] ⊆ D, we can gen-

erate Ẽ11 = [
E11 01×(n−1)

0(n−1)×1 0(n−1)×(n−1)
] ⊆ D because E11 = B = A1[A1X

n]. Now, for

k, l = 0, . . . , n − 1 we have that the product X̃−kẼ11X̃
l ⊆ D is the space that,

with the matrix notation, has X∗
k · · ·X∗

1BX1 · · ·Xl = X−kBX l = E1+k 1+l at the
(l+ 1, k+ 1)-entry and 0 elsewhere. As (k+ 1, l+ 1) ranges over all entries when
k, l = 0, . . . , n− 1, we conclude that Z∗Z = [Eij]

n
i,j=1 ⊆ D, as desired. �

Remark 3.2. For the special case of Theorem 3.1 in which Ai = A and Xi = X for
i = 1, . . . , n, we obtain An oXn

σ ∼ AoX⊗n. As pointed out in the Introduction,
this can be viewed as a generalization to the C∗-bimodule context of Green’s
theorem (see [5, Theorem 4.22]) for the cases in which G = Z and H = nZ. That
is, if α : A → A is a ∗-automorphism, taking X as the trivial Hilbert bimodule

AAA twisted by α, the equivalence AnoXn
σ ∼ AoX⊗n becomes C0(G/H,A)oG ∼

Aoα|H H, where α also denotes the action of Z generated by the automorphism.

Corollary 3.3. Let AXB and BYA be full right Hilbert bimodules. Then

Ao (X ⊗ Y ) ∼ B o (Y ⊗X).
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Proof. Note that the twisted sums (X⊕Y )σ and (Y ⊕X)σ are isomorphic Hilbert
bimodules. Indeed, the pair (ϕ, ψ) where ϕ : A⊕B → B⊕A, ϕ(a, b) = (b, a), and
ψ : X⊕Y → Y ⊕X, ψ(x, y) = (y, x), is an isomorphism. Then, the corresponding
crossed products are isomorphic as well. Therefore

Ao (X ⊗ Y ) ∼ (A⊕B)o (X ⊕ Y )σ ∼= (B ⊕ A)o (Y ⊕X)σ ∼ B o (Y ⊗X),

where we applied Theorem 3.1 twice for n = 2. �

Corollary 3.4 ([2, Theorem 4.1]). Let AXA and BYB be full right Hilbert bimod-
ules, and let AMB be an equivalence bimodule such that X ⊗M ∼= M ⊗ Y . Then

AoX ∼ B o Y.

Proof. As M is an equivalence, we have A ∼= M ⊗M∗, where A is considered as
the trivial Hilbert A-A bimodule andM∗ denotes the conjugated bimodule ofM .
Then X ∼= A ⊗ X ∼= M ⊗M∗ ⊗ X. Besides, M∗ ⊗ X ⊗M ∼= Y by hypothesis.
Then, as all these isomorphisms give isomorphic crossed products, we have

AoX ∼= Ao (A⊗X) ∼= Ao (M ⊗M∗ ⊗X) ∼ B o (M∗ ⊗X ⊗M) ∼= B o Y,

where we applied Corollary 3.3 to commute M and M∗ ⊗X. �

Remark 3.5. In [1] the augmented Cuntz–Pimsner C∗-algebra ÕX associated to an
A-A correspondence X (see [4]) is described as a crossed product A∞oX∞, where
X∞ is a Hilbert A∞-A∞ bimodule constructed out of the A-A correspondence X.
Then, by combining this description with [2, Theorem 4.1] (Corollary 3.4 here), we
can show an analogue of this theorem in the context of augmented Cuntz–Pimsner
C∗-algebras (see [1, Theorem 4.7]). We believe that using similar techniques to
those of [1], it is possible to obtain versions of Theorem 3.1 and Corollary 3.3 for
augmented Cuntz–Pimsner algebras. For example, the corresponding version of

Corollary 3.3 should establish that ÕX⊗Y ∼ ÕY⊗X for full correspondences AXB

and BYA.
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