Ann. Funct. Anal. 8 (2017), no. 3, 281-290
http://dx.doi.org/10.1215/20088752-0000013X
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

# GREEN'S THEOREM FOR CROSSED PRODUCTS BY HILBERT $C^{*}$-BIMODULES 

MAURICIO ACHIGAR

Communicated by N. P. Landsman


#### Abstract

Green's theorem gives a Morita equivalence $C_{0}(G / H, A) \rtimes G \sim$ $A \rtimes H$ for a closed subgroup $H$ of a locally compact group $G$ acting on a $C^{*}$-algebra $A$. We prove an analogue of Green's theorem in the case $G=$ $\mathbb{Z}$, where the automorphism generating the action is replaced by a Hilbert $C^{*}$-bimodule.


## 1. Introduction

The crossed product $A \rtimes X$ of a $C^{*}$-algebra $A$ by a Hilbert $A$ - $A$ bimodule $X$, as defined in [2], is a generalization of the crossed product $A \rtimes_{\alpha} \mathbb{Z}$ of $A$ by an automorphism $\alpha$ of $A$. Given an automorphism $\alpha$ of $A$, one can twist the trivial bimodule ${ }_{A} A_{A}$ replacing the right structure by defining $x{ }_{\alpha} a=x \alpha(a)$ and $\langle x, y\rangle_{R}^{\alpha}=\alpha^{-1}\left(a^{*} b\right)$ for $a, x, y \in A$, to get a $C^{*}$-bimodule, denoted by $A_{\alpha}$, satisfying $A \rtimes_{\alpha} \mathbb{Z} \cong A \rtimes A_{\alpha}$ canonically.

Green's theorem, as stated in [5, Theorem 4.22], gives a Morita equivalence $C_{0}(G / H, A) \rtimes G \sim A \rtimes_{\left.\alpha\right|_{H}} H$ for a general locally compact $C^{*}$-dynamical system $(A, G, \alpha)$ and a closed subgroup $H \leq G$. In the special case $G=\mathbb{Z}, H=n \mathbb{Z}$, for $n \in \mathbb{N}$, we have $G / H=\mathbb{Z}_{n}$ so that $C_{0}(G / H, A)=C_{0}\left(\mathbb{Z}_{n}, A\right) \cong A^{n}$ ( $n$-fold direct sum) and $\left(H,\left.\alpha\right|_{H}, A\right)=\left(n \mathbb{Z},\left.\alpha\right|_{n \mathbb{Z}}, A\right) \cong\left(\mathbb{Z}, \alpha^{n}, A\right)$ so that $A \rtimes_{\left.\alpha\right|_{H}} H \cong A \rtimes_{\alpha^{n}} \mathbb{Z}$, where $\alpha$ also denotes the single automorphism generating the action of $\mathbb{Z}$ on $A$, and $\alpha^{n}$ denotes its $n$th composition power. Then, for this special case, we have the Morita equivalence $A^{n} \rtimes_{\sigma} \mathbb{Z} \sim A \rtimes_{\alpha^{n}} \mathbb{Z}$ for a certain action $\sigma$ on $A^{n}$. Translating

[^0]this into the $C^{*}$-bimodule language, we get $A^{n} \rtimes A_{\sigma}^{n} \sim A \rtimes A_{\alpha^{n}} \cong A \rtimes\left[A_{\alpha}\right]^{\otimes n}$, where we use the isomorphism $A_{\alpha^{n}} \cong\left[A_{\alpha}\right]^{\otimes n}$ ( $n$-fold tensor product).

In this context, we show that one can replace $A_{\alpha}$ by a general right full Hilbert $A-A$ bimodule $X$ and establish a Morita equivalence of the form

$$
A^{n} \rtimes X_{\sigma}^{n} \sim A \rtimes X^{\otimes n}
$$

We obtain this as a consequence of Theorem 3.1, which states a Morita equivalence of the form

$$
\left(A_{1} \oplus \cdots \oplus A_{n}\right) \rtimes\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\sigma} \sim A_{1} \rtimes\left(X_{1} \otimes \cdots \otimes X_{n}\right)
$$

for a "cycle" of bimodules ${ }_{A_{1}} X_{1 A_{2}}, A_{2} X_{2 A_{3}}, \ldots,{ }_{A_{n-1}} X_{n-1 A_{n}},{ }_{A_{n}} X_{n A_{1}}$, the special case $A_{i}=A, X_{i}=X, i=1, \ldots, n$, giving the desired result.

## 2. Preliminaries

2.1. $C^{*}$-modules, $C^{*}$-bimodules, equivalence bimodules, and fullness. A right Hilbert $B$-module $X_{B}$ is defined as a vector space $X$ equipped with a right action of the $C^{*}$-algebra $B$ and a $B$-valued right inner product, which is complete with respect to the induced norm. A left Hilbert $A$-module ${ }_{A} X$ is defined analogously. A Hilbert $A$ - $B$ bimodule ${ }_{A} X_{B}$ is a vector space $X$ with left and right compatible Hilbert $C^{*}$-module structures over $C^{*}$-algebras $A$ and $B$, respectively. Compatibility means that $\langle x, y\rangle_{L} \cdot z=x \cdot\langle y, z\rangle_{R}$, for all $x, y, z \in X$. We say that a Hilbert $A-B$ bimodule is right full if $\langle X, X\rangle_{R}=B$, where $\langle X, X\rangle_{R}=$ $\operatorname{span}\left(\left\{\langle x, y\rangle_{R}: x, y \in X\right\}\right)$, is the span denoting the closed linear spanned set. Left fullness is defined analogously. Finally, an equivalence bimodule is a Hilbert $A$ - $B$ bimodule ${ }_{A} X_{B}$ which is right full and left full. When an equivalence bimodule ${ }_{A} X_{B}$ exists, the $C^{*}$-algebras $A$ and $B$ are said to be Morita equivalent, a situation denoted $A \sim B$. (See [3] for reference.)
2.2. Operations with subspaces. For linear subspaces $X, X_{1}, \ldots, X_{n}$ of a fixed normed $*$-algebra $C$, we define

$$
\begin{aligned}
\sum X_{i} & \equiv X_{1}+X_{2}+\cdots+X_{n} \equiv \overline{\left\{x_{1}+x_{2}+\cdots+x_{n}: x_{i} \in X_{i}\right\}} \\
\prod X_{i} & \equiv X_{1} X_{2} \cdots X_{n} \equiv \overline{\left\{\sum_{k} x_{1 k} x_{2 k} \cdots x_{n k}: x_{i k} \in X_{i}\right\}} \\
X^{*} & \equiv\left\{x^{*}: x \in X\right\}
\end{aligned}
$$

If $Y_{1}, \ldots, Y_{n}$ is another family of subspaces and $\overline{X_{i}}=\overline{Y_{i}}$ for $i=1, \ldots, n$, then $\sum X_{i}=\sum Y_{i}$ and $\prod X_{i}=\Pi Y_{i}$. Consequently, equalities of the form $X Y=\bar{X} Y$, $X+Y=\bar{X}+Y$, and so on hold for subspaces $X$ and $Y$. Also, the following properties are easily checked for subspaces $X, Y, Z$ :

1. $(X+Y)+Z=X+Y+Z=X+(Y+Z), \quad$ 2. $\quad X+Y=Y+X$,
2. $(X Y) Z=X Y Z=X(Y Z), \quad$ 4. $\quad X(Y+Z)=X Y+X Z$,
3. $(X+Y)^{*}=X^{*}+Y^{*}, \quad$ 6. $(X Y)^{*}=Y^{*} X^{*}, \quad$ 7. $\left(X^{*}\right)^{*}=X$.

For a general family of subspaces $\left\{X_{i}\right\}_{i \in I}$, we extend the definition of sum as

$$
\sum X_{i} \equiv \overline{\left\{\sum_{i \in I_{0}} x_{i}: I_{0} \subseteq I \text { finite, } x_{i} \in X_{i}\right\}}
$$

For every such a family and subspace $X$, we have

$$
\text { 8. } \quad X\left(\sum X_{i}\right)=\sum X X_{i}, \quad \text { 9. } \quad\left(\sum X_{i}\right)^{*}=\sum X_{i}^{*}
$$

2.2.1. Let $C$ be a fixed normed $*$-algebra, let $A \subseteq C$ be a $*$-subalgebra, and let $X \subseteq C$ be a linear subspace such that

$$
\text { 1. } A X \subseteq X, \quad \text { 2. } \quad X A \subseteq X, \quad \text { 3. } \quad X^{*} X \subseteq A, \quad \text { 4. } \quad X X^{*} \subseteq A
$$

For $k \in \mathbb{Z}$, we define $X^{k}=X X \cdots X(k$ times $)$ if $k \geq 1, X^{0}=A$ and $X^{k}=\left(X^{*}\right)^{-k}$ if $k \leq-1$. We have $X^{k} X^{l} \subseteq X^{k+l}$ for all $k, l \in \mathbb{Z}$, and $X^{k} X^{l}=X^{k+l}$ if $k l>0$. Denote by $A[X]$ the closed $*$-subalgebra of $C$ generated by $A \cup X$. That is,

$$
A[X]=C^{*}(A \cup X)=\sum_{k \in \mathbb{Z}} X^{k}
$$

2.2.2. With $A, X \subseteq C$ as before, let $B \subseteq C$ be a $*$-subalgebra. Note that

$$
\text { if } B A=A B \text { and } B X=X B, \quad \text { then } B A[X]=A[X] B
$$

Indeed, in this case $B X^{k}=X^{k} B$ for all $k \in \mathbb{Z}$; then

$$
B A[X]=B \sum_{k} X^{k}=\sum_{k} B X^{k}=\sum_{k} X^{k} B=A[X] B
$$

In a similar fashion, we can prove that

$$
\text { if } B A=A \text { and } B X=X, \quad \text { then } B A[X]=A[X] .
$$

2.2.3. If in the context of Section 2.2.1 $C$ is a $C^{*}$-algebra and $A$ and $X$ are closed, then $A$ is a $C^{*}$-algebra and $X$ is a Hilbert $A-A$ bimodule with the operations given by the restriction of the trivial Hilbert $C-C$ bimodule structure of $C$. Then we have $A X=X$ and $X A=X$ because both actions are automatically nondegenerate. Moreover, if we assume that $X$ is right full, that is, $X^{*} X=A$, then we have $X^{-k} X^{l}=X^{l-k}$ for $k, l \geq 0$.
2.3. Crossed product by a Hilbert bimodule. Crossed products of $C^{*}$-algebras by Hilbert bimodules are introduced in [2]. We summarize here their definition and principal properties.
2.3.1. Covariant pairs. Given a Hilbert $A-A$ bimodule $X$ and a $C^{*}$-algebra $C$, a covariant pair from ${ }_{A} X_{A}$ to $C$ is a pair of maps $(\varphi, \psi)$ where $\varphi: A \rightarrow C$ is a *-morphism and $\psi: X \rightarrow C$ a linear map satisfying

$$
\begin{array}{ll}
\text { 1. } & \psi(a \cdot x)=\varphi(a) \psi(x), \\
\text { 2. } \quad \varphi\left(\langle x, y\rangle_{L}\right)=\psi(x) \psi(y)^{*} \\
\text { 3. } & \psi(x \cdot a)=\psi(x) \varphi(a), \\
\text { 4. } \quad \varphi\left(\langle x, y\rangle_{R}\right)=\psi(x)^{*} \psi(y)
\end{array}
$$

for all $a \in A, x, y \in X$. That is, the pair preserves the Hilbert bimodule structure considering on $C$ the trivial Hilbert $C-C$ bimodule structure.
2.3.2. The crossed product. A crossed product of a $C^{*}$-algebra $A$ by a Hilbert $A$ - $A$ bimodule $X$ is a $C^{*}$-algebra $A \rtimes X\left(\right.$ denoted $A \rtimes_{X} \mathbb{Z}$ in [2]) together with a covariant pair $\left(\iota_{A}, \iota_{X}\right)$ from ${ }_{A} X_{A}$ to $A \rtimes X$ satisfying the following universal property: for any covariant pair $(\varphi, \psi)$ from ${ }_{A} X_{A}$ to a $C^{*}$-algebra $C$ there exists a unique $*$-morphism $\varphi \rtimes \psi: A \rtimes X \rightarrow C$ such that $\varphi=(\varphi \rtimes \psi) \circ \iota_{A}$ and $\psi=(\varphi \rtimes \psi) \circ \iota_{X}$.
2.3.3. Basic properties. The crossed product exists and is unique up to isomorphism. The maps $\iota_{A}$ and $\iota_{X}$ are injective, so that we may consider $A, X \subseteq A \rtimes X$ and the induced $*$-morphism $\varphi \rtimes \psi$ as an extension of the covariant pair $(\varphi, \psi)$. Moreover, for any covariant pair $(\varphi, \psi)$ we have that $\operatorname{Im} \varphi \rtimes \psi=C^{*}(\operatorname{Im} \varphi \cup \operatorname{Im} \psi)$ and that $\varphi \rtimes \psi$ is injective if $\varphi$ is injective.

## 3. The main theorem

3.1. Twisting Hilbert modules. If $X_{B}$ is a right Hilbert $B$-module, $C$ a $C^{*}$-algebra, and $\sigma: C \rightarrow B$ a $*$-isomorphism, then we denote by $X_{\sigma}$ the right Hilbert module over $C$ obtained by considering on the vector space $X$ the operations

$$
x \cdot{ }_{\sigma} c=x \cdot \sigma(c) \quad \text { and } \quad\langle x, y\rangle^{\sigma}=\sigma^{-1}(\langle x, y\rangle) \quad \text { for } c \in C, x, y \in X
$$

If in addition $X$ is a Hilbert $A-B$ bimodule, then $X_{\sigma}$ is a Hilbert $A-C$ bimodule with the original left structure. The module $X$ is right full if and only if $X_{\sigma}$ is right full.
3.2. The twisted sum of a cycle of Hilbert bimodules. Given Hilbert bimodules ${ }_{A_{i}} X_{i_{i}}$ for $i=1, \ldots, n$, we have that $\bigoplus X_{i}$ is a Hilbert $\bigoplus A_{i}-\bigoplus B_{i}$ bimodule with pointwise operations. The bimodule $\bigoplus X_{i}$ is right full if and only if $X_{i}$ is right full for all $i=1, \ldots, n$.

Now, given a "cycle" of Hilbert bimodules ${ }_{A_{1}} X_{1 A_{2}}, A_{2} X_{2 A_{3}}, \ldots, A_{n} X_{n A_{1}}$, we can make $\bigoplus X_{i}$ into a Hilbert bimodule over $\bigoplus A_{i}$ twisting the right action in the previous constriction with the isomorphism $\sigma: A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n} \rightarrow A_{2} \oplus \cdots \oplus$ $A_{n} \oplus A_{1}$ given by

$$
\sigma\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right) \text { for } a_{k} \in A_{k}
$$

Theorem 3.1. Let ${ }_{A_{1}} X_{1 A_{2}}, A_{2} X_{2 A_{3}}, \ldots, A_{n} X_{n A_{1}}$ be right full Hilbert bimodules and consider their twisted sum $\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\sigma}$ as in 3.2. Then we have the following Morita equivalence

$$
A_{1} \rtimes\left(X_{1} \otimes \cdots \otimes X_{n}\right) \sim\left(A_{1} \oplus \cdots \oplus A_{n}\right) \rtimes\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\sigma}
$$

Proof. Let $A=A_{1} \oplus \cdots \oplus A_{n}$, let $X=\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\sigma}$, and let $C=A \rtimes X$. We may suppose that $A_{k} \subseteq A \subseteq C$ and $X_{k} \subseteq X \subseteq C$, for $k=1, \ldots, n$, so that the module operations of each bimodule $X_{k}$ and also the ones of the bimodule $X$ are given by the operations of the $C^{*}$-algebra $C$, that is, by the restriction of the trivial Hilbert $C$ - $C$ bimodule structure of $C$. Note that as the spaces $A, X \subseteq C$ verify the conditions in Section 2.2.1, then we can define $X^{k}$ for $k \in \mathbb{Z}$ as done there. Moreover, as $X$ is a Hilbert $A$ - $A$ bimodule (hence, nondegenerate for both actions) and is right full, because each $X_{k}$ is, we have that $A, X \subseteq C$ verify the conditions of Section 2.2.3.

We extend the families $\left\{A_{k}\right\}_{k=1}^{n}$ and $\left\{X_{k}\right\}_{k=1}^{n}$ to families $\left\{A_{k}\right\}_{k \in \mathbb{Z}}$ and $\left\{X_{k}\right\}_{k \in \mathbb{Z}}$ letting $A_{k}=A_{l}$ and $X_{k}=X_{l}$ if $k=l \bmod n$. For all $k \in \mathbb{Z}$, we have

$$
A_{k} X_{k}=X_{k}=X_{k} A_{k+1}, \quad X_{k} X_{k}^{*} \subseteq A_{k}, \quad \text { and } \quad X_{k}^{*} X_{k}=A_{k+1}
$$

because each $X_{k}$ is a Hilbert $A_{k}-A_{k+1}$ bimodule (hence nondegenerate for both actions) and right full. We also have

$$
A_{k} A_{l}=A_{k} X_{l}=X_{k} A_{l+1}=0 \quad \text { for } k, l \in \mathbb{Z}, k \neq l \bmod n
$$

therefore, as $A=\sum_{k=1}^{n} A_{k}$ and $X=\sum_{k=1}^{n} X_{k}$,

$$
A_{k}=A_{k} A=A A_{k}, \quad X_{k}=A_{k} X=X A_{k+1} \quad \text { for } k \in \mathbb{Z}
$$

and then

$$
A_{k} X^{l}=X^{l} A_{k+l} \quad \text { for } k, l \in \mathbb{Z}
$$

In particular, for $k \in \mathbb{Z}$ we have that $A_{k} X^{n}=X^{n} A_{k}$ so that the pairs $A_{k}$, $A_{k} X^{n}$ satisfy the conditions of Sections 2.2.1 and 2.2.3. Following the notation in Section 2.2.1, we define the $C^{*}$-subalgebra

$$
B=A_{1}\left[A_{1} X^{n}\right]=C^{*}\left(A_{1} \cup A_{1} X^{n}\right) \subseteq C
$$

and the closed subspace

$$
Z=B X^{0} \oplus B X \oplus \cdots \oplus B X^{n-1} \subseteq M_{1 \times n}(C)
$$

where $M_{1 \times n}(C)$ is considered as a Hilbert $C-M_{n}(C)$ bimodule with the usual matrix operations. To prove the theorem, it is enough to show that $Z Z^{*} \subseteq C$ and $Z^{*} Z \subseteq M_{n}(C)$ are $C^{*}$-subalgebras, that $Z$ is an equivalence $Z Z^{*}-Z^{*} Z$ bimodule with the restricted (matrix) operations, and that we have isomorphisms $Z Z^{*} \cong$ $A_{1} \rtimes\left(X_{1} \otimes \cdots \otimes X_{n}\right)$ and $Z^{*} Z \cong C$.

Let us consider the issues concerning the left side first. Note that the equalities $A A_{1}=A_{1}=A_{1} A$ and $A\left(A_{1} X^{n}\right)=A_{1} X^{n}=\left(A_{1} X^{n}\right) A$ imply, by Section 2.2.2, that $A B=B=B A$, because $B=A_{1}\left[A_{1} X^{n}\right]$ by definition. Then we can calculate

$$
Z Z^{*}=\sum_{k=0}^{n-1}\left(B X^{k}\right)\left(B X^{k}\right)^{*}=B\left(\sum_{k=0}^{n-1} X^{k} X^{-k}\right) B=B A B=B
$$

where we use the fact that $\sum_{k=0}^{n-1} X^{k} X^{-k}=A$, which is a consequence of the relations $X^{k} X^{-k} \subseteq A$ and $X^{0}=A$, and that $A B=B$. Besides, from the definition of $Z$ it is apparent that $Z$ is $B$-invariant for the left action. Then we have shown that $Z$ is a full left Hilbert $B$-module. Finally, to see that $B \cong A_{1} \rtimes\left(X_{1} \otimes \cdots \otimes X_{n}\right)$, consider the covariant pair $(\varphi, \psi)$ given by

$$
\begin{aligned}
& \varphi: A_{1} \rightarrow C, \quad \varphi(a)=a \quad \text { for } a \in A_{1} \\
& \psi: X_{1} \otimes \cdots \otimes X_{n} \rightarrow C, \quad \psi\left(x_{1} \otimes \cdots \otimes x_{n}\right)=x_{1} \cdots x_{n} \quad \text { for } x_{k} \in X_{k} .
\end{aligned}
$$

By the universal property of the crossed product (see Section 2.3.2), this covariant pair extends to a $*$-morphism $\varphi \rtimes \psi: A_{1} \rtimes\left(X_{1} \otimes \cdots \otimes X_{n}\right) \rightarrow C$, which is injective because $\varphi$ is injective (see Section 2.3.3). Moreover, $\operatorname{Im} \varphi \rtimes \psi=C^{*}(\operatorname{Im} \varphi \cup \operatorname{Im} \psi)=$ $B$ because $\operatorname{Im} \varphi=A_{1}, \operatorname{Im} \psi=X_{1} \cdots X_{n}=A_{1} X \cdots A_{n} X=A_{1} X^{n}$, and $B=$ $C^{*}\left(A_{1} \cup A_{1} X^{n}\right)$ by definition. Hence we have the desired isomorphism.

Now, turning to the right side, note that $Z^{*} Z$ is clearly a closed self-adjoint subspace of $M_{n}(C)$. From the equalities $Z Z^{*}=B$ and $B Z=Z$ we also deduce that $\left(Z^{*} Z\right)\left(Z^{*} Z\right)=Z^{*} B Z=Z^{*} Z$, so that $Z^{*} Z$ is a $C^{*}$-subalgebra of $M_{n}(C)$ and $Z$ is a full right Hilbert $Z^{*} Z$-module.

To show that $Z^{*} Z \cong C$, consider the pair of maps $\varphi: A \rightarrow M_{n}(C)$ and $\psi: X \rightarrow$ $M_{n}(C)$ given by

$$
\varphi\left(a_{1}, \ldots, a_{n}\right)=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n}
\end{array}\right], \quad \psi\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
0 & x_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \\
x_{n} & \cdots & 0 & 0
\end{array}\right]
$$

for $\left(a_{1}, \ldots, a_{n}\right) \in A=A_{1} \oplus \cdots \oplus A_{n}$ and $\left(x_{1}, \ldots, x_{n}\right) \in X=\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\sigma}$.
The following calculations show that this pair is a covariant pair. For every $a_{k} \in A_{k}, x_{k}, y_{k} \in X_{k}, k=1, \ldots, n$, we have

$$
\begin{aligned}
& \psi\left(\left(a_{1}, \ldots, a_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\psi\left(a_{1} \cdot x_{1}, \ldots, a_{n} \cdot x_{n}\right) \\
& =\left[\begin{array}{cccc}
0 & a_{1} \cdot x_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1} \cdot x_{n-1} \\
a_{n} \cdot x_{n} & \cdots & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n}
\end{array}\right]\left[\begin{array}{cccc}
0 & x_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \\
x_{n} & \cdots & 0 & 0
\end{array}\right] \\
& =\varphi\left(a_{1}, \ldots, a_{n}\right) \psi\left(x_{1}, \ldots, x_{n}\right) ; \\
& \varphi\left(\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle_{L}\right) \\
& =\varphi\left(\left\langle x_{1}, y_{1}\right\rangle_{L}, \ldots,\left\langle x_{n}, y_{n}\right\rangle_{L}\right) \\
& =\left[\begin{array}{cccc}
\left\langle x_{1}, y_{1}\right\rangle_{L} & 0 & \cdots & 0 \\
0 & \left\langle x_{2}, y_{2}\right\rangle_{L} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \left\langle x_{n}, y_{n}\right\rangle_{L}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & x_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \\
x_{n} & \cdots & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & \cdots & y_{n}^{*} \\
y_{1}^{*} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & y_{n-1}^{*} & 0
\end{array}\right] \\
& =\psi\left(x_{1}, \ldots, x_{n}\right) \psi\left(y_{1}, \ldots, y_{n}\right)^{*} ; \\
& \psi\left(\left(x_{1}, \ldots, x_{n}\right) \cdot \sigma\left(a_{1}, \ldots, a_{n}\right)\right) \\
& =\psi\left(\left(x_{1}, \ldots, x_{n}\right) \cdot \sigma\left(a_{1}, \ldots, a_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\psi\left(\left(x_{1}, \ldots, x_{n}\right) \cdot\left(a_{2}, \ldots, a_{n}, a_{1}\right)\right)=\psi\left(x_{1} \cdot a_{2}, \ldots, x_{n-1} \cdot a_{n}, x_{n} \cdot a_{1}\right) \\
& =\left[\begin{array}{cccc}
0 & x_{1} \cdot a_{2} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \cdot a_{n} \\
x_{n} \cdot a_{1} & \cdots & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & x_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \\
x_{n} & \cdots & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n}
\end{array}\right] \\
& =\psi\left(x_{1}, \ldots, x_{n}\right) \varphi\left(a_{1}, \ldots, a_{n}\right) ; \\
& \varphi\left(\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle_{R}^{\sigma}\right) \\
& =\varphi\left(\sigma^{-1}\left(\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle_{R}\right)\right) \\
& =\varphi\left(\sigma^{-1}\left(\left\langle x_{1}, y_{1}\right\rangle_{R}, \ldots,\left\langle x_{n}, y_{n}\right\rangle_{R}\right)\right)=\varphi\left(\left\langle x_{n}, y_{n}\right\rangle_{R},\left\langle x_{1}, y_{1}\right\rangle_{R}, \ldots,\left\langle x_{n-1}, y_{n-1}\right\rangle_{R}\right) \\
& =\left[\begin{array}{cccc}
\left\langle x_{n}, y_{n}\right\rangle_{R} & 0 & \cdots & 0 \\
0 & \left\langle x_{1}, y_{1}\right\rangle_{R} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \left\langle x_{n-1}, y_{n-1}\right\rangle_{R}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & \cdots & x_{n}^{*} \\
x_{1}^{*} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & x_{n-1}^{*} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & y_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & y_{n-1} \\
y_{n} & \cdots & 0 & 0
\end{array}\right] \\
& =\psi\left(x_{1}, \ldots, x_{n}\right)^{*} \psi\left(y_{1}, \ldots, y_{n}\right) \text {. }
\end{aligned}
$$

By the universal property of the crossed product, the covariant pair $(\varphi, \psi)$ extends to a *-morphism $\varphi \rtimes \psi: A \rtimes X \rightarrow M_{n}(C)$, which is injective because $\varphi$ is injective. Then, to end the proof, it suffices to show that $\operatorname{Im} \varphi \rtimes \psi=Z^{*} Z$.

We calculate that $Z^{*} Z \subseteq M_{n}(C)$ by adopting the following matrix notation:

$$
Z^{*} Z=\left[E_{i j}\right]_{i, j=1}^{n}, \quad \text { where } E_{i j}=\left(B X^{i-1}\right)^{*}\left(B X^{j-1}\right) \subseteq C, i, j=1, \ldots, n .
$$

Simplifying the expressions of the $E_{i j}$ 's, we get

$$
E_{i j}=\left(B X^{i-1}\right)^{*}\left(B X^{j-1}\right)=X^{1-i} B X^{j-1} .
$$

Note that

$$
\begin{aligned}
E_{i i} & =X^{1-i} B X^{i-1} \supseteq X^{1-i} A_{1} X^{i-1}=X^{1-i} X^{i-1} A_{i}=A_{i} \quad \text { for } i=1, \ldots, n, \\
E_{i i+1} & =E_{i i} X \supseteq A_{i} X=X_{i} \quad \text { for } i=1, \ldots, n-1
\end{aligned}
$$

and that

$$
E_{n 1}=X^{1-n} B X^{0} \supseteq X^{1-n}\left(A_{1} X^{n}\right) A=A_{n} X^{1-n} X^{n}=A_{n} X=X_{n} .
$$

Then we see that $\operatorname{Im} \varphi \subseteq Z^{*} Z$ and $\operatorname{Im} \psi \subseteq Z^{*} Z$. As $\operatorname{Im} \varphi \rtimes \psi=C^{*}(\operatorname{Im} \varphi \cup \operatorname{Im} \psi)$, we conclude that $\operatorname{Im} \varphi \rtimes \psi \subseteq Z^{*} Z$.

To prove the reverse inclusion, denote $D=\operatorname{Im} \varphi \rtimes \psi=C^{*}(\operatorname{Im} \varphi \cup \operatorname{Im} \psi)$,

$$
\operatorname{Im} \varphi=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_{n}
\end{array}\right] \subseteq D
$$

and

$$
\widetilde{X}=\operatorname{Im} \psi=\left[\begin{array}{cccc}
0 & X_{1} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & X_{n-1} \\
X_{n} & \cdots & 0 & 0
\end{array}\right] \subseteq D
$$

Note that

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & X_{1} & \cdots & 0 \\
0 & 0 & 0 & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & X_{2} & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] \cdots\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & X_{n-1} \\
0 & \cdots & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
X_{n} & \cdots & 0 & 0
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
X_{1} \cdots X_{n} & 0 & \cdots & 0 \\
0 & 0 & 0 & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
A_{1} X^{n} & 0 & \cdots & 0 \\
0 & 0 & 0 & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] \subseteq D .
\end{aligned}
$$

Then, with $\left[\begin{array}{cc}A_{1} & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times(n-1)}\end{array}\right] \subseteq D$ and $\left[\begin{array}{cc}A_{1} X^{n} & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times(n-1)}\end{array}\right] \subseteq D$, we can generate $\widetilde{E}_{11}=\left[\begin{array}{cc}\left.\begin{array}{cc}E_{11} & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times(n-1)}\end{array}\right] \subseteq D \text { because } E_{11}=B=A_{1}\left[A_{1} X^{n}\right] \text {. Now, for }\end{array}\right.$ $k, l=0, \ldots, n-1$ we have that the product $\widetilde{X}^{-k} \widetilde{E}_{11} \widetilde{X}^{l} \subseteq D$ is the space that, with the matrix notation, has $X_{k}^{*} \cdots X_{1}^{*} B X_{1} \cdots X_{l}=X^{-k} B X^{l}=E_{1+k 1+l}$ at the $(l+1, k+1)$-entry and 0 elsewhere. As $(k+1, l+1)$ ranges over all entries when $k, l=0, \ldots, n-1$, we conclude that $Z^{*} Z=\left[E_{i j}\right]_{i, j=1}^{n} \subseteq D$, as desired.
Remark 3.2. For the special case of Theorem 3.1 in which $A_{i}=A$ and $X_{i}=X$ for $i=1, \ldots, n$, we obtain $A^{n} \rtimes X_{\sigma}^{n} \sim A \rtimes X^{\otimes n}$. As pointed out in the Introduction, this can be viewed as a generalization to the $C^{*}$-bimodule context of Green's theorem (see [5, Theorem 4.22]) for the cases in which $G=\mathbb{Z}$ and $H=n \mathbb{Z}$. That is, if $\alpha: A \rightarrow A$ is a $*$-automorphism, taking $X$ as the trivial Hilbert bimodule ${ }_{A} A_{A}$ twisted by $\alpha$, the equivalence $A^{n} \rtimes X_{\sigma}^{n} \sim A \rtimes X^{\otimes n}$ becomes $C_{0}(G / H, A) \rtimes G \sim$ $A \rtimes_{\left.\alpha\right|_{H}} H$, where $\alpha$ also denotes the action of $\mathbb{Z}$ generated by the automorphism.

Corollary 3.3. Let ${ }_{A} X_{B}$ and ${ }_{B} Y_{A}$ be full right Hilbert bimodules. Then

$$
A \rtimes(X \otimes Y) \sim B \rtimes(Y \otimes X)
$$

Proof. Note that the twisted sums $(X \oplus Y)_{\sigma}$ and $(Y \oplus X)_{\sigma}$ are isomorphic Hilbert bimodules. Indeed, the pair $(\varphi, \psi)$ where $\varphi: A \oplus B \rightarrow B \oplus A, \varphi(a, b)=(b, a)$, and $\psi: X \oplus Y \rightarrow Y \oplus X, \psi(x, y)=(y, x)$, is an isomorphism. Then, the corresponding crossed products are isomorphic as well. Therefore

$$
A \rtimes(X \otimes Y) \sim(A \oplus B) \rtimes(X \oplus Y)_{\sigma} \cong(B \oplus A) \rtimes(Y \oplus X)_{\sigma} \sim B \rtimes(Y \otimes X)
$$

where we applied Theorem 3.1 twice for $n=2$.
Corollary 3.4 ([2, Theorem 4.1]). Let ${ }_{A} X_{A}$ and ${ }_{B} Y_{B}$ be full right Hilbert bimodules, and let ${ }_{A} M_{B}$ be an equivalence bimodule such that $X \otimes M \cong M \otimes Y$. Then

$$
A \rtimes X \sim B \rtimes Y
$$

Proof. As $M$ is an equivalence, we have $A \cong M \otimes M^{*}$, where $A$ is considered as the trivial Hilbert $A$ - $A$ bimodule and $M^{*}$ denotes the conjugated bimodule of $M$. Then $X \cong A \otimes X \cong M \otimes M^{*} \otimes X$. Besides, $M^{*} \otimes X \otimes M \cong Y$ by hypothesis. Then, as all these isomorphisms give isomorphic crossed products, we have

$$
A \rtimes X \cong A \rtimes(A \otimes X) \cong A \rtimes\left(M \otimes M^{*} \otimes X\right) \sim B \rtimes\left(M^{*} \otimes X \otimes M\right) \cong B \rtimes Y,
$$

where we applied Corollary 3.3 to commute $M$ and $M^{*} \otimes X$.
Remark 3.5. In [1] the augmented Cuntz-Pimsner $C^{*}$-algebra $\widetilde{\mathcal{O}}_{X}$ associated to an $A$ - $A$ correspondence $X$ (see [4]) is described as a crossed product $A_{\infty} \rtimes X_{\infty}$, where $X_{\infty}$ is a Hilbert $A_{\infty}-A_{\infty}$ bimodule constructed out of the $A-A$ correspondence $X$. Then, by combining this description with [2, Theorem 4.1] (Corollary 3.4 here), we can show an analogue of this theorem in the context of augmented Cuntz-Pimsner $C^{*}$-algebras (see [1, Theorem 4.7]). We believe that using similar techniques to those of [1], it is possible to obtain versions of Theorem 3.1 and Corollary 3.3 for augmented Cuntz-Pimsner algebras. For example, the corresponding version of Corollary 3.3 should establish that $\widetilde{\mathcal{O}}_{X \otimes Y} \sim \widetilde{\mathcal{O}}_{Y \otimes X}$ for full correspondences ${ }_{A} X_{B}$ and ${ }_{B} Y_{A}$.

Acknowledgments. The author wishes to thank his friend Janine Bachrachas for her help editing this article. The author's work was partially supported by Proyecto Fondo Clemente Estable grant FCE2007-731.

## References

1. B. Abadie and M. Achigar, Cuntz-Pimsner $C^{*}$-algebras and crossed products by Hilbert $C^{*}$-bimodules, Rocky Mountain J. Math. 39 (2009), no. 4, 1051-1081. Zbl 1181.46040. MR2524704. DOI 10.1216/RMJ-2009-39-4-1051. 289
2. B. Abadie, S. Eilers, and R. Exel, Morita equivalence for crossed products by Hilbert $C^{*}$-bimodules, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3043-3054. Zbl 0899.46053. MR1467459. DOI 10.1090/S0002-9947-98-02133-3. 281, 283, 284, 289
3. E. C. Lance, Hilbert $C^{*}$-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. Zbl 0822.46080. MR1325694. DOI 10.1017/CBO9780511526206. 282
4. M. V. Pimsner, "A class of $C^{*}$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\mathbb{Z} "$ in Free Probability Theory (Waterloo, 1995), Fields Inst. Commun. 12, Amer. Math. Soc., Providence, 1997, 189-212. Zbl 0871.46028. MR1426840. 289
5. D. P. Williams, Crossed Products of $C^{*}$-Algebras, Math. Surveys Monogr. 134, Amer. Math. Soc., Providence, 2007. Zbl 1119.46002. MR2288954. 281, 288

Centro Universitario Litoral Norte, Gral. Rivera 1350, CP 50000, Salto, Uruguay.

E-mail address: mauricio.achigar3@gmail.com


[^0]:    Copyright 2017 by the Tusi Mathematical Research Group.
    Received Apr. 23, 2016; Accepted Sep. 26, 2016.
    First published online Apr. 4, 2017.
    2010 Mathematics Subject Classification. Primary 46L08; Secondary 46L55, 46L05.
    Keywords. Green's theorem, Morita equivalence, crossed product, Hilbert module.

